×
04.11.2018
218.016.9a59

Результат интеллектуальной деятельности: СПОСОБ ПЛАЗМЕННОГО УПРОЧНЕНИЯ ВНУТРЕННЕЙ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано для химико-термической обработки внутренней цилиндрической поверхности из конструкционных материалов и изделий из мало- и высоколегированных сталей, титана и титановых сплавов. Изделие размещают в вакуумной камере. В вакуумную камеру подают аргон и проводят предварительную обработку поверхности импульсно-периодическим аномальным тлеющим разрядом, после которой осуществляют нагрев изделия до температуры свыше 150°С посредством системы дополнительного нагрева. Проводят напуск рабочего газа до давления 0,5-5,0 Торр. Используют для стали смесь водорода и азота или смесь водорода, азота и аргона, а для титана и его сплавов – смесь аргона и азота или смесь гелия и азота. Выполняют азотирование в плазме импульсно-периодического аномального тлеющего разряда с полым катодом с нагревом поверхности изделия из стали до 400-650°С, а изделия из титана и его сплава до 400-900°С посредством системы дополнительного нагрева. Затем осуществляют подачу в вакуумную камеру азота и охлаждают изделие до температуры 25°С в атмосфере азота при высоком давлении 800 Торр. Способ обеспечивает повышение твердости и коррозионной стойкости деталей с внутренней цилиндрической поверхностью диаметром от 3 мм. 3 пр., 5 ил.

Область техники

Изобретение относится к области машиностроения, в частности к химико-термической обработке внутренней цилиндрической поверхности деталей из конструкционных материалов и изделий из мало- и высоколегированных сталей, титана и титановых сплавов.

Уровень техники

Известен способ для азотирования внутренней поверхности трубы в плазме тлеющего разряда [1] в азотосодержащем газе, в котором в обрабатываемую трубу устанавливают специальный электрод (анод), вакуумируют с двух сторон через штуцеры, напускают азотосодержащий рабочий газ до давления 0,1-1,0 мм рт.ст., зажигают тлеющий разряд между центральным электродом (анодом) и трубой, причем труба является катодом. После катодной очистки давление в рабочем объеме повышают до 1-10 мм рт.ст. проводят нагрев трубы и изотермическую выдержку, причем температуру трубы регулируют, меняя ток источника питания разряда. Для выравнивания температуры по длине трубы применяют термостат, выполненный из теплоизолирующего материала. В результате воздействия потока ионов на внутреннюю поверхность трубы происходит интенсивное диффузное насыщение ее азотом и образуется качественный азотированный слой.

Недостатком такого способа является наличие в плазме, а также в азотированном слое материала анода, что может негативно сказываться на механических характеристиках обрабатываемой поверхности, регулировка температуры обрабатываемого изделия только за счет тока источника питания разряда, а также невозможность обрабатывать цилиндрические детали малого диаметра до 10 мм.

Наиболее близким по технической сущности и выбранным в качестве прототипа является способ [2] модификации внутренней поверхности металлических изделий в плазме разряда с полым катодом, в котором обрабатываемое изделие помещают в вакуумную камеру, внутри него располагают дополнительный электрод-катод для инициации разряда с полым катодом, откачивают до давления ~10-3 Торр, напускают в камеру аргон до давления 0,05 Торр, зажигают разряд и осуществляют очистку и активацию поверхности в течении 5-20 минут, затем напускают в камеру реакционную смесь газов аммиак (азот) или аргон в отношении от 20% до 80% до давления 0,05-5,0 Торр, подают от источника питания импульс напряжения до 10 кВ или импульс тока до 5А и зажигают разряд с полым катодом. Нагрев образца осуществляется только в плазме разряда с полым катодом. Время азотирования варьируется от 0,5 до 4 часов. В результате такой модификации внутренней поверхности цилиндров увеличивается твердость, износостойкость и коррозионная стойкость поверхности металлических изделий, а также улучшаются ее физико-химические свойства.

Недостатком такого способа является наличие в плазме разряда, а также в азотированном слое атомов материала дополнительного электрода, что может негативно сказываться на механических характеристиках обрабатываемой поверхности, а также регулировка температуры обрабатываемого изделия только за счет тока (напряжения) источника питания разряда.

Раскрытие сущности изобретения

Техническим результатом изобретения является создание способа плазменного упрочнения внутренней цилиндрической поверхности, позволяющего азотировать внутреннюю поверхность с малым диаметром от 3 мм в плазме разряда с полым катодом с дополнительным нагревом, и обеспечивающего повышение ее твердости, износостойкости и коррозионной стойкости для использования в областях машиностроения в частности для обработки внутренней цилиндрической поверхности деталей из конструкционных материалов и изделий из мало- и высоколегированных сталей, титана и титановых сплавов.

Технический результат достигается тем, что предлагаемый способ плазменного упрочнения внутренней цилиндрической поверхности металлического изделия, включает в себя размещение изделия в вакуумной камере, создание вакуума, подачу в вакуумную камеру аргона, предварительную обработку поверхности в плазме разряда, подачу в вакуумную камеру смеси рабочего газа и азотирование в плазме разряда и отличается тем, что предварительную обработку изделия осуществляют импульсно-периодическим аномальным тлеющим разрядом, после которой осуществляют нагрев изделия до температуры свыше 150°С посредством системы дополнительного нагрева, производят напуск рабочего газа в виде смеси водорода и азота (или смеси водорода, азота и аргона) для стали или смеси аргона и азота (или смеси гелия и азота) для титана и его сплавов до давления 0,5-5,0 Торр и выполняют азотирование в плазме импульсно-периодического аномального тлеющего разряда с полым катодом с нагревом поверхности изделия из стали до 400-650°С или изделия из титана и его сплава до 400-900°С посредством системы дополнительного нагрева, после чего осуществляют подачу в вакуумную камеру азота и охлаждают изделие до температуры 25°С в атмосфере азота при высоком давлении 800 Торр.

Технический результат достигается благодаря следующему.

Для предварительной обработки изделия был использован импульсно-периодический аномальный тлеющий разряд при давлении 0,5-1,5 Торр, напряжении источника питания 450-600 В, частоте 1,0-100 кГц, коэффициенте заполнения 10-80%, время очистки составляло 5-30 мин. Предварительная обработка в плазме импульсно-периодического аномального тлеющего разряда позволила очистить поверхность образца от окислов.

Изделия нагревалось вначале с помощью системы дополнительного нагрева на основе нагревательного элемента, установленного на съемном цилиндрическом экране вокруг обрабатываемого образца, затем при одновременной работе нагревательного элемента и аномального тлеющего разряда с полым катодом. Предварительный нагрев изделия позволил не только сократить время нагрева образца до необходимой для азотирования температуры, но и привел к обезгаживанию поверхности образцов и стенок камеры, что существенно улучшило качество модифицированной поверхности.

Азотирование внутренней поверхности образца осуществлялось с помощью аномального тлеющего разряда с полым катодом с дополнительным нагревом при давлении 1,5-5,0 Торр с использованием импульсно-частотного источника питания с частотой следования импульсов 1,0-100 кГц, коэффициентом заполнения 10-80%, напряжением горения разряда 400-2500 В, с плотностью токадо 0,5 А/см2. Разряд зажигался внутри обрабатываемого изделия, являющегося катодом, анодом являлись стенки камеры. Время азотирования составляло 0,5-6,0 часов.

При давлении ниже 0,5 Торр и свыше 5,0 Торр разряд не зажигается. При напряжении источника питания разряда менее 400 В разряд не зажигается, при напряжении источника питания свыше 2,5 кВ разряд переходит в дуговой режим. При частоте следования импульсов менее 1,0 кГц разряд также переходит в дуговой режим, при частотах более 100 кГц существенно снижается эффективность использования импульса тока, что приводит к увеличению длительности процесса азотирования.

Температура образца в процессе обработки составляла 400-650°С для стали и 400-900°С для титана и его сплавов и достигалась как подбором режимов работы источника питания аномального тлеющего разряда, так и режимом работы нагревательного элемента.

При температуре поверхности образца меньше 400°С процесс азотирования неэффективен, т.к. при таких температурах уменьшается диффузия азота вглубь поверхности, при температурах выше 700°С для стали и 900°С для титана и его сплавов происходят структурные превращения в металле и перестройка его кристаллической решетки.

Сущность изобретения поясняется чертежами, где проиллюстрирован заявляемый способ:

На Фиг. 1 представлена схема устройства ионно-плазменного упрочнения внутренней цилиндрической поверхности: 1 изделие в виде трубки, 2 вакуумная камера, 3 сухой спиральный насос, 4 турбомолекулярный насос, 5 держатель образцов (изделий), 6 катод, 7 система дополнительного нагрева, 8 датчики измерения вакуума.

На Фиг. 2 представлена фотография шлифа внутренней поверхности образца.

На Фиг. 3 показано распределение микротвердости по глубине азотированного слоя, измеренные по Виккерсу при нагрузке 10 гс помощью микротвердомера FutureTech ТМ-9000.

На Фиг. 4 показано распределение микротвердости по глубине азотированного слоя, измеренное при нагрузке 25 гс помощью микротвердомера FutureTech FM-800.

На Фиг. 5 показано распределение микротвердости по глубине азотированного слоя, измеренное при нагрузке 10 гс помощью микротвердомера FutureTech FM-800.

Сущность изобретения поясняется примерами.

Пример 1

Были использованы образцы из стали 30ХН2МФА в виде трубок с внутренним диаметром 9 мм, внешним диаметром 14 мм и длиной 155 мм. Производилась очистка поверхности трубок в ультразвуковой ванне «S5 Elmasonic» в бензине, в ацетоне и в спирте в течение 5-10 мин.

Данный способ был реализован с помощью устройства, схема которого представлена на Фиг. 1. Стальная трубка 1 помещалась в вакуумную камеру 2, которая откачивалась сухим спиральным насосом 3 и турбомолекулярным насосом 4 до давления 10-4 Торр. Стальная трубка с помощью специального металлического держателя 5 крепилась к катоду бив процессе азотирования находилась под напряжением катода. Анодом являлись стенки камеры. Система дополнительного нагрева 7 была реализована на основе двужильного нагревательного кабеля в металлической оболочке длиной 3 м, сопротивлением 118 Ом и мощностью 432 Вт. Кабель крепился на съемный экран из нержавеющей стали толщиной 0,5 мм. Питание аномального тлеющего разряда и разряда с полым катодом осуществлялось от источника питания 8, формирующего прямоугольный импульс напряжения со средней мощностью до 12 кВт, напряжением питания до 650 В, частотой 1-100 кГц, коэффициентом заполнения от 10 до 80%. Рабочий вакуум измерялся с помощью датчиков измерения вакуума установки 8.

Предварительную обработку изделий с целью очистки поверхности и удаления окислов осуществляли в течение 20 мин в плазме импульсно-периодического аномального тлеющего разряда в аргоне при давлении 0,8-1,0 Торр, напряжении источника питания 400 В, частоте 50,0 кГц, коэффициенте заполнения 50%. Далее проводился нагрев поверхности образца до температуры свыше 150°С с помощью системы дополнительного нагрева.

Азотирование внутренней поверхности образца осуществлялось с помощью аномального тлеющего разряда с полым катодом с дополнительным нагревом при давлении 3,0 Торр в смеси рабочих газов H2/N2 (1:1) с использованием импульсно-частотного источника питания с частотой следования импульсов 3,0 кГц, коэффициентом заполнения 35% напряжением источника 540-600 В. Разряд с полым катодом зажигался внутри обрабатываемого изделия. Температура поверхности образца во время азотирования составляла 530-600°С. Контроль температуры образца осуществлялся с помощью термопары Ni-NiCr типа К. Время азотирования составляло 4,0 часа.

После азотирования образцы охлаждались в среде азота при давлении 800 Торр до достижения ими температуры 25°С.

На Фиг. 2 показана фотография шлифа внутренней поверхности образца, вырезанного из середины трубки и протравленного в смеси H2O2+H2O+HF (16:3:1). Фотография сделана с помощью растрового электронного микроскопа. На Фиг. 3 показано распределение микротвердости по глубине азотированного слоя, измеренные по Виккерсу при нагрузке 10 гс помощью микротвердомера FutureTech ТМ-9000. Измерения делались для участка, вырезанного из середины трубки. Видно, что микротвердость модифицированной поверхности почти в 2 раза превышает микротвердость необработанного образца, толщина упрочненного слоя составляет порядка 150 мкм.

Были проведены испытания внутренней поверхности трубок на солевую коррозию по стандартной методике ускоренных циклических испытаний. После трех циклов очагов коррозии на модифицированной поверхности обнаружено не было.

Пример 2

Были использованы образцы из титана ВТ 1-0 в виде трубок с внутренним диаметром 8 мм, внешним диаметром 10 мм и длиной 200 мм. Производилась очистка поверхности трубок в ультразвуковой ванне «S5 Elmasonic» в бензине, в ацетоне и в спирте в течение 5-10 мин.

Предварительную обработку изделий с целью очистки поверхности и удаления окислов осуществляли в течение 10 мин в плазме импульсно-периодического аномального тлеющего разряда в аргоне при давлении 0,5 Торр, напряжении источника питания 500 В, частоте 5,0 кГц, коэффициенте заполнения 25%. Далее проводился нагрев поверхности образца до температуры свыше 150°С с помощью системы дополнительного нагрева.

Азотирование внутренней поверхности образца осуществлялось с помощью аномального тлеющего разряда с полым катодом с дополнительным нагревом при давлении 1,0 Торр в смеси рабочих газов Ar/N2 (1:1) с использованием импульсно-частотного источника питания с частотой следования импульсов 3,0 кГц, коэффициентом заполнения 35% напряжением источника 550-600 В. Разряд с полым катодом зажигался внутри обрабатываемого изделия. Температура поверхности образца во время азотирования составляла 800-900°С. Контроль температуры образца осуществлялся с помощью термопары Ni-NiCr типа К. Время азотирования составляло 2,0 часа.

После азотирования образцы охлаждались в среде азота при давлении 800 Торр до достижения ими температуры 25°С.

На Фиг. 4 показано распределение микротвердости по глубине азотированного слоя, измеренное при нагрузке 25 гс помощью микротвердомера FutureTech FM-800. Измерения делались для участка, вырезанного из середины трубки. Видно, что микротвердость модифицированной поверхности почти в 3 раза превышает микротвердость необработанного образца, толщина упрочненного слоя составляет порядка 100 мкм.

Пример 3

Были использованы образцы из стали 30ХН2МФАв виде трубок с внутренним диаметром 4 мм, внешним диаметром 6 мм и длиной 100 мм. Производилась очистка поверхности трубок в ультразвуковой ванне «S5 Elmasonio) в бензине, в ацетоне и в спирте в течение 5-10 мин.

Предварительную обработку изделий с целью очистки поверхности и удаления окислов осуществляли в течение 30 мин в плазме импульсно-периодического аномального тлеющего разряда в аргоне при давлении 1,5 Торр, напряжении источника питания 500-600 В, частоте 50,0 кГц, коэффициенте заполнения 50%. Далее проводился нагрев поверхности образца до температуры свыше 150°С с помощью системы дополнительного нагрева.

Азотирование внутренней поверхности образца осуществлялось с помощью аномального тлеющего разряда с полым катодом с дополнительным нагревом при давлении 2,5 Торр в смеси рабочих газов Ar/N2/H2 (1:16:3) с использованием импульсно-частотного источника питания с частотой следования импульсов 50,0 кГц, коэффициентом заполнения 50% напряжением источника 500 В. Разряд с полым катодом зажигался внутри обрабатываемого изделия. Температура поверхности образца во время азотирования составляла 500-600°С. Контроль температуры образца осуществлялся с помощью термопары Ni-NiCr типа К. Время азотирования составляло 3,5 часа.

После азотирования образцы охлаждались в среде азота при давлении 800 Торр до достижения ими температуры 25°С.

На Фиг. 5 показано распределение микротвердости по глубине азотированного слоя, измеренное при нагрузке 10 гс помощью микротвердомера FutureTech FM-800. Измерения делались для участка, вырезанного из середины трубки. Микротвердость модифицированной поверхности почти в 2 раза превышает микротвердость основы, толщина упрочненного слоя составляет порядка 50 мкм.

Реализация вышеописанного способа позволит создать плазменную технологию упрочнения внутренней цилиндрической поверхности, обеспечивающую повышение твердости, износостойкости и коррозионной стойкости изделий, для использования в области машиностроения в частности в химико-термической обработке деталей из мало- и высоколегированных сталей, титана и титановых сплавов.

Источники информации

1. Пат. №2102524 RU Рос. Федерация, МПК6 С23С 8/36 /Устройство для обработки внутренней поверхности трубы. [Текст] /В.А. Быстрик, Р.В. Каталов, А.Г. Прозоров, Ю.П. Черников, А.В. Подшивалов, Е.А. Быстрик, Н.А. Бычков заявители и патентообладатели В.А. Быстрик, Р.В. Каталов, А.Г. Прозоров, Ю.П. Черников, А.В. Подшивалов, Е.А. Быстрик, Н.А. Бычков - №93005936/02; заявл. 01.02.1993, опубл. 20.01.1998.

2. Пат. №103320772 CN Китай, МПК С23С 16/50, С23С 8/36 / Metal inner surface modification device method. [Текст] / ZHANG GUIFENG, HOU XIAODUO, DENG DEWEI заявитель и патентообладатель University Delian Technology - №20131278344; заявл. 04.07.2013, опубл. 25.09.2013.

Способ плазменного упрочнения внутренней цилиндрической поверхности металлического изделия, включающий размещение изделия в вакуумной камере, создание вакуума, подачу в вакуумную камеру аргона, предварительную обработку поверхности в плазме разряда, подачу в вакуумную камеру смеси рабочего газа и азотирование в плазме разряда, отличающийся тем, что предварительную обработку изделия осуществляют импульсно-периодическим аномальным тлеющим разрядом, после которой осуществляют нагрев изделия до температуры свыше 150°С посредством системы дополнительного нагрева, производят напуск рабочего газа для стали в виде смеси водорода и азота или смеси водорода, азота и аргона, или рабочего газа для титана и его сплавов в виде смеси аргона и азота или смеси гелия и азота до давления 0,5-5,0 Торр и выполняют азотирование в плазме импульсно-периодического аномального тлеющего разряда с полым катодом с нагревом поверхности изделия из стали до 400-650°С или изделия из титана и его сплава до 400-900°С посредством системы дополнительного нагрева, после чего осуществляют подачу в вакуумную камеру азота и охлаждают изделие до температуры 25°С в атмосфере азота при высоком давлении 800 Торр.
СПОСОБ ПЛАЗМЕННОГО УПРОЧНЕНИЯ ВНУТРЕННЕЙ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ
СПОСОБ ПЛАЗМЕННОГО УПРОЧНЕНИЯ ВНУТРЕННЕЙ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ
СПОСОБ ПЛАЗМЕННОГО УПРОЧНЕНИЯ ВНУТРЕННЕЙ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ
СПОСОБ ПЛАЗМЕННОГО УПРОЧНЕНИЯ ВНУТРЕННЕЙ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ
СПОСОБ ПЛАЗМЕННОГО УПРОЧНЕНИЯ ВНУТРЕННЕЙ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ
СПОСОБ ПЛАЗМЕННОГО УПРОЧНЕНИЯ ВНУТРЕННЕЙ ЦИЛИНДРИЧЕСКОЙ ПОВЕРХНОСТИ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 20.
20.07.2015
№216.013.64b2

Разрядная система эксимерного лазера (варианты)

Изобретение относится к лазерной технике. Разрядная система эксимерного лазера включает в себя расположенную в лазерной камере (1) зону объемного разряда (4) между первым и вторым электродами (2), (3), продольные оси которых параллельны друг другу, каждый блок предыонизации (5) содержит систему...
Тип: Изобретение
Номер охранного документа: 0002557325
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.64b4

Газоразрядный эксимерный лазер (варианты)

Изобретение относится к лазерной технике. Лазер включает газонаполненный корпус, на котором установлена керамическая разрядная камера с протяженным высоковольтным фланцем, расположенные в разрядной камере протяженные высоковольтный электрод, заземленный электрод и, по меньшей мере, один блок...
Тип: Изобретение
Номер охранного документа: 0002557327
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.6b4f

Разрядная система газового лазера

Изобретение относится к лазерной технике. Разрядная система газового лазера содержит расположенные в корпусе лазера протяженные первый и второй электроды лазера, УФ предыонизатор, расположенный сбоку от одного из электродов лазера и выполненный в виде системы зажигания скользящего разряда между...
Тип: Изобретение
Номер охранного документа: 0002559029
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6bde

Разрядная система лазера с частично прозрачным электродом

Изобретение относится к лазерной технике. Разрядная система лазера с частично прозрачным электродом содержит размещенный с обратной стороны частично прозрачного электрода УФ предыонизатор в виде протяженной системы зажигания завершенного скользящего разряда, включающей в себя металлическую...
Тип: Изобретение
Номер охранного документа: 0002559172
Дата охранного документа: 10.08.2015
10.04.2016
№216.015.2c8a

Плазменная обработка поверхности с использованием разряда пинчевого типа

Изобретение относится к технологии плазменной обработки поверхности материалов, в частности, для создания высоконадежных защитных покрытий оболочек тепловыделяющих элементов (твэл) ядерного реактора. Способ плазменной обработки поверхности металлического изделия включает перемещение изделия в...
Тип: Изобретение
Номер охранного документа: 0002579845
Дата охранного документа: 10.04.2016
27.08.2016
№216.015.50d5

Радиоизотопный фото-термоэлектрический генератор

Устройство относится к радиоизотопной энергетике и может быть использовано в энергетических установках, предназначенных для длительной автономной работы в труднодоступных и малонаселенных районах Земли, а также в условиях космического пространства. Устройство содержит замкнутый газодинамический...
Тип: Изобретение
Номер охранного документа: 0002595772
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6f5e

Лазерный способ получения функциональных покрытий

Изобретение относится к способу получения функциональных покрытий (варианты) и может быть использовано в машиностроении, в химической и электронной промышленности, в атомной энергетике. Способ включает осаждение на обрабатываемую поверхность продуктов лазерной абляции частиц пылевого потока,...
Тип: Изобретение
Номер охранного документа: 0002597447
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7369

Мощный импульсно-периодический эксимерный лазер для технологических применений

Изобретение относится к лазерной технике. Эксимерный лазер содержит внешний корпус, обрамляющий заполненную рабочей средой лазерную камеру с газодинамическим трактом, два газоразрядных модуля, систему прокачки и охлаждения газового потока через эти модули и систему питания газоразрядных...
Тип: Изобретение
Номер охранного документа: 0002598142
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.881a

Многовитковый рельсотрон, секционированный по длине

Изобретение относится к многовитковым рельсотронам. Технический результат - повышение КПД. Многовитковый рельсотрон выполнен с секционированным по длине ускорительным каналом, содержащим N пар токопроводных параллельных рельсов, первые рельсы всех пар и вторые рельсы всех пар разделены...
Тип: Изобретение
Номер охранного документа: 0002602512
Дата охранного документа: 20.11.2016
13.01.2017
№217.015.88a4

Многовитковый рельсотрон с тиристорными перемычками между витками

Изобретение относится к многовитковым рельсотронам. Технический результат - повышение КПД. Многовитковый рельсотрон с тиристорными перемычками между витками включает ускорительный канал, содержащий N пар токопроводных параллельных рельсов. Первые рельсы всех пар и вторые рельсы всех пар...
Тип: Изобретение
Номер охранного документа: 0002602510
Дата охранного документа: 20.11.2016
Показаны записи 1-10 из 11.
20.07.2014
№216.012.df00

Способ защиты поверхности алюминия от коррозии

Изобретение относится к области машиностроения. Способ получения защитного металлического покрытия на поверхности изделия из алюминия и сплавов на его основе включает размещение изделия в зоне обработки, создание вакуума в зоне обработки, очистку поверхности пучком ионов и осаждение...
Тип: Изобретение
Номер охранного документа: 0002522874
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.df42

Способ изготовления токоснимающей фольги и токоснимающая фольга суперконденсаторов

Изобретение относится к области электротехники, а именно к способу изготовления токоснимающей фольги суперконденсатора с двойным электрическим слоем (КДЭС). Техническим результатом изобретения является повышение мощности суперконденсатора за счет снижения паразитного контактного сопротивления...
Тип: Изобретение
Номер охранного документа: 0002522940
Дата охранного документа: 20.07.2014
10.04.2015
№216.013.3cd3

Способ получения гибридного наноструктурированного металлополимера

Изобретение относится к области биомедицины, в частности к способу получения гибридных металлополимеров (софт-полимеры), которые могут быть использованы в качестве экологически безопасных биомиметических полимеров с управляемыми процессами физиологической электропроводности, а также для...
Тип: Изобретение
Номер охранного документа: 0002547059
Дата охранного документа: 10.04.2015
20.10.2015
№216.013.8745

Способ комбинированной ионно-плазменной обработки изделий из алюминиевых сплавов

Изобретение относится к области машиностроения, в частности к технологии упрочнения и повышения коррозионной стойкости лопаток компрессора газотурбинных двигателей, а также может быть использовано в области создания накопителей и преобразователей энергии на основе суперконденсаторов с...
Тип: Изобретение
Номер охранного документа: 0002566232
Дата охранного документа: 20.10.2015
13.01.2017
№217.015.78b3

Способ ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов

Изобретение относится к области машиностроения, в частности к технологии упрочнения и повышения износостойкости лопаток компрессоров газотурбинных двигателей. Способ ионно-плазменного нанесения многослойного покрытия на изделия из алюминиевых сплавов включает предварительную полировку и очистку...
Тип: Изобретение
Номер охранного документа: 0002599073
Дата охранного документа: 10.10.2016
25.08.2017
№217.015.ab44

Способ ионно-плазменного нанесения износостойкого и коррозионностойкого покрытия на изделия из алюминиевых сплавов

Изобретение относится к способу ионно-плазменного нанесения износостойкого и коррозионностойкого покрытия на изделия из алюминиевых сплавов. Поверхность очищают ионами аргона в плазме тлеющего разряда при напряжении разряда до 700 В, мощности до 1,5 кВт и рабочем давлении 1 Па в течение 10...
Тип: Изобретение
Номер охранного документа: 0002612113
Дата охранного документа: 02.03.2017
26.08.2017
№217.015.d442

Способ защитной олеофобной обработки тонкопленочных электропроводящих оптических покрытий на стекле

Изобретение относится к способам защитной обработки тонкопленочных электропроводящих оптических покрытий. Технический результат – повышение защитных свойств тонкопленочных электропроводящих оптических покрытий на стекле. Тонкопленочный слой наносят методом физического осаждения из плазмы...
Тип: Изобретение
Номер охранного документа: 0002622281
Дата охранного документа: 13.06.2017
01.11.2018
№218.016.983f

Способ комбинированного плазменного упрочнения поверхности изделий из титановых сплавов

Изобретение относится к области металлургии, в частности к плазменной химико-термической обработке титановых сплавов, и может быть использовано в машиностроении для повышения износостойкости и коррозионной стойкости деталей машин. Способ комбинированного плазменного упрочнения поверхности...
Тип: Изобретение
Номер охранного документа: 0002671026
Дата охранного документа: 29.10.2018
27.04.2019
№219.017.3db3

Способ формирования износостойкого покрытия на поверхности изделий из стали

Изобретение относится способу плазменной химико-термической обработке стали. Размещают в вакуумной камере образец, создают вакуум, напускают в камеру реактивный газ в виде смеси водорода и азота. Проводят азотирование поверхности изделия в плазме индукционного высокочастотного разряда при...
Тип: Изобретение
Номер охранного документа: 0002686397
Дата охранного документа: 25.04.2019
11.07.2019
№219.017.b2d0

Способ ионно-плазменного получения наноструктур на поверхности вольфрама

Изобретение относится к способу ионно-плазменного получения наноструктур на поверхности вольфрама. Сначала производят обработку поверхности образца в плазме индукционного высокочастотного разряда в аргоне при импульсном отрицательном напряжении смещения на изделии величиной выше 100 В с...
Тип: Изобретение
Номер охранного документа: 0002694177
Дата охранного документа: 09.07.2019
+ добавить свой РИД