×
01.11.2018
218.016.9900

Результат интеллектуальной деятельности: Полимерные продукты, содержащие циклопропановые группы

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению полимеров, содержащих в составе макромолекул незамещенные циклопропановые группы. Способ получения полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1): имеющих соотношение звеньев (+b):(c+d)=60-90:10-40, заключается во взаимодействии 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен:диазометан:катализатор, равном 1:3,0:0,0025-0,01. Способ отличается тем, что получение диазометана и его взаимодействие с 1,2-полибутадиеном производят в одном реакционном объеме (in situ). Технический результат – упрощение технологии при сохранении возможности целенаправленно модифицировать циклопропановыми группами исходный полимер в широком диапазоне молекулярных масс. 2 з.п. ф-лы, 1 табл., 8 пр.

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул циклопропановые группы, общей формулы (1):

Данные полимерные продукты представляют сополимеры, содержащие циклопропановые группы в боковых звеньях (b) макромолекул, а также двойные углерод-углеродные связи в боковых звеньях (а) и в основной цепи (с) и (d) [соотношение звеньев (a+b):(c+d)=60-90:10-40].

Полимерные продукты (1) характеризуются высоким комплексом физико-механических свойств и могут найти применение в качестве герметиков, модификаторов в составе различных композиций термопластов и эластомеров.

Циклопропанированные полимерные продукты (1) могут быть получены химической модификацией 1,2-полибутадиенов определенного состава и строения, содержащих в составе макромолекул звенья 1,2- и 1,4-полимеризации 1,3-бутадиена, которые синтезируют в промышленности полимеризацией 1,3-бутадиена на комплексных катализаторах (патент РФ №2072362, патент РФ №2177008, заявка РФ №2005104832, патент США №4182813).

Способ получения полимеров формулы (1) основан на взаимодействии ненасыщенных связей 1,2-полибутадиена с карбеном, генерируемым in sity при каталитическом разложении диазометана, в среде органического растворителя с образованием полимерного продукта, содержащего циклопропановые группы в боковых звеньях:

Известен способ (патент РФ №2443674, кл. С07С 61/04, C08F 8/02, опубл. 27.02.2012, патент РФ №2447055, кл. С07С 61/04, C08F 8/02, опубл. 10.04.2012) получения полимеров, заключающийся во взаимодействии 1,2-полибутадиена с метилдиазоацетатом в присутствии катализатора - ацетата родия(II) - Rh2(OAc)4 и трифлата меди(II) - Cu(OTf)2, при мольном соотношении 1,2-полибутадиен:алкилдиазоацетат:катализатор 1:0,5-1:0,01. Реакцию проводят в органическом растворителе (метиленхлорид) при температуре 40°C с получением продукта, содержащего алкоксикарбонилзамещенные циклопропановые группы в основной и боковой цепи макромолекул. После окончания взаимодействия полимер высаждают из реакционной массы этанолом, очищают переосаждением в системе хлороформ - этанол и сушат в вакууме. Суммарное содержание функционализированных звеньев в полимере составляет 28-36 мол.% (на медном катализаторе) и 36-50 мол.% (на родиевом катализаторе).

Данный метод позволяет получать полимерные продукты, содержащие в составе макромолекул метоксикарбонилзамещенные циклопропановые звенья. Однако в известном способе не указана возможность селективного получения циклопропанированных полимеров, содержащих незамещенные циклопропановые группы в боковой цепи.

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ получения полимеров, содержащих циклопропановые группы [Глазырин, А.Б. Производные синдиотактического 1,2-полибутадиена, содержащие циклопропановые группы / А.Б. Глазырин, М.И. Абдуллин, В.А. Докичев, P.M. Султанова, P.P. Муслухов, Э.Р. Газизова (Атнабаева) // Высокомолекулярные соединения. Серия Б. - 2014. - Т. 56. - №6. - С. 535-542], основанный на взаимодействии 1,2-полибутадиена синдиотактического строения со степенью кристалличности 25%, среднечисловой молекулярной массой Mn 65000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 84 и 16 мол.% с диазосоединением в среде органического растворителя (метиленхлорид) в присутствии катализатора - ацетата палладия Pd(OAc)2 и ацетилацетоната палладия Pd(acac)2, при определенном мольном соотношении 1,2-полибутадиен: диазосоединение: катализатор, взаимодействие ведут до прекращения газовыделения. При этом в качестве диазосоединения используют диазометан, взаимодействие проводят при мольном соотношении 1,2-полибутадиен:диазосоединение:катализатор, равном 1,0:1,0:0,01, при температуре 0-5°C с получением продукта, содержащего незамещенные циклопропановые группы в боковой цепи макромолекул. После окончания взаимодействия полимер высаждают из реакционной массы этанолом, очищают переосаждением в системе хлороформ - этанол и сушат в вакууме при температуре. Суммарное содержание функционализированных звеньев в полимере составляет 11-47 мол.%. Однако данный способ имеет ряд недостатков:

• рассмотренный метод позволяет получать полимерные продукты лишь с достаточно низкой степенью функционализации полимера - не более 47%;

• существенным недостатком данного метода является использование в качестве реагента раствора диазометана в диэтиловом эфире, обладающего чрезвычайно высокой взрыво- и пожароопасностью, что требует соблюдения специальных мер техники безопасности и создает серьезные проблемы, особенно при попытках масштабирования данного процесса;

• использование достаточно сложных каталитических систем, которые должны быть предварительно получены по специальным методикам [Джемилев У.М., Поподько К Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. М.: Химия, 1999. С. 96].

Кроме того, для получения полимерных продуктов (1) предлагается использовать только 1,2-полибутадиен синдиотактического строения, имеющий определенную молекулярную массу и состав. Это ограничивает возможности данного метода получением полимеров с молекулярной массой в пределах Mn=65-66⋅103 и узким набором свойств.

Таким образом, в наиболее близком аналоге не указана возможность получения полимеров формулы (1), имеющих иной состав, молекулярную массу, характеризующихся не только синдиотактическим, но и атактическим строением макромолекул, т.е. обладающих более широким набором свойств.

Задачей данного изобретения является способ получения полимерных продуктов, содержащих в макромолекулах незамещенные циклопропановые группы, имеющих высокую степень функционализации (превращение ненасыщенных звеньев в циклопропановые группы) и различную молекулярную массу, которая может быть целенаправленно изменена в широком интервале значений (в зависимости от требований к полимерному продукту) путем удобного и безопасного метода прямого каталитического циклопропанирования исходного полидиена с использованием доступного катализатора.

Указанная задача достигается путем взаимодействия 1,2-полибутадиена с диазометаном в среде органического растворителя в присутствии катализатора при мольном соотношении 1,2-полибутадиен:диазометан:катализатор, равном 1:3,0:0,0025-0,01, отличающимся тем, что

• получение диазометана реакцией N-метил-N-нитрозомочевины с водным раствором щелочи и последующее его взаимодействие с 1,2-полибутадиеном производят в одном реакционном объеме (in situ);

• в качестве катализатора используют доступный хлорид палладия PdCl2;

• в качестве 1,2-полибутадиена используют 1,2-полибутадиен атактического строения со среднечисловой молекулярной массой Mn от 800 до 70000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 60-75 и 25-40 мол.% или 1,2-полибутадиен синдиотактического строения со степенью синдиотактичности от 50 до 90%, среднечисловой молекулярной массой Mn от 35000 до 75000, содержанием в макромолекулах звеньев 1,2- и 1,4-полимеризации 80-90 и 10-20 мол.%.

Заявляемый способ позволяет получать полимерные продукты формулы (1) со степенью функционализации (содержанием циклопропановых групп) до 83% и молекулярной массой от 900 до 80000.

При реализации предлагаемого способа использовали промышленные образцы 1,2-полибутадиена производства ОАО «Ефремовский завод СК», а также полимер марки JSR RB-830 производства «Japan Synthetic Rubber Со.» (Япония). 1,2-полибутадиен очищали переосаждением в системе хлороформ-этанол, далее полимер дважды промывали спиртом и сушили под вакуумом при 60°C до постоянной массы.

В качестве катализатора применяли хлорид палладия [химическая формула - PdCl2] фирмы ("Acros").

Диазометан получали по известной методике (Джемилев У.М., Поподько Н.Р., Козлова Е.В. Металлокомплексный катализ в органическом синтезе. М.: Химия, 1999. С. 96).

Данное изобретение иллюстрируется следующими примерами.

Пример 1.

К 2,00 г (37 ммоль) 1,2-полибутадиена добавляли 40 мл метиленхлорида и перемешивали до полного растворения. К полученному раствору полимера добавляли 0,066 г (0,37 ммоль) катализатора (PdCl2) в 10 мл метиленхлорида, а также расчетное количество 40%-ного раствора гидроксида калия и диэтилового эфира. Использовали 1,2-полибутадиен синдиотактического строения со среднечисловой молекулярной массой Mn=75000, содержанием звеньев 1,2- и 1,4-полимеризации 90 и 10 мол.%, соответственно, степенью синдиотактичности 90%.

К полученной массе при перемешивании при 0-5°C с помощью шнекового дозатора медленно дозировали расчетное количество N-метил-N-нитрозомочевины, необходимое для получения 111 ммоль диазометана. Мольное соотношение 1,2-ПБ:диазометан:катализатор составляло 1:3:0,01. Реакцию проводили до прекращения выделения газа при температуре 0-5°C в течение 2 часов. После окончания синтеза полимер высаждали из реакционной массы этанолом, очищали переосаждением в системе хлороформ - этанол и сушили в вакууме при температуре 40-50°C.

Полученный полимер формулы (1) имеет степень функционализации (содержание циклопропановых групп) 81%:

Примеры 2-8. Все операции проводили в соответствии с примером 1. Результаты экспериментов приведены в табл. 1.

Из данных табл. 1 следует, что предложенный в изобретении способ позволяет синтезировать полимерные продукты формулы (1):

• характеризующиеся степенью функционализации до 83%;

• имеющие различную молекулярную массу (Mn) от 900 до 80000 а.е.м.;

Кроме того, данным методом могут быть получены модифицированные полимеры с различным пространственным строением (конфигурацией) макромолекул: с атактическим или синдиотактическим расположением циклопропановых групп.

Таким образом, предлагаемый метод дает возможность целенаправленного получения циклопропанированных полимерных продуктов (1) с заданной степенью функционализации, молекулярной массой, пространственным расположением циклопропановых групп, в зависимости от требований, предъявляемых к полимеру.

Выбранные пределы показателей процесса:

- использование удобного и безопасного одностадийного метода прямого каталитического циклопропанирования исходного полидиена, позволяющего исключить предварительное получение и транспортирование токсичного, пожаро- и взрывоопасного диазометана, что позволяет получать соответствующие циклопропанированные полимеры в значительных количествах и применить данную технологию в промышленном производстве;

- в качестве катализатора используется хлорид палладия, который является промышленно доступным реагентом и обеспечивает селективное протекание реакции циклопропанирования 1,2-полибутадиенов диазометаном, в отличие от ацетилацетоната палладия (прототип), который получают по специальной технологии и который является существенно более дорогим реагентом;

- использование в качестве катализатора хлорида палладия позволяет получать полимерные продукты с высокой степенью функционализации полимера (до 83%), т.е. достигается практически исчерпывающая функционализация С=С-связей в звеньях 1,2-полимеризации полимера, тогда как при использовании ацетилацетоната палладия (прототип) степень функционализации полимера существенно (в ~2 раза) ниже;

- использование в качестве катализатора хлорида палладия позволяет получать циклопропанированные полимерные продукты как на основе синдиотактического, так и атактактического 1,2-полибутадиена, причем могут быть использованы 1.2-полибутадиены с различной молекулярной массой (от 800 до 75000), тогда как применение ацетилацетоната палладия (прототип) предполагает получение циклопропанированных полимеров только на основе синдиотактического 1,2-полибутадиена, причем только с высокой молекулярной массой (65000);

- мольное соотношение реагентов, при котором достигается наиболее высокая степень функционализации полимера - 1,2-ПБ:диазометан:катализатор, составляет 1:3,0:0,0025-0,01. При уменьшении количества катализатора (менее 0,0025 мол.) образуются полимерные продукты с низкой степенью функционализации. При увеличении количества катализатора (более 0,01 мол.) степень функционализации изменяется незначительно, но это приводит к большому расходу катализатора.

- реакцию проводят при температуре 0-5°C, при которой не образуются нежелательные побочные продукты реакции и обеспечивается наиболее высокая степень функционализации полимера.

Таким образом, использование предлагаемого метода позволяет получать на основе 1,2-полибутадиенов полимерные продукты (1) с различной молекулярной массой и строением макромолекул, содержащие незамещенные циклопропановые группы с существенно более высокой по сравнению с прототипом степенью функционализации, а значит и с более широким набором свойств, что расширяет возможности практического использования синтезированных полимерных продуктов.


Полимерные продукты, содержащие циклопропановые группы
Полимерные продукты, содержащие циклопропановые группы
Источник поступления информации: Роспатент

Показаны записи 11-12 из 12.
15.05.2023
№223.018.5840

Способ получения 5-гидрокси-1,3,6-триметилурацила

Изобретение относится к органической химии, а именно к синтезу 5-гидрокси-1,3,6-триметилурацила - иммуностимулятора с широким спектром фармакологической активности. Способ осуществляют путем окисления 6-метилурацила персульфатом аммония в щелочной среде при 40-70°С, с последующим охлаждением...
Тип: Изобретение
Номер охранного документа: 0002768144
Дата охранного документа: 23.03.2022
16.05.2023
№223.018.6223

Каталитический способ получения 5-гидрокси-1,3,6-триметилурацила

Изобретение относится к органической химии, а именно к синтезу 5-гидрокси-1,3,6-триметилурацила - иммуностимулятора с широким спектром фармакологической активности. Способ осуществляют путем окисления 6-метилурацила персульфатом аммония в щелочной среде при 40-70°С, с последующим охлаждением...
Тип: Изобретение
Номер охранного документа: 0002786403
Дата охранного документа: 20.12.2022
Показаны записи 41-47 из 47.
13.07.2019
№219.017.b338

Способ комплексного воздействия для ингибирования образования солеотложений на скважинном оборудовании и установка для его осуществления

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к ингибированию нежелательных отложений на скважинном оборудовании. Способ заключается в первоначальном воздействии на поток скважинного флюида, движущийся к насосному агрегату, ультразвуковым излучением в диапазоне частот...
Тип: Изобретение
Номер охранного документа: 0002694329
Дата охранного документа: 11.07.2019
02.10.2019
№219.017.cc26

Способ управления бурением скважин с автоматизированной системой оперативного управления бурением скважин

Группа изобретений относится к области управления разработкой объектов нефтегазовых месторождений, в том числе со сложным геологическим строением, способов управления бурением скважин при освоении месторождений. Техническим результатом является повышение эффективности процесса освоения и...
Тип: Изобретение
Номер охранного документа: 0002701271
Дата охранного документа: 25.09.2019
15.10.2019
№219.017.d56d

Состав для ингибирования отложения солей

Изобретение относится к составам для предотвращения неорганических отложений кальция и бария, которые могут быть использованы в нефтяной промышленности, в частности, в скважинах и на скважинном оборудовании, в системе сбора, подготовки и транспорта нефти. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002702784
Дата охранного документа: 11.10.2019
13.11.2019
№219.017.e125

Способ импульсной обработки продуктивного пласта при добыче углеводородного сырья и система управления, его осуществляющая

Группа изобретений относится к горному делу и может быть применена для импульсной обработки продуктивного пласта. Способ включает формирование возмущающих сдвоенных электрогидравлических импульсов давления с временной задержкой между этими импульсами в стволе скважины на уровне продуктивного...
Тип: Изобретение
Номер охранного документа: 0002705676
Дата охранного документа: 11.11.2019
19.11.2019
№219.017.e3d1

Устройство для изготовления полимерных сшитых трехмерных прототипов

Изобретение относится к устройствам для изготовления трехмерных прототипов. Техническим результатом является создание трехмерных прототипов с использованием в качестве расходного материала реактопластов или растворов полимеров с возможностью осуществления построения трехмерных прототипов без...
Тип: Изобретение
Номер охранного документа: 0002706322
Дата охранного документа: 15.11.2019
16.05.2023
№223.018.5dab

Система для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки

Изобретение относится к нефтяной промышленности и предназначено для магнитной обработки нефтяного флюида, транспортируемого в системе сбора нефти после автоматизированной групповой замерной установки (АГЗУ). Система включает АГЗУ, связанную трубопроводами с нефтяными скважинами, выход которой...
Тип: Изобретение
Номер охранного документа: 0002757352
Дата охранного документа: 14.10.2021
16.05.2023
№223.018.5dac

Система для магнитной обработки нефтяного флюида в технологическом оборудовании его сбора и транспортировки

Изобретение относится к нефтяной промышленности и предназначено для магнитной обработки нефтяного флюида, транспортируемого в системе сбора нефти после автоматизированной групповой замерной установки (АГЗУ). Система включает АГЗУ, связанную трубопроводами с нефтяными скважинами, выход которой...
Тип: Изобретение
Номер охранного документа: 0002757352
Дата охранного документа: 14.10.2021
+ добавить свой РИД