×
01.11.2018
218.016.97da

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ БАЛЛИСТИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к управляемому ракетному оружию (УРО) классов «поверхность - поверхность», «воздух - поверхность». Технической задачей предлагаемого изобретения является такое управление полетом баллистического летательного аппарата (ЛА), при котором обеспечивается сохранение расчетных (допустимых по условиям эксплуатации) значений теплопритоков на конструктивные элементы (в том числе иллюминаторы) головной части (ГЧ) за счет аэродинамического торможения ЛА на конечном атмосферном участке траектории (КАУТ). Дополнительно, появляются возможности эффективного применения ложных целей (ЛЦ). Указанная техническая задача решается для баллистического ЛА (например, ракеты либо отделяемой ГЧ ракеты) следующим образом. При управлении полетом баллистического летательного аппарата (включающем ракетный разгон ЛА на активном участке траектории, свободное движение ЛА на пассивном участке траектории и управляемое движение ЛА на конечном атмосферном участке траектории) разгон ЛА осуществляют с установленным на ЛА головным обтекателем, на КАУТ ЛА аэродинамически тормозят до скорости М=1…8, на высоте 25…5 км при углах атаки и скольжения ЛА не более ±5 градусов сбрасывают головной обтекатель (ГО) и уводят его в сторону от траектории полета ЛА. 12 з.п. ф-лы, 6 ил.

Изобретение относится к управляемому ракетному оружию (УРО) классов «поверхность - поверхность», «воздух - поверхность».

Известны способы управления полетом баллистических летательных аппаратов (ЛА) УРО, включающие программный (оптимальный для данных конкретных условий) ракетный разгон ЛА на активном участке траектории (АУТ), свободное (в том числе неориентированное выше плотных слоев атмосферы) движение ЛА на пассивном участке траектории (ПУТ) и управляемое (например, посредством аэродинамических рулей и/или импульсных ракетных двигателей) движение на конечном атмосферном участке траектории (КАУТ) - см., например, В.И. Феодосьев, Г.Б. Синярев «Введение в ракетную технику», 2 издание, М., Оборонгиз, 1960, стр. 51, 53-55, 341-342.

Однако указанные способы управления полетом ЛА не выводят его за рамки теплопрочностных режимов функционирования конструкционных материалов отделяемых и неотделяемых головных частей (ГЧ) ЛА, включая иллюминаторы систем конечного наведения (СКН) ГЧ.

Известен также способ управления полетом ЛА с защитой его головной части специализированным головным обтекателем (ГО), который программно сбрасывается (в том числе без разделения либо с разделением на отдельные фрагменты) и уводится с траектории ЛА - см., например, И.Б. Афанасьев, Ю.М. Батурин, А.Г. Белозерский и др. «Мировая пилотируемая космонавтика. История. Техника. Люди», М., изд-во «РТСофт», 2005, стр. 82 (сбрасываемый головной обтекатель с системой аварийного спасения космического корабля «Союз» на одноименной ракете-носителе - ближайший аналог).

Однако схема полета аналогов (в том числе ближайшего аналога) не предполагает наличия теплонапряженных КАУТ такого вида, когда внешние теплопритоки из-за высокой скорости ЛА превышают теплопрочностные возможности конструкционных материалов ГЧ (включая иллюминаторы СКН). При этом соответствующие большие значения скоростных напоров препятствуют разделению ГО с ГЧ на высотах включения и штатной работы СКН ЛА.

Технической задачей предлагаемого изобретения является такое управление полетом баллистического ЛА, при котором обеспечивается сохранение расчетных (допустимых по условиям эксплуатации) значений теплопритоков на конструктивные элементы (в том числе иллюминаторы) ГЧ за счет аэродинамического торможения ЛА на КАУТ. Дополнительно, появляются возможности эффективного применения ложных целей (ЛЦ).

Указанная техническая задача решается для баллистического ЛА (например, ракеты либо отделяемой ГЧ ракеты) следующим образом. При управлении полетом баллистического летательного аппарата (включающем ракетный разгон ЛА на активном участке траектории, свободное движение ЛА на пассивном участке траектории и управляемое движение ЛА на конечном атмосферном участке траектории) разгон ЛА осуществляют с установленным на ЛА головным обтекателем, на КАУТ ЛА аэродинамически тормозят до скорости М=1…8, на высоте 25…5 км при углах атаки и скольжения ЛА не более ±5 градусов сбрасывают ГО и уводят его в сторону от траектории полета ЛА. В ряде случаев аэродинамическое торможение ЛА осуществляют посредством ГО с плоским передним торцом и аэродинамической иглой (АИ), при этом на АУТ аэродинамическую иглу максимально выдвигают вперед, а на ПУТ аэродинамическую иглу сбрасывают или убирают внутрь ГО. В отдельных случаях после торможения ЛА непосредственно перед сбросом ГО с ЛА аэродинамическую иглу ГО выдвигают вперед. На плоский торец такого ГО устанавливают внешнее теплозащитное покрытие (ТЗП) в виде плоской шайбы, при этом в ряде случаев ТЗП выполняют аблирующим. Увод ГО в сторону от траектории полета ЛА осуществляют посредством его разделения не менее чем на два фрагмента либо посредством срабатывания за время не более 1,0 с размещенного на ГО многосоплового ракетного двигателя твердого топлива (РДТТ). Кроме того, в кормовой части ЛА или ГЧ ЛА дополнительно устанавливают тормозные щитки, которые складывают на АУТ и раскрывают на ПУТ непосредственно перед началом КАУТ (при этом в ряде случаев тормозные щитки выполняют управляемыми на КАУТ). Дополнительно на ЛА устанавливают ложные цели, которые отделяют от ЛА до начала КАУТ. При этом эффективная поверхность рассеивания (ЭПР) ЛЦ составляет 50%…1000% относительно ЭПР ЛА. В некоторых случаях на ГО дополнительно устанавливают уголковые отражатели и/или линзы Люнеберга с эффективной поверхностью рассеивания (ЭПР), не меньшей ЭПР ЛА в диапазоне передних курсовых углов ±45 градусов, и/или один или несколько одноразовых передатчиков активных помех, которые активируют в момент разделения ГО с ЛА.

На фиг. 1, 2 показана характерная траектория движения баллистического ЛА, на фиг. 3 - конфигурация в конце ПУТ - начале КАУТ связки ГЧ ЛА плюс ГО до момента их разделения, на фиг. 4 - характерная траектория ЛА и ЛЦ в конце ПУТ и на КАУТ, на фиг. 5, 6 - пример конфигурации ГО с дооснащением после разделения с ЛА.

Приняты обозначения:

1 - ракетная часть ЛА;

2 - головная часть ЛА;

3 - головной обтекатель;

4 - аэродинамическая игла;

5 - теплозащитное покрытие;

6 - тормозной щиток;

7 - уголковый отражатель (вариант);

8 - передатчик помех;

9 - антенна передатчика помех (вариант);

10 - ложная цель.

На фиг. 1 показана траектория полета баллистического ЛА класса «поверхность - поверхность», включающая программный АУТ (участок работы ракетной двигательной установки), ПУТ и управляемый КАУТ для варианта разделяющихся ракетной поз. 1 и головной поз. 2 частей ЛА. На ГЧ поз. 2 установлен ГО поз. 3 (вариант с плоским передним торцом и АИ). На АУТ АИ поз. 4 выдвинута максимально вперед по направлению полета (НП) ЛА для минимизации его аэродинамического сопротивления на сверхзвуковых скоростях движения. На ПУТ движение ЛА - свободное (в том числе неориентированное в зоне малых скоростных напоров - если это допускается в рамках выполнения целевой задачи). При подходе к КАУТ АИ поз. 4 сбрасывают либо убирают внутрь ГО поз. 3, а ракетная поз. 1 и головная поз. 2 части ЛА разделяются. Плоский торец ГО поз. 3 (см. фиг. 3) обеспечивает интенсивное аэродинамическое торможение ГЧ поз. 2 для ее скорейшего вывода в область допустимых теплопрочностных параметров, при которых возможно в том числе штатное функционирование иллюминаторов (окон прозрачности СКН) ГЧ ЛА. Конструктивно представляется целесообразной установка на плоский торец ГО поз. 3 ТЗП поз. 5 в виде плоской шайбы (см. фиг. 3), которая может выполняться в том числе из аблирующих материалов. В этой связи следует отметить, что плоский торец ГО поз. 3 (как правило, в калибр ГЧ поз. 2) обладает незначительными несущими свойствами - и соответственно, вносит минимальные аэродинамические возмущения в баллистическое рассеивание ЛА (в том числе при применении аблирующих материалов для ТЗП поз. 5). Кроме того, с целью интенсификации аэродинамического торможения ЛА на ГЧ поз. 2 могут дополнительно устанавливаться тормозные щитки поз. 6, например, по типу показанных на фиг. 3.

Следует отметить, что торможение (не аэродинамическое) баллистического ЛА может осуществляться, например, посредством специализированного тормозного РДТТ; при этом снижается относительное совершенство конструкции летательного аппарата, а сопротивление атмосферы полезно не используется. В этой связи данное техническое решение в рамках предлагаемого способа управления ЛА не рассматривается.

С учетом теплопрочности современных и перспективных конструкционных материалов, в том числе применяемых для оптических иллюминаторов ЛА (например, температура размягчения кварцевого стекла составляет ~1300°С), а также уровня действующих скоростных напоров при сбросе ГО поз. 3 с ГЧ поз. 2 ЛА - диапазон скоростей М=1…8 (М - число Маха, равное отношению скорости ЛА к местной скорости звука в воздухе) и высот от 25 км до 5 км удовлетворяет требованиям решения поставленной технической задачи с учетом особенностей функционирования СКН ЛА прямого и косвенного наведения.

Следует отметить, что безударное разделение ГЧ поз. 2 с ГО поз. 3 целесообразно осуществлять при углах атаки и скольжения баллистического ЛА не более ±5 градусов. Данное условие для статически устойчивого баллистического ЛА выполняется на КАУТ автоматически. При наличии управляемых на КАУТ тормозных щитков поз. 6 (на ГЧ поз. 2 либо в конструктиве связки ракетной поз. 1 и головной поз. 2 частей ЛА) - они могут быть задействованы при разделении с заданными углами атаки и скольжения также и для статически неустойчивых ЛА.

На фиг. 2 показан конец ПУТ - начало КАУТ полета баллистического ЛА класса «воздух - поверхность» либо «поверхность - поверхность» для варианта ГЧ поз. 2, не разделяющейся с ракетной частью поз. 1 баллистического ЛА. Здесь же показан вариант ГО поз. 3 с АИ поз. 4, которая складывается (убирается) внутрь ГО на ПУТ и вновь раскладывается вперед по НП после участка аэродинамического торможения ЛА на КАУТ непосредственно перед сбросом обтекателя поз. 3 с ГЧ поз. 2 - для уменьшения аэродинамического сопротивления ГО поз. 3 в момент сброса и его гарантированного увода с траектории ЛА.

На фиг. 3 показан вариант конфигурации ЛА при аэродинамическом торможении на КАУТ посредством ГО поз. 3 с плоским передним торцом. При этом АИ поз. 4 сброшена либо убрана внутрь ГО поз. 3, тормозные щитки поз. 6 (при их наличии) выдвинуты в поток. Плоский торец ГО поз. 3 может быть выполнен как в виде т.н. «горячей» (из жаропрочных сплавов) конструкции, так и в виде шайбы из аблирующего ТЗП поз. 5.

Увод ГО поз. 3 в сторону от траектории полета ЛА может осуществляться, например, посредством его разделения не менее чем на два фрагмента, которые за счет силового импульса разделения и под воздействием набегающего потока воздуха безударно отделяются от ГЧ поз. 2 ЛА. Вариант: оснащение ГО поз. 3 одним либо несколькими РДТТ (например, многосопловой схемы), срабатывание которого (которых) за время не более 1,0 с обеспечивает при разделении ГО поз. 3 и ГЧ поз. 2 достаточную тягу для ракетного увода ГО поз. 3 на безопасное расстояние и в сторону от ЛА.

Следует отметить, что тормозные щитки поз. 6, установленные на ЛА (ГЧ ЛА), могут обеспечить заданные параметры его аэродинамического торможения без привлечения дополнительных технических средств. В случае оснащения ЛА такими щитками конфигурация ГО поз. 3 может выбираться, например, из условия минимизации его аэродинамического сопротивления (остроконечные конусные или оживальные формы головного обтекателя), что является рациональным с точки зрения энергетики разделения ГО поз. 3 и ГЧ поз. 2 ЛА.

На фиг. 4 показана траектория ЛА и ЛЦ в конце ПУТ (сброс ЛЦ поз. 10) и на КАУТ (формирование растянутого «залпа» объектов с примерно одинаковой ЭПР). Следует отметить, что в данном случае разделение ЛА с ЛЦ поз. 10 производится в зоне малых скоростных напоров, движение всех элементов «залпа» по фронту примерно соответствует общей баллистической кривой, разведение элементов вдоль траектории (по дистанции) обеспечивается программным торможением ЛА посредством ГО поз. 3 и/или тормозных щитков поз. 6, а также соответствующим подбором баллистических коэффициентов ЛЦ поз. 10 (баллистический коэффициент - произведение миделя на коэффициент лобового сопротивления, отнесенное к массе ЛЦ) таким образом, чтобы 40%…90% ЛЦ поз. 10 по траектории полета были впереди маскируемого ЛА. При этом ЭПР каждой ЛЦ поз. 10 должна составлять 50%…1000% относительно ЭПР ЛА, что обеспечивает его надежную маскировку в поле ложных целей в радиолокационном диапазоне длин волн.

В ряде случаев на ГО поз. 3 после разделения с ЛА также могут возлагаться функции ложной цели. В этой связи на ГО поз. 3 могут быть установлены, например, уголковые отражатели и/или линзы Люнеберга с эффективной поверхностью рассеивания (в диапазоне передних курсовых углов±45 градусов) не менее ЭПР ЛА, а также один или несколько передатчиков активных радиопомех. На фиг. 5,6 показан вариант размещения на цельносбрасываемом ГО поз. 3 (с выдвинутой АИ поз. 4) раскладываемых после отделения от ЛА уголковых отражателей поз. 7, а также активируемого в период автономного движения ГО поз. 3 одноразового передатчика активных помех поз. 8, включая его антенну поз. 9. Помимо имитации характерных значений ЭПР ЛА в радиолокационных диапазонах длин волн, при автономном полете ГО поз. 3 также создается мощный точечный источник инфракрасного излучения, имитируя и в этом спектральном диапазоне ГЧ поз. 2 или ЛА в целом.

Применение предложенного технического решения представляется целесообразным для перспективных высокоточных комплексов УРО с оптико-электронными СКН, преимущественно, тактической и оперативно-тактической зоны, в том числе реализуемых в рамках экспортных поставок и военно-технического сотрудничества.

Источник поступления информации: Роспатент

Показаны записи 51-60 из 161.
20.01.2018
№218.016.13b1

Шаровая опора

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании опорных узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух частей в виде крышек, неразъемно...
Тип: Изобретение
Номер охранного документа: 0002634661
Дата охранного документа: 02.11.2017
20.01.2018
№218.016.16c0

Устройство стабилизации ракеты

Изобретение относится к области ракетной техники, а именно к устройствам стабилизации ракеты. Содержит пару кинематически связанных между собой при помощи установленных на корпусе ракеты тяг и механизм управления аэродинамического и газового рулей. Последний содержит основание и механизм...
Тип: Изобретение
Номер охранного документа: 0002635705
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.1702

Способ получения деталей газотурбинных двигателей из титанового псевдо -β - сплава с лигатурой ti-al-mo-v-cr-fe

Изобретение относится к получению деталей газотурбинных двигателей из титанового псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe. Проводят дополнительное легирование титанового сплава псевдо-β-сплава с лигатурой Ti-Al-Mo-V-Cr-Fe редкоземельным металлом. Осуществляют последующую вакуумно-дуговую...
Тип: Изобретение
Номер охранного документа: 0002635595
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.1730

Способ управления прямоточным воздушно-реактивным двигателем крылатой ракеты

Изобретение относится к области ракетной техники, созданию прямоточных воздушно-реактивных двигателей (ПВРД) для крылатых ракет (КР) и управлению КР. В случаях неисправности датчиков командных давлений выдается команда для выполнения резервного алгоритма управления ПВРД. Достигается заранее...
Тип: Изобретение
Номер охранного документа: 0002635757
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.179c

Система регулирования сверхзвукового прямоточного воздушно-реактивного двигателя

Изобретение относится к ракетной технике и касается системы регулирования (CP) сверхзвукового прямоточного воздушно-реактивного двигателя (СПВРД). На поверхности передней части центрального тела расположены от двух до четырех приемников воздушного давления и приемник полного давления...
Тип: Изобретение
Номер охранного документа: 0002635758
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.179d

Устройство соединения и расстыковки электрических связей разделяемых ступеней летательного аппарата

Изобретение относится к области ракетно-космической техники и может быть использовано в конструкции высокоскоростных двухступенчатых ракет. Устройство установлено в корпусе летательного аппарата и содержит электрический узел. Электрический узел расположен перпендикулярно к внешнему обводу...
Тип: Изобретение
Номер охранного документа: 0002635704
Дата охранного документа: 15.11.2017
13.02.2018
№218.016.2069

Фиксатор разделяемых объектов летательных аппаратов

Изобретение относится к ракетной технике и может найти применение в конструкциях систем разделения объектов летательных аппаратов (ЛА). Целью изобретения является создание надежного фиксатора разделяемых объектов ЛА для соединения без люфта сложных разделяемых объектов большой массы,...
Тип: Изобретение
Номер охранного документа: 0002641532
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.257e

Обечайка корпуса летательного аппарата

Изобретение относится к конструкции корпусов скоростных летательных аппаратов (ЛА), преимущественно малых калибров. Для обечайки с длиной образующей L и с гладкой несущей стенкой толщиной δ корпуса цилиндрической, конической или биконической формы - в стенке обечайки с одного или двух торцов...
Тип: Изобретение
Номер охранного документа: 0002642471
Дата охранного документа: 26.01.2018
17.02.2018
№218.016.2a5f

Многоцелевая трансформируемая орбитальная система и способ ее применения

Группа изобретений относится к построению и управлению космическими аппаратами на орбитах ИСЗ. Система включает в себя орбитальную станцию, целевые (ЦМ) и обеспечивающие модули на компланарных орбитах. ЦМ имеют в своем составе многоразовые возвращаемые аппараты (МВА) крылатой схемы. В МВА...
Тип: Изобретение
Номер охранного документа: 0002643082
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2cdb

Ракетно-космический комплекс и способ функционирования ракетно-космического комплекса

Группа изобретений относится к средствам и методам выведения, работы на орбите и увода с орбиты автоматических полезных нагрузок (ПН) с помощью беспилотного ракетно-космического комплекса (РКК). В состав РКК входит разгонный блок (РБ) с устройствами управления ракетой-носителем, которые при...
Тип: Изобретение
Номер охранного документа: 0002643744
Дата охранного документа: 05.02.2018
Показаны записи 51-60 из 72.
23.11.2018
№218.016.a016

Преобразователь солнечной энергии

Изобретение относится к возобновляемой энергетике, в частности, может быть применено в солнечной энергетике для придания дополнительных функций устройствам, преобразующим солнечное излучение в тепловую или электрическую энергию. Преобразователь солнечной энергии включает корпус, приемник...
Тип: Изобретение
Номер охранного документа: 0002673035
Дата охранного документа: 21.11.2018
13.12.2018
№218.016.a684

Авиационный комплекс обнаружения и тушения очагов возгорания и способ его применения

Изобретение относится к авиационной технике для тушения очагов возгорания. Авиационный комплекс включает беспилотный летательный аппарат (БПЛА) со складываемыми-раскладываемыми несущими поверхностями, оснащенный аппаратурой обнаружения и идентификации очагов возгорания, бортовой емкостью,...
Тип: Изобретение
Номер охранного документа: 0002674640
Дата охранного документа: 11.12.2018
29.03.2019
№219.016.f686

Способ обеспечения мягкой посадки летательного аппарата

Изобретение относится к летательным аппаратам (ЛА) и посадочным платформам, завершающим полет приземлением на поверхность планеты с использованием парашютов. Способ обеспечения мягкой посадки летательного аппарата включает парашютный спуск до заданного расстояния от поверхности планеты,...
Тип: Изобретение
Номер охранного документа: 0002400410
Дата охранного документа: 27.09.2010
29.03.2019
№219.016.f761

Способ изменения режима полета воздушного судна в запретной зоне

Изобретение относится к области предотвращения несанкционированного применения воздушных судов (ВС), в том числе предотвращения террористических атак. В способе изменения режима полета ВС в запретной зоне осуществляют автоматическое определение фактического положения и скорости ВС в...
Тип: Изобретение
Номер охранного документа: 0002445579
Дата охранного документа: 20.03.2012
11.04.2019
№219.017.0b22

Композиционный материал для замещения костной ткани и эндопротезы суставов, изготовленные из него

Изобретение может быть использовано в медицине, в области композиционных материалов для изготовления эндопротезов, используемых в ортопедии для замены пораженных естественных суставов человека. Эндопротез тазобедренного сустава, эндопротез коленного сустава, эндопротез локтевого сустава,...
Тип: Изобретение
Номер охранного документа: 0002684409
Дата охранного документа: 09.04.2019
19.04.2019
№219.017.2ee9

Самоходная пусковая установка

Изобретение относится к самоходным пусковым установкам (СПУ) для минометного старта ракет. Установка содержит несколько передних ложементов для установки транспортно-пусковых контейнеров (ТИК) и основания, которые закреплены на раме. На основании шарнирно установлена направляющая стрела с...
Тип: Изобретение
Номер охранного документа: 0002386918
Дата охранного документа: 20.04.2010
29.04.2019
№219.017.3e3d

Способ навигации летательного аппарата

Изобретение относится к управляемым летательным аппаратам (ЛА) различных типов базирования. Технической задачей предлагаемого изобретения является создание способа навигации ЛА с радиолокационными и/или оптическими корреляционно-экстремальными системами конечного наведения (КЭСКН), позволяющего...
Тип: Изобретение
Номер охранного документа: 0002686453
Дата охранного документа: 25.04.2019
01.05.2019
№219.017.4819

Сверхзвуковая ракета

Изобретение относится к крылатым и аэробаллистическим ракетам с прямоточными воздушно-реактивными двигателями (ПВРД). Сверхзвуковая ракета (СР) включает фюзеляж в составе головного, центральных и хвостового отсеков, ПВРД и нерегулируемый воздухозаборник, бортовую аппаратуру системы управления в...
Тип: Изобретение
Номер охранного документа: 0002686567
Дата охранного документа: 29.04.2019
01.05.2019
№219.017.4822

Космический аппарат-эвакуатор

Изобретение относится к космической технике. Космический аппарат-эвакуатор содержит корпус, устройства системы управления и электропитания, двигательную установку, электромеханическую систему захвата космического аппарата на орбите. На корпусе расположены не менее двух оптических камер,...
Тип: Изобретение
Номер охранного документа: 0002686563
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.48c8

Способ радиолокационного обзора морской поверхности и устройство для его осуществления

Изобретение относится к радиолокационным способам обнаружения и определения подвижных и неподвижных надводных объектов, их координат и параметров движения на дальностях прямой видимости до 800 км с использованием радиолокаторов на летательных аппаратах. Достигаемый технический результат –...
Тип: Изобретение
Номер охранного документа: 0002686678
Дата охранного документа: 30.04.2019
+ добавить свой РИД