×
01.11.2018
218.016.97da

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ БАЛЛИСТИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к управляемому ракетному оружию (УРО) классов «поверхность - поверхность», «воздух - поверхность». Технической задачей предлагаемого изобретения является такое управление полетом баллистического летательного аппарата (ЛА), при котором обеспечивается сохранение расчетных (допустимых по условиям эксплуатации) значений теплопритоков на конструктивные элементы (в том числе иллюминаторы) головной части (ГЧ) за счет аэродинамического торможения ЛА на конечном атмосферном участке траектории (КАУТ). Дополнительно, появляются возможности эффективного применения ложных целей (ЛЦ). Указанная техническая задача решается для баллистического ЛА (например, ракеты либо отделяемой ГЧ ракеты) следующим образом. При управлении полетом баллистического летательного аппарата (включающем ракетный разгон ЛА на активном участке траектории, свободное движение ЛА на пассивном участке траектории и управляемое движение ЛА на конечном атмосферном участке траектории) разгон ЛА осуществляют с установленным на ЛА головным обтекателем, на КАУТ ЛА аэродинамически тормозят до скорости М=1…8, на высоте 25…5 км при углах атаки и скольжения ЛА не более ±5 градусов сбрасывают головной обтекатель (ГО) и уводят его в сторону от траектории полета ЛА. 12 з.п. ф-лы, 6 ил.

Изобретение относится к управляемому ракетному оружию (УРО) классов «поверхность - поверхность», «воздух - поверхность».

Известны способы управления полетом баллистических летательных аппаратов (ЛА) УРО, включающие программный (оптимальный для данных конкретных условий) ракетный разгон ЛА на активном участке траектории (АУТ), свободное (в том числе неориентированное выше плотных слоев атмосферы) движение ЛА на пассивном участке траектории (ПУТ) и управляемое (например, посредством аэродинамических рулей и/или импульсных ракетных двигателей) движение на конечном атмосферном участке траектории (КАУТ) - см., например, В.И. Феодосьев, Г.Б. Синярев «Введение в ракетную технику», 2 издание, М., Оборонгиз, 1960, стр. 51, 53-55, 341-342.

Однако указанные способы управления полетом ЛА не выводят его за рамки теплопрочностных режимов функционирования конструкционных материалов отделяемых и неотделяемых головных частей (ГЧ) ЛА, включая иллюминаторы систем конечного наведения (СКН) ГЧ.

Известен также способ управления полетом ЛА с защитой его головной части специализированным головным обтекателем (ГО), который программно сбрасывается (в том числе без разделения либо с разделением на отдельные фрагменты) и уводится с траектории ЛА - см., например, И.Б. Афанасьев, Ю.М. Батурин, А.Г. Белозерский и др. «Мировая пилотируемая космонавтика. История. Техника. Люди», М., изд-во «РТСофт», 2005, стр. 82 (сбрасываемый головной обтекатель с системой аварийного спасения космического корабля «Союз» на одноименной ракете-носителе - ближайший аналог).

Однако схема полета аналогов (в том числе ближайшего аналога) не предполагает наличия теплонапряженных КАУТ такого вида, когда внешние теплопритоки из-за высокой скорости ЛА превышают теплопрочностные возможности конструкционных материалов ГЧ (включая иллюминаторы СКН). При этом соответствующие большие значения скоростных напоров препятствуют разделению ГО с ГЧ на высотах включения и штатной работы СКН ЛА.

Технической задачей предлагаемого изобретения является такое управление полетом баллистического ЛА, при котором обеспечивается сохранение расчетных (допустимых по условиям эксплуатации) значений теплопритоков на конструктивные элементы (в том числе иллюминаторы) ГЧ за счет аэродинамического торможения ЛА на КАУТ. Дополнительно, появляются возможности эффективного применения ложных целей (ЛЦ).

Указанная техническая задача решается для баллистического ЛА (например, ракеты либо отделяемой ГЧ ракеты) следующим образом. При управлении полетом баллистического летательного аппарата (включающем ракетный разгон ЛА на активном участке траектории, свободное движение ЛА на пассивном участке траектории и управляемое движение ЛА на конечном атмосферном участке траектории) разгон ЛА осуществляют с установленным на ЛА головным обтекателем, на КАУТ ЛА аэродинамически тормозят до скорости М=1…8, на высоте 25…5 км при углах атаки и скольжения ЛА не более ±5 градусов сбрасывают ГО и уводят его в сторону от траектории полета ЛА. В ряде случаев аэродинамическое торможение ЛА осуществляют посредством ГО с плоским передним торцом и аэродинамической иглой (АИ), при этом на АУТ аэродинамическую иглу максимально выдвигают вперед, а на ПУТ аэродинамическую иглу сбрасывают или убирают внутрь ГО. В отдельных случаях после торможения ЛА непосредственно перед сбросом ГО с ЛА аэродинамическую иглу ГО выдвигают вперед. На плоский торец такого ГО устанавливают внешнее теплозащитное покрытие (ТЗП) в виде плоской шайбы, при этом в ряде случаев ТЗП выполняют аблирующим. Увод ГО в сторону от траектории полета ЛА осуществляют посредством его разделения не менее чем на два фрагмента либо посредством срабатывания за время не более 1,0 с размещенного на ГО многосоплового ракетного двигателя твердого топлива (РДТТ). Кроме того, в кормовой части ЛА или ГЧ ЛА дополнительно устанавливают тормозные щитки, которые складывают на АУТ и раскрывают на ПУТ непосредственно перед началом КАУТ (при этом в ряде случаев тормозные щитки выполняют управляемыми на КАУТ). Дополнительно на ЛА устанавливают ложные цели, которые отделяют от ЛА до начала КАУТ. При этом эффективная поверхность рассеивания (ЭПР) ЛЦ составляет 50%…1000% относительно ЭПР ЛА. В некоторых случаях на ГО дополнительно устанавливают уголковые отражатели и/или линзы Люнеберга с эффективной поверхностью рассеивания (ЭПР), не меньшей ЭПР ЛА в диапазоне передних курсовых углов ±45 градусов, и/или один или несколько одноразовых передатчиков активных помех, которые активируют в момент разделения ГО с ЛА.

На фиг. 1, 2 показана характерная траектория движения баллистического ЛА, на фиг. 3 - конфигурация в конце ПУТ - начале КАУТ связки ГЧ ЛА плюс ГО до момента их разделения, на фиг. 4 - характерная траектория ЛА и ЛЦ в конце ПУТ и на КАУТ, на фиг. 5, 6 - пример конфигурации ГО с дооснащением после разделения с ЛА.

Приняты обозначения:

1 - ракетная часть ЛА;

2 - головная часть ЛА;

3 - головной обтекатель;

4 - аэродинамическая игла;

5 - теплозащитное покрытие;

6 - тормозной щиток;

7 - уголковый отражатель (вариант);

8 - передатчик помех;

9 - антенна передатчика помех (вариант);

10 - ложная цель.

На фиг. 1 показана траектория полета баллистического ЛА класса «поверхность - поверхность», включающая программный АУТ (участок работы ракетной двигательной установки), ПУТ и управляемый КАУТ для варианта разделяющихся ракетной поз. 1 и головной поз. 2 частей ЛА. На ГЧ поз. 2 установлен ГО поз. 3 (вариант с плоским передним торцом и АИ). На АУТ АИ поз. 4 выдвинута максимально вперед по направлению полета (НП) ЛА для минимизации его аэродинамического сопротивления на сверхзвуковых скоростях движения. На ПУТ движение ЛА - свободное (в том числе неориентированное в зоне малых скоростных напоров - если это допускается в рамках выполнения целевой задачи). При подходе к КАУТ АИ поз. 4 сбрасывают либо убирают внутрь ГО поз. 3, а ракетная поз. 1 и головная поз. 2 части ЛА разделяются. Плоский торец ГО поз. 3 (см. фиг. 3) обеспечивает интенсивное аэродинамическое торможение ГЧ поз. 2 для ее скорейшего вывода в область допустимых теплопрочностных параметров, при которых возможно в том числе штатное функционирование иллюминаторов (окон прозрачности СКН) ГЧ ЛА. Конструктивно представляется целесообразной установка на плоский торец ГО поз. 3 ТЗП поз. 5 в виде плоской шайбы (см. фиг. 3), которая может выполняться в том числе из аблирующих материалов. В этой связи следует отметить, что плоский торец ГО поз. 3 (как правило, в калибр ГЧ поз. 2) обладает незначительными несущими свойствами - и соответственно, вносит минимальные аэродинамические возмущения в баллистическое рассеивание ЛА (в том числе при применении аблирующих материалов для ТЗП поз. 5). Кроме того, с целью интенсификации аэродинамического торможения ЛА на ГЧ поз. 2 могут дополнительно устанавливаться тормозные щитки поз. 6, например, по типу показанных на фиг. 3.

Следует отметить, что торможение (не аэродинамическое) баллистического ЛА может осуществляться, например, посредством специализированного тормозного РДТТ; при этом снижается относительное совершенство конструкции летательного аппарата, а сопротивление атмосферы полезно не используется. В этой связи данное техническое решение в рамках предлагаемого способа управления ЛА не рассматривается.

С учетом теплопрочности современных и перспективных конструкционных материалов, в том числе применяемых для оптических иллюминаторов ЛА (например, температура размягчения кварцевого стекла составляет ~1300°С), а также уровня действующих скоростных напоров при сбросе ГО поз. 3 с ГЧ поз. 2 ЛА - диапазон скоростей М=1…8 (М - число Маха, равное отношению скорости ЛА к местной скорости звука в воздухе) и высот от 25 км до 5 км удовлетворяет требованиям решения поставленной технической задачи с учетом особенностей функционирования СКН ЛА прямого и косвенного наведения.

Следует отметить, что безударное разделение ГЧ поз. 2 с ГО поз. 3 целесообразно осуществлять при углах атаки и скольжения баллистического ЛА не более ±5 градусов. Данное условие для статически устойчивого баллистического ЛА выполняется на КАУТ автоматически. При наличии управляемых на КАУТ тормозных щитков поз. 6 (на ГЧ поз. 2 либо в конструктиве связки ракетной поз. 1 и головной поз. 2 частей ЛА) - они могут быть задействованы при разделении с заданными углами атаки и скольжения также и для статически неустойчивых ЛА.

На фиг. 2 показан конец ПУТ - начало КАУТ полета баллистического ЛА класса «воздух - поверхность» либо «поверхность - поверхность» для варианта ГЧ поз. 2, не разделяющейся с ракетной частью поз. 1 баллистического ЛА. Здесь же показан вариант ГО поз. 3 с АИ поз. 4, которая складывается (убирается) внутрь ГО на ПУТ и вновь раскладывается вперед по НП после участка аэродинамического торможения ЛА на КАУТ непосредственно перед сбросом обтекателя поз. 3 с ГЧ поз. 2 - для уменьшения аэродинамического сопротивления ГО поз. 3 в момент сброса и его гарантированного увода с траектории ЛА.

На фиг. 3 показан вариант конфигурации ЛА при аэродинамическом торможении на КАУТ посредством ГО поз. 3 с плоским передним торцом. При этом АИ поз. 4 сброшена либо убрана внутрь ГО поз. 3, тормозные щитки поз. 6 (при их наличии) выдвинуты в поток. Плоский торец ГО поз. 3 может быть выполнен как в виде т.н. «горячей» (из жаропрочных сплавов) конструкции, так и в виде шайбы из аблирующего ТЗП поз. 5.

Увод ГО поз. 3 в сторону от траектории полета ЛА может осуществляться, например, посредством его разделения не менее чем на два фрагмента, которые за счет силового импульса разделения и под воздействием набегающего потока воздуха безударно отделяются от ГЧ поз. 2 ЛА. Вариант: оснащение ГО поз. 3 одним либо несколькими РДТТ (например, многосопловой схемы), срабатывание которого (которых) за время не более 1,0 с обеспечивает при разделении ГО поз. 3 и ГЧ поз. 2 достаточную тягу для ракетного увода ГО поз. 3 на безопасное расстояние и в сторону от ЛА.

Следует отметить, что тормозные щитки поз. 6, установленные на ЛА (ГЧ ЛА), могут обеспечить заданные параметры его аэродинамического торможения без привлечения дополнительных технических средств. В случае оснащения ЛА такими щитками конфигурация ГО поз. 3 может выбираться, например, из условия минимизации его аэродинамического сопротивления (остроконечные конусные или оживальные формы головного обтекателя), что является рациональным с точки зрения энергетики разделения ГО поз. 3 и ГЧ поз. 2 ЛА.

На фиг. 4 показана траектория ЛА и ЛЦ в конце ПУТ (сброс ЛЦ поз. 10) и на КАУТ (формирование растянутого «залпа» объектов с примерно одинаковой ЭПР). Следует отметить, что в данном случае разделение ЛА с ЛЦ поз. 10 производится в зоне малых скоростных напоров, движение всех элементов «залпа» по фронту примерно соответствует общей баллистической кривой, разведение элементов вдоль траектории (по дистанции) обеспечивается программным торможением ЛА посредством ГО поз. 3 и/или тормозных щитков поз. 6, а также соответствующим подбором баллистических коэффициентов ЛЦ поз. 10 (баллистический коэффициент - произведение миделя на коэффициент лобового сопротивления, отнесенное к массе ЛЦ) таким образом, чтобы 40%…90% ЛЦ поз. 10 по траектории полета были впереди маскируемого ЛА. При этом ЭПР каждой ЛЦ поз. 10 должна составлять 50%…1000% относительно ЭПР ЛА, что обеспечивает его надежную маскировку в поле ложных целей в радиолокационном диапазоне длин волн.

В ряде случаев на ГО поз. 3 после разделения с ЛА также могут возлагаться функции ложной цели. В этой связи на ГО поз. 3 могут быть установлены, например, уголковые отражатели и/или линзы Люнеберга с эффективной поверхностью рассеивания (в диапазоне передних курсовых углов±45 градусов) не менее ЭПР ЛА, а также один или несколько передатчиков активных радиопомех. На фиг. 5,6 показан вариант размещения на цельносбрасываемом ГО поз. 3 (с выдвинутой АИ поз. 4) раскладываемых после отделения от ЛА уголковых отражателей поз. 7, а также активируемого в период автономного движения ГО поз. 3 одноразового передатчика активных помех поз. 8, включая его антенну поз. 9. Помимо имитации характерных значений ЭПР ЛА в радиолокационных диапазонах длин волн, при автономном полете ГО поз. 3 также создается мощный точечный источник инфракрасного излучения, имитируя и в этом спектральном диапазоне ГЧ поз. 2 или ЛА в целом.

Применение предложенного технического решения представляется целесообразным для перспективных высокоточных комплексов УРО с оптико-электронными СКН, преимущественно, тактической и оперативно-тактической зоны, в том числе реализуемых в рамках экспортных поставок и военно-технического сотрудничества.

Источник поступления информации: Роспатент

Показаны записи 31-40 из 161.
25.08.2017
№217.015.b7fc

Способ формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата

Изобретение относится к способу формирования сигнала стабилизации продольного углового движения беспилотного летательного аппарата. Для формирования сигнала производят идентификацию аэродинамических характеристик летательного аппарата на основе восстановления угла атаки определенным образом,...
Тип: Изобретение
Номер охранного документа: 0002615028
Дата охранного документа: 03.04.2017
25.08.2017
№217.015.b9f2

Способ и устройство непрерывной сублимационной сушки жидких продуктов

Изобретение относится к области вакуумной сублимационной сушки жидких продуктов и может быть применено в различных областях химической, пищевой и фармацевтической промышленности. Способ непрерывной сублимационной сушки жидких продуктов, при котором исходный жидкий продукт нагревается до...
Тип: Изобретение
Номер охранного документа: 0002615553
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bfa1

Стенд тарировки телесистем

Изобретение относится к области добывающей нефтяной и газовой промышленности, в частности к бурению наклонно направленных и горизонтальных скважин, и предназначено для проведения метрологической аттестации датчиков телеметрических систем для выявления погрешности угла наклона при бурении в...
Тип: Изобретение
Номер охранного документа: 0002617142
Дата охранного документа: 21.04.2017
25.08.2017
№217.015.c2d1

Способ выработки топлива из бака летательного аппарата

Изобретение относится к выработке топлива из бака летательного аппарата. Способ выработки топлива из бака летательного аппарата, оснащенного капиллярным заборным устройством, заключается в том, что выработку топлива из бака проводят через капиллярное заборное устройство до объема остатка...
Тип: Изобретение
Номер охранного документа: 0002617903
Дата охранного документа: 28.04.2017
25.08.2017
№217.015.c5ab

Способ крепления плоского защитного стекла иллюминатора

Изобретение относится к узлам крепления летательных аппаратов (ЛА). Способ крепления плоского защитного стекла иллюминатора включает установку стекла в оправу, его фиксацию по контуру планкой, герметизацию. Оправой служит корпус ЛА, на буртики которого изнутри наносят слой герметика или...
Тип: Изобретение
Номер охранного документа: 0002618572
Дата охранного документа: 04.05.2017
26.08.2017
№217.015.d413

Тепловая защита негерметичного отсека двигательной установки летательного аппарата

Изобретение относится к ракетно-авиационной технике и может быть использовано в конструкции негерметичных отсеков двигательных установок (ДУ) сверх- и гиперзвуковых летательных аппаратов (ЛА). В тепловой защите негерметичного отсека ДУ ЛА с внутренней теплоизоляцией корпуса отсека,...
Тип: Изобретение
Номер охранного документа: 0002622181
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d476

Способ обеспечения теплового режима приборного отсека летательного аппарата

Изобретение относится к авиационной и ракетной технике. Способ обеспечения теплового режима приборного отсека летательного аппарата заключается в охлаждении аппаратуры (2) двухконтурной системой охлаждения. Теплоотвод осуществляется во внешнем контуре путем испарения низкокипящего хладагента с...
Тип: Изобретение
Номер охранного документа: 0002622173
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d62b

Композиционный материал для замещения костной ткани

Изобретение относится к медицине, конкретно к области композиционных материалов для изготовления эндопротезов. Композиционный материал для замещения костной ткани содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема при общем количестве...
Тип: Изобретение
Номер охранного документа: 0002622751
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.dc56

Комплекс оружия для поражения наземных береговых объектов и способ его применения с подводных носителей

Группа изобретений относится к боевой ракетной технике, размещаемой на подводном носителе (ПН). Для обеспечения достижения ПН стартовой позиции применения реактивных систем залпового огня (РСЗО) по выбранной береговой цели путем поражения крылатыми ракетами (КР) надводных средств...
Тип: Изобретение
Номер охранного документа: 0002624258
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.dd95

Способ управления автономной системой электропитания космического аппарата

Использование: в области электротехники. Технический результат – повышение надежности системы электропитания (СЭП), обеспечение живучести и длительной эксплуатации космического аппарата (КА). В автономной СЭП с АБ, выполненными на основе никельметаллгидридных (НМГ) аккумуляторов, управляют...
Тип: Изобретение
Номер охранного документа: 0002624447
Дата охранного документа: 04.07.2017
Показаны записи 31-40 из 72.
26.08.2017
№217.015.d62b

Композиционный материал для замещения костной ткани

Изобретение относится к медицине, конкретно к области композиционных материалов для изготовления эндопротезов. Композиционный материал для замещения костной ткани содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема при общем количестве...
Тип: Изобретение
Номер охранного документа: 0002622751
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d997

Роторный газотурбинный двигатель

Роторный газотурбинный двигатель содержит жестко установленное на валу центробежное рабочее колесо с центробежными каналами, обеспечивающее сжатие поступающего в него окислительного рабочего тела, установленную коаксиально с ним камеру сгорания торообразной формы с тангенциально расположенными...
Тип: Изобретение
Номер охранного документа: 0002623592
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.dc56

Комплекс оружия для поражения наземных береговых объектов и способ его применения с подводных носителей

Группа изобретений относится к боевой ракетной технике, размещаемой на подводном носителе (ПН). Для обеспечения достижения ПН стартовой позиции применения реактивных систем залпового огня (РСЗО) по выбранной береговой цели путем поражения крылатыми ракетами (КР) надводных средств...
Тип: Изобретение
Номер охранного документа: 0002624258
Дата охранного документа: 03.07.2017
13.02.2018
№218.016.257e

Обечайка корпуса летательного аппарата

Изобретение относится к конструкции корпусов скоростных летательных аппаратов (ЛА), преимущественно малых калибров. Для обечайки с длиной образующей L и с гладкой несущей стенкой толщиной δ корпуса цилиндрической, конической или биконической формы - в стенке обечайки с одного или двух торцов...
Тип: Изобретение
Номер охранного документа: 0002642471
Дата охранного документа: 26.01.2018
17.02.2018
№218.016.2a5f

Многоцелевая трансформируемая орбитальная система и способ ее применения

Группа изобретений относится к построению и управлению космическими аппаратами на орбитах ИСЗ. Система включает в себя орбитальную станцию, целевые (ЦМ) и обеспечивающие модули на компланарных орбитах. ЦМ имеют в своем составе многоразовые возвращаемые аппараты (МВА) крылатой схемы. В МВА...
Тип: Изобретение
Номер охранного документа: 0002643082
Дата охранного документа: 30.01.2018
17.02.2018
№218.016.2cdb

Ракетно-космический комплекс и способ функционирования ракетно-космического комплекса

Группа изобретений относится к средствам и методам выведения, работы на орбите и увода с орбиты автоматических полезных нагрузок (ПН) с помощью беспилотного ракетно-космического комплекса (РКК). В состав РКК входит разгонный блок (РБ) с устройствами управления ракетой-носителем, которые при...
Тип: Изобретение
Номер охранного документа: 0002643744
Дата охранного документа: 05.02.2018
04.04.2018
№218.016.3055

Способ поражения цели сверхзвуковой крылатой ракетой и сверхзвуковая крылатая ракета для его осуществления

Группа изобретений относится к ракетной технике, а именно к сверхзвуковым крылатым ракетам, предназначенным для поражения наземных целей, включая легкоуязвимые площадные наземные объекты, в том числе критичные по времени мобильные цели. Способ включает введение в бортовую аппаратуру системы...
Тип: Изобретение
Номер охранного документа: 0002644962
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.4709

Система спутниковой навигации крылатой ракеты (варианты)

Изобретение относится к области помехозащищенных систем спутниковой навигации, предлагаемых к использованию в составе х крылатых ракет. Система спутниковой навигации крылатой ракеты (КР) содержит аппаратуру спутниковой навигации и антенную систему. Антенная система выполнена помехозащищенной в...
Тип: Изобретение
Номер охранного документа: 0002650582
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.49bc

Способ оперативной доставки средств спасения терпящим бедствие людям в удаленных районах с неточно известными координатами и ракетный комплекс оперативной доставки средств спасения

Изобретение относится к способам спасения людей с применением авиационных средств. Способ оперативной доставки средств спасения с использованием ракетного комплекса заключается в выборе из комплекта ракеты, оснащенной взаимозаменяемой головной частью (ГЧ). Осуществляют полет ракеты к объекту...
Тип: Изобретение
Номер охранного документа: 0002651350
Дата охранного документа: 19.04.2018
03.07.2018
№218.016.69eb

Ракета в транспортно-пусковом контейнере

Изобретение относится к ракетной технике, а именно к устройствам, обеспечивающим сохранность ракеты при ее размещении в транспортно-пусковом контейнере (ТПК) на носителях, транспортно-заряжающих машинах, базах долговременного хранения. Ракета в транспортно-пусковом контейнере содержит...
Тип: Изобретение
Номер охранного документа: 0002659450
Дата охранного документа: 02.07.2018
+ добавить свой РИД