×
01.11.2018
218.016.97da

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ПОЛЕТОМ БАЛЛИСТИЧЕСКОГО ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к управляемому ракетному оружию (УРО) классов «поверхность - поверхность», «воздух - поверхность». Технической задачей предлагаемого изобретения является такое управление полетом баллистического летательного аппарата (ЛА), при котором обеспечивается сохранение расчетных (допустимых по условиям эксплуатации) значений теплопритоков на конструктивные элементы (в том числе иллюминаторы) головной части (ГЧ) за счет аэродинамического торможения ЛА на конечном атмосферном участке траектории (КАУТ). Дополнительно, появляются возможности эффективного применения ложных целей (ЛЦ). Указанная техническая задача решается для баллистического ЛА (например, ракеты либо отделяемой ГЧ ракеты) следующим образом. При управлении полетом баллистического летательного аппарата (включающем ракетный разгон ЛА на активном участке траектории, свободное движение ЛА на пассивном участке траектории и управляемое движение ЛА на конечном атмосферном участке траектории) разгон ЛА осуществляют с установленным на ЛА головным обтекателем, на КАУТ ЛА аэродинамически тормозят до скорости М=1…8, на высоте 25…5 км при углах атаки и скольжения ЛА не более ±5 градусов сбрасывают головной обтекатель (ГО) и уводят его в сторону от траектории полета ЛА. 12 з.п. ф-лы, 6 ил.

Изобретение относится к управляемому ракетному оружию (УРО) классов «поверхность - поверхность», «воздух - поверхность».

Известны способы управления полетом баллистических летательных аппаратов (ЛА) УРО, включающие программный (оптимальный для данных конкретных условий) ракетный разгон ЛА на активном участке траектории (АУТ), свободное (в том числе неориентированное выше плотных слоев атмосферы) движение ЛА на пассивном участке траектории (ПУТ) и управляемое (например, посредством аэродинамических рулей и/или импульсных ракетных двигателей) движение на конечном атмосферном участке траектории (КАУТ) - см., например, В.И. Феодосьев, Г.Б. Синярев «Введение в ракетную технику», 2 издание, М., Оборонгиз, 1960, стр. 51, 53-55, 341-342.

Однако указанные способы управления полетом ЛА не выводят его за рамки теплопрочностных режимов функционирования конструкционных материалов отделяемых и неотделяемых головных частей (ГЧ) ЛА, включая иллюминаторы систем конечного наведения (СКН) ГЧ.

Известен также способ управления полетом ЛА с защитой его головной части специализированным головным обтекателем (ГО), который программно сбрасывается (в том числе без разделения либо с разделением на отдельные фрагменты) и уводится с траектории ЛА - см., например, И.Б. Афанасьев, Ю.М. Батурин, А.Г. Белозерский и др. «Мировая пилотируемая космонавтика. История. Техника. Люди», М., изд-во «РТСофт», 2005, стр. 82 (сбрасываемый головной обтекатель с системой аварийного спасения космического корабля «Союз» на одноименной ракете-носителе - ближайший аналог).

Однако схема полета аналогов (в том числе ближайшего аналога) не предполагает наличия теплонапряженных КАУТ такого вида, когда внешние теплопритоки из-за высокой скорости ЛА превышают теплопрочностные возможности конструкционных материалов ГЧ (включая иллюминаторы СКН). При этом соответствующие большие значения скоростных напоров препятствуют разделению ГО с ГЧ на высотах включения и штатной работы СКН ЛА.

Технической задачей предлагаемого изобретения является такое управление полетом баллистического ЛА, при котором обеспечивается сохранение расчетных (допустимых по условиям эксплуатации) значений теплопритоков на конструктивные элементы (в том числе иллюминаторы) ГЧ за счет аэродинамического торможения ЛА на КАУТ. Дополнительно, появляются возможности эффективного применения ложных целей (ЛЦ).

Указанная техническая задача решается для баллистического ЛА (например, ракеты либо отделяемой ГЧ ракеты) следующим образом. При управлении полетом баллистического летательного аппарата (включающем ракетный разгон ЛА на активном участке траектории, свободное движение ЛА на пассивном участке траектории и управляемое движение ЛА на конечном атмосферном участке траектории) разгон ЛА осуществляют с установленным на ЛА головным обтекателем, на КАУТ ЛА аэродинамически тормозят до скорости М=1…8, на высоте 25…5 км при углах атаки и скольжения ЛА не более ±5 градусов сбрасывают ГО и уводят его в сторону от траектории полета ЛА. В ряде случаев аэродинамическое торможение ЛА осуществляют посредством ГО с плоским передним торцом и аэродинамической иглой (АИ), при этом на АУТ аэродинамическую иглу максимально выдвигают вперед, а на ПУТ аэродинамическую иглу сбрасывают или убирают внутрь ГО. В отдельных случаях после торможения ЛА непосредственно перед сбросом ГО с ЛА аэродинамическую иглу ГО выдвигают вперед. На плоский торец такого ГО устанавливают внешнее теплозащитное покрытие (ТЗП) в виде плоской шайбы, при этом в ряде случаев ТЗП выполняют аблирующим. Увод ГО в сторону от траектории полета ЛА осуществляют посредством его разделения не менее чем на два фрагмента либо посредством срабатывания за время не более 1,0 с размещенного на ГО многосоплового ракетного двигателя твердого топлива (РДТТ). Кроме того, в кормовой части ЛА или ГЧ ЛА дополнительно устанавливают тормозные щитки, которые складывают на АУТ и раскрывают на ПУТ непосредственно перед началом КАУТ (при этом в ряде случаев тормозные щитки выполняют управляемыми на КАУТ). Дополнительно на ЛА устанавливают ложные цели, которые отделяют от ЛА до начала КАУТ. При этом эффективная поверхность рассеивания (ЭПР) ЛЦ составляет 50%…1000% относительно ЭПР ЛА. В некоторых случаях на ГО дополнительно устанавливают уголковые отражатели и/или линзы Люнеберга с эффективной поверхностью рассеивания (ЭПР), не меньшей ЭПР ЛА в диапазоне передних курсовых углов ±45 градусов, и/или один или несколько одноразовых передатчиков активных помех, которые активируют в момент разделения ГО с ЛА.

На фиг. 1, 2 показана характерная траектория движения баллистического ЛА, на фиг. 3 - конфигурация в конце ПУТ - начале КАУТ связки ГЧ ЛА плюс ГО до момента их разделения, на фиг. 4 - характерная траектория ЛА и ЛЦ в конце ПУТ и на КАУТ, на фиг. 5, 6 - пример конфигурации ГО с дооснащением после разделения с ЛА.

Приняты обозначения:

1 - ракетная часть ЛА;

2 - головная часть ЛА;

3 - головной обтекатель;

4 - аэродинамическая игла;

5 - теплозащитное покрытие;

6 - тормозной щиток;

7 - уголковый отражатель (вариант);

8 - передатчик помех;

9 - антенна передатчика помех (вариант);

10 - ложная цель.

На фиг. 1 показана траектория полета баллистического ЛА класса «поверхность - поверхность», включающая программный АУТ (участок работы ракетной двигательной установки), ПУТ и управляемый КАУТ для варианта разделяющихся ракетной поз. 1 и головной поз. 2 частей ЛА. На ГЧ поз. 2 установлен ГО поз. 3 (вариант с плоским передним торцом и АИ). На АУТ АИ поз. 4 выдвинута максимально вперед по направлению полета (НП) ЛА для минимизации его аэродинамического сопротивления на сверхзвуковых скоростях движения. На ПУТ движение ЛА - свободное (в том числе неориентированное в зоне малых скоростных напоров - если это допускается в рамках выполнения целевой задачи). При подходе к КАУТ АИ поз. 4 сбрасывают либо убирают внутрь ГО поз. 3, а ракетная поз. 1 и головная поз. 2 части ЛА разделяются. Плоский торец ГО поз. 3 (см. фиг. 3) обеспечивает интенсивное аэродинамическое торможение ГЧ поз. 2 для ее скорейшего вывода в область допустимых теплопрочностных параметров, при которых возможно в том числе штатное функционирование иллюминаторов (окон прозрачности СКН) ГЧ ЛА. Конструктивно представляется целесообразной установка на плоский торец ГО поз. 3 ТЗП поз. 5 в виде плоской шайбы (см. фиг. 3), которая может выполняться в том числе из аблирующих материалов. В этой связи следует отметить, что плоский торец ГО поз. 3 (как правило, в калибр ГЧ поз. 2) обладает незначительными несущими свойствами - и соответственно, вносит минимальные аэродинамические возмущения в баллистическое рассеивание ЛА (в том числе при применении аблирующих материалов для ТЗП поз. 5). Кроме того, с целью интенсификации аэродинамического торможения ЛА на ГЧ поз. 2 могут дополнительно устанавливаться тормозные щитки поз. 6, например, по типу показанных на фиг. 3.

Следует отметить, что торможение (не аэродинамическое) баллистического ЛА может осуществляться, например, посредством специализированного тормозного РДТТ; при этом снижается относительное совершенство конструкции летательного аппарата, а сопротивление атмосферы полезно не используется. В этой связи данное техническое решение в рамках предлагаемого способа управления ЛА не рассматривается.

С учетом теплопрочности современных и перспективных конструкционных материалов, в том числе применяемых для оптических иллюминаторов ЛА (например, температура размягчения кварцевого стекла составляет ~1300°С), а также уровня действующих скоростных напоров при сбросе ГО поз. 3 с ГЧ поз. 2 ЛА - диапазон скоростей М=1…8 (М - число Маха, равное отношению скорости ЛА к местной скорости звука в воздухе) и высот от 25 км до 5 км удовлетворяет требованиям решения поставленной технической задачи с учетом особенностей функционирования СКН ЛА прямого и косвенного наведения.

Следует отметить, что безударное разделение ГЧ поз. 2 с ГО поз. 3 целесообразно осуществлять при углах атаки и скольжения баллистического ЛА не более ±5 градусов. Данное условие для статически устойчивого баллистического ЛА выполняется на КАУТ автоматически. При наличии управляемых на КАУТ тормозных щитков поз. 6 (на ГЧ поз. 2 либо в конструктиве связки ракетной поз. 1 и головной поз. 2 частей ЛА) - они могут быть задействованы при разделении с заданными углами атаки и скольжения также и для статически неустойчивых ЛА.

На фиг. 2 показан конец ПУТ - начало КАУТ полета баллистического ЛА класса «воздух - поверхность» либо «поверхность - поверхность» для варианта ГЧ поз. 2, не разделяющейся с ракетной частью поз. 1 баллистического ЛА. Здесь же показан вариант ГО поз. 3 с АИ поз. 4, которая складывается (убирается) внутрь ГО на ПУТ и вновь раскладывается вперед по НП после участка аэродинамического торможения ЛА на КАУТ непосредственно перед сбросом обтекателя поз. 3 с ГЧ поз. 2 - для уменьшения аэродинамического сопротивления ГО поз. 3 в момент сброса и его гарантированного увода с траектории ЛА.

На фиг. 3 показан вариант конфигурации ЛА при аэродинамическом торможении на КАУТ посредством ГО поз. 3 с плоским передним торцом. При этом АИ поз. 4 сброшена либо убрана внутрь ГО поз. 3, тормозные щитки поз. 6 (при их наличии) выдвинуты в поток. Плоский торец ГО поз. 3 может быть выполнен как в виде т.н. «горячей» (из жаропрочных сплавов) конструкции, так и в виде шайбы из аблирующего ТЗП поз. 5.

Увод ГО поз. 3 в сторону от траектории полета ЛА может осуществляться, например, посредством его разделения не менее чем на два фрагмента, которые за счет силового импульса разделения и под воздействием набегающего потока воздуха безударно отделяются от ГЧ поз. 2 ЛА. Вариант: оснащение ГО поз. 3 одним либо несколькими РДТТ (например, многосопловой схемы), срабатывание которого (которых) за время не более 1,0 с обеспечивает при разделении ГО поз. 3 и ГЧ поз. 2 достаточную тягу для ракетного увода ГО поз. 3 на безопасное расстояние и в сторону от ЛА.

Следует отметить, что тормозные щитки поз. 6, установленные на ЛА (ГЧ ЛА), могут обеспечить заданные параметры его аэродинамического торможения без привлечения дополнительных технических средств. В случае оснащения ЛА такими щитками конфигурация ГО поз. 3 может выбираться, например, из условия минимизации его аэродинамического сопротивления (остроконечные конусные или оживальные формы головного обтекателя), что является рациональным с точки зрения энергетики разделения ГО поз. 3 и ГЧ поз. 2 ЛА.

На фиг. 4 показана траектория ЛА и ЛЦ в конце ПУТ (сброс ЛЦ поз. 10) и на КАУТ (формирование растянутого «залпа» объектов с примерно одинаковой ЭПР). Следует отметить, что в данном случае разделение ЛА с ЛЦ поз. 10 производится в зоне малых скоростных напоров, движение всех элементов «залпа» по фронту примерно соответствует общей баллистической кривой, разведение элементов вдоль траектории (по дистанции) обеспечивается программным торможением ЛА посредством ГО поз. 3 и/или тормозных щитков поз. 6, а также соответствующим подбором баллистических коэффициентов ЛЦ поз. 10 (баллистический коэффициент - произведение миделя на коэффициент лобового сопротивления, отнесенное к массе ЛЦ) таким образом, чтобы 40%…90% ЛЦ поз. 10 по траектории полета были впереди маскируемого ЛА. При этом ЭПР каждой ЛЦ поз. 10 должна составлять 50%…1000% относительно ЭПР ЛА, что обеспечивает его надежную маскировку в поле ложных целей в радиолокационном диапазоне длин волн.

В ряде случаев на ГО поз. 3 после разделения с ЛА также могут возлагаться функции ложной цели. В этой связи на ГО поз. 3 могут быть установлены, например, уголковые отражатели и/или линзы Люнеберга с эффективной поверхностью рассеивания (в диапазоне передних курсовых углов±45 градусов) не менее ЭПР ЛА, а также один или несколько передатчиков активных радиопомех. На фиг. 5,6 показан вариант размещения на цельносбрасываемом ГО поз. 3 (с выдвинутой АИ поз. 4) раскладываемых после отделения от ЛА уголковых отражателей поз. 7, а также активируемого в период автономного движения ГО поз. 3 одноразового передатчика активных помех поз. 8, включая его антенну поз. 9. Помимо имитации характерных значений ЭПР ЛА в радиолокационных диапазонах длин волн, при автономном полете ГО поз. 3 также создается мощный точечный источник инфракрасного излучения, имитируя и в этом спектральном диапазоне ГЧ поз. 2 или ЛА в целом.

Применение предложенного технического решения представляется целесообразным для перспективных высокоточных комплексов УРО с оптико-электронными СКН, преимущественно, тактической и оперативно-тактической зоны, в том числе реализуемых в рамках экспортных поставок и военно-технического сотрудничества.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 161.
13.01.2017
№217.015.752a

Способ изготовления металлических панелей из титано-алюминиевых сплавов

Изобретение может быть использовано для получения ультрамелкозернистых сверхпластичных листов титано-алюминиевых сплавов при изготовлении сложных деталей методом сверхпластической формовки и диффузионной сварки. Листы готового проката титано-алюминиевого сплава, например, Ti-48Al-2Cr-2Nb...
Тип: Изобретение
Номер охранного документа: 0002598747
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.7661

Способ обеспечения функционирования на орбите группировки космических аппаратов

Изобретение относится к обслуживанию на околоземной орбите группировки автоматических космических аппаратов (КА). Способ включает выведение КА обслуживания (КАО) в орбитальную плоскость группировки КА, стыковку КАО и КА, техническое обслуживание КА, расстыковку КАО и КА. При невозможности...
Тип: Изобретение
Номер охранного документа: 0002598682
Дата охранного документа: 27.09.2016
13.01.2017
№217.015.8262

Способ и устройство для проведения испытаний радиотехнических изделий

Изобретение относится к технике проведения климатических испытаний различных изделий, в частности радиотехнических изделий. Способ для проведения испытаний радиотехнических изделий, включающий размещение испытуемого изделия в климатическом отсеке герметичной камеры с воздействием на него низкой...
Тип: Изобретение
Номер охранного документа: 0002601534
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8375

Космический аппарат обслуживания на орбите автоматического космического аппарата и способ стыковки космического аппарата обслуживания с неисправным вращающимся космическим аппаратом

Группа изобретений относится к обслуживанию (в т.ч. дозаправке) автоматических космических аппаратов (КА) на орбите. КА обслуживания (КАО) содержит узел стыковки с КА, двигательную установку, манипулятор для захвата КА, манипулятор захвата, перемещения и замены (МПЗ) блоков аппаратуры КА и КАО,...
Тип: Изобретение
Номер охранного документа: 0002601522
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8405

Аэродинамическая модель летательного аппарата для исследования распределения давления по поверхности в аэродинамических испытаниях с имитацией струй кормового реактивного двигателя

Изобретение относится к измерительной технике, а именно к аэродинамическим моделям летательных аппаратов для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя. Сущность...
Тип: Изобретение
Номер охранного документа: 0002601532
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8cf4

Способ азимутального прицеливания пусковой установки

Изобретение относится к азимутальному прицеливанию мобильных пусковых установок (ПУ) ракетно-артиллерийского вооружения сухопутных войск при стрельбе по ненаблюдаемой цели. Техническим результатом предлагаемого изобретения является повышение точности азимутального прицеливания пусковой...
Тип: Изобретение
Номер охранного документа: 0002604592
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8dae

Отсек боевого оснащения летательного аппарата

Изобретение относится к ракетной и авиационной технике, а более конкретно - к ударным беспилотным системам для поражения наземных и надводных целей. В отсеке боевого оснащения (БО) летательного аппарата (ЛА), включающем силовой набор, обечайку и вкладную боевую часть (БЧ), обечайка и силовой...
Тип: Изобретение
Номер охранного документа: 0002604540
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.9113

Гидравлическая система летательного аппарата

Изобретение относится к ракетной и авиационной технике и может найти применение в конструкциях гидросистем, реализующих несколько режимов управления. Гидравлическая система летательного аппарата содержит электроприводной насос (7) с регулируемой подачей, исполнительный двигатель (8),...
Тип: Изобретение
Номер охранного документа: 0002605797
Дата охранного документа: 27.12.2016
25.08.2017
№217.015.9e1d

Способ восстановления ориентации орбитального космического аппарата

Изобретение относится к области космической техники и может быть использовано при разработке ускоренного режима восстановления ориентации орбитального космического аппарата (КА) с применением астродатчика. Восстановление ориентации КА производится из демпфированного относительно инерциальной -...
Тип: Изобретение
Номер охранного документа: 0002610766
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.9e31

Модель летательного аппарата для исследования влияния струи реактивного двигателя на аэродинамические характеристики летательного аппарата

Модель летательного аппарата для исследования влияния струи реактивного двигателя на аэродинамические характеристики летательного аппарата включает закрепленный на боковой державке тонкостенный корпус с кормовым соплом и дренажными отверстиями по наружной поверхности, дренажные трубки,...
Тип: Изобретение
Номер охранного документа: 0002610791
Дата охранного документа: 15.02.2017
Показаны записи 11-20 из 72.
27.02.2015
№216.013.2ecf

Способ обеспечения мягкой посадки летательного аппарата

Изобретение относится к авиакосмической технике и может быть использовано при мягкой посадке летательного аппарата (ЛА). Спускают и приземляют ЛА с помощью парашютно-реактивной системы, измеряют скорость и направление ветрового сноса ЛА, рассчитывают уровень тяги ракетного двигателя твердого...
Тип: Изобретение
Номер охранного документа: 0002543451
Дата охранного документа: 27.02.2015
20.03.2015
№216.013.31ea

Способ старта ракеты из транспортно-пускового контейнера и устройство для его осуществления

Группа изобретений относится к ракетной технике и может быть использована в транспортно-пусковых контейнерах (ТПК), находящихся в пусковых установках преимущественно подводных лодок. Способ старта ракеты из ТПК заключается в наддуве не поддерживающим горение газом подкрышечного объема ТПК с...
Тип: Изобретение
Номер охранного документа: 0002544253
Дата охранного документа: 20.03.2015
27.06.2015
№216.013.5a3b

Способ обнаружения морских целей

Изобретение относится к комплексам разведки морских надводных целей. Перед погружением платформы в воду на подвижный носитель вводят координаты точки погружения, платформу дополнительно снабжают устройствами радиоприема и звукоподводного приема сигналов пункта управления, в качестве подвижного...
Тип: Изобретение
Номер охранного документа: 0002554640
Дата охранного документа: 27.06.2015
27.10.2015
№216.013.88c0

Способ вибродиагностики печатных узлов

Изобретение относится к вибрационной метрологии, в частности к средствам вибродиагностики печатных узлов. Способ вибродиагностики предполагает жесткое крепление печатного узла в месте его размещения, встраивание вибродатчика и излучателя гармонических синусоидальных колебаний...
Тип: Изобретение
Номер охранного документа: 0002566611
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.92ab

Самолет

Изобретение относится к авиационной технике. Самолет содержит фюзеляж, крыло, хвостовое оперение и винтомоторную установку, включающую двигатель, трансмиссию и соосные воздушные винты противовращения. Лопасти воздушных винтов (ВВ) выполнены в виде гибких лент с удлинением 4…200, корневые части...
Тип: Изобретение
Номер охранного документа: 0002569165
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.92f2

Способ группового орбитального движения искусственных спутников

Изобретение относится к орбитальному движению искусственных спутников Земли (ИСЗ), совершающих групповой полет. Поддержание расстояния между ИСЗ по фронту производится путем периодического включения на ближней границе разрешенного коридора движения реактивной двигательной установки (ДУ)...
Тип: Изобретение
Номер охранного документа: 0002569236
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a19d

Многомодульный космический аппарат для очистки геостационарной орбиты и способ очистки геостационарной орбиты

Изобретение относится к космической технике и может быть применено для реализации программ сведения с геостационарной орбиты (ГСО) вышедших из строя космических аппаратов (КА). Многомодульный космический аппарат (МКА) для очистки геостационарной орбиты от антропогенных объектов содержит...
Тип: Изобретение
Номер охранного документа: 0002573015
Дата охранного документа: 20.01.2016
10.04.2016
№216.015.2b67

Способ ориентации космического аппарата с использованием бесплатформенного орбитального гирокомпаса и система для его осуществления

Изобретение относится к космической технике и может быть использовано для ориентации космических аппаратов (КА). Система ориентации КА с использованием бесплатформенного орбитального гирокомпаса (БОГК) содержит прибор ориентации по Земле (ПОЗ), блок гироскопических измерителей угловых скоростей...
Тип: Изобретение
Номер охранного документа: 0002579387
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2ca8

Искусственный спутник земли

Изобретение относится к космической технике и может быть использовано в искусственных спутниках Земли (ИСЗ). ИСЗ содержит силовой корпус в виде кольца с удлинением и передней частью в виде воронки, с кольцевым механическим демпфером с картечью или дробью, с элеронами, аэродинамический кольцевой...
Тип: Изобретение
Номер охранного документа: 0002579600
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2db6

Способ поражения надводных и наземных целей гиперзвуковой крылатой ракетой и устройство для его осуществления

Изобретение относится к гиперзвуковым крылатым ракетам (ГПКР), оснащенным гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). ГПКР содержит маршевую ступень с конструкцией, построенной на основе двух модулей. Первый модуль является боевым и выполнен в виде планера маршевой ступени...
Тип: Изобретение
Номер охранного документа: 0002579409
Дата охранного документа: 10.04.2016
+ добавить свой РИД