×
21.10.2018
218.016.94cd

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ КОМПОЗИЦИОННОЙ КЕРАМОПОЛИМЕРНОЙ ПЛЁНКИ И КОМПОЗИЦИОННАЯ КЕРАМОПОЛИМЕРНАЯ ПЛЁНКА

Вид РИД

Изобретение

Аннотация: Использование: для изготовления композиционной керамополимерной пленки. Сущность изобретения заключается в том, что способ изготовления композиционной керамополимерной пленки содержит стадии: смешивания исходных порошков керамики и полимера; гомогенизацию полученной смеси исходных порошков; ввод гомогенизированной смеси в пресс-форму в виде свободно насыпанного слоя заданной толщины; прессование упомянутого слоя под давлением заданной величины; термообработку прессованной заготовки лазерным излучением заданной мощности. Технический результат: обеспечение возможности повышения технологической эффективности, уменьшения времени теплового воздействия на полимер, управления внутренней структурой и пористостью композиционных керамополимерных пленок, снижения технологических ограничений на производство композиционных керамополимерных пленок большой размерности. 2 н. и 7 з.п. ф-лы.

Настоящее изобретение относится к способу изготовления композиционной керамополимерной пленки и к композиционной керамополимерной пленке, изготовленной этим способом.

Уровень техники

В ультразвуковой технике для улучшения пиро- и пьезоэлектрических свойств и механических характеристик приемных элементов изготавливают композиционные пленки, добавляя в полимер керамический наполнитель, что позволяет создавать композиты со свойствами, объединяющими лучшие «качества» полимера и керамики.

Наиболее сложным в технологическом плане является процесс изготовления керамополимерной пленки на основе поливинилиденфторида (ПВДФ). Данный полимер интересен тем, что обладает самыми высокими для полимеров пиро- и пьезоэлектрическими свойствами и находит широкое применение в устройствах гидроакустики, тепловизорах, электромеханических преобразователях и различных датчиках.

Так, для медицинской ультразвуковой техники активный пьезоэлемент должен иметь низкую плотность для хорошего акустического согласования с биотканью, что присуще полимеру, и высокие значения диэлектрической проницаемости и пьезомодуля, характерные для керамики. В гидроакустических устройствах, работающих в условиях высокого гидростатического давления, керамополимерный композит должен быть пористым, чтобы компенсировать это давление. Датчикам ИК излучения и активным элементам тепловизоров необходимы высокая чувствительность и низкий уровень так называемого пьезошума, для снижения которого изготавливают композиты с двумя пьезоактивными фазами, поляризованными в противоположных направлениях.

Кроме того, полимерные пиро- и пьезокомпозиты применяются для активного подавления вибраций тонкостенных конструкций, в приемниках акустических колебаний, работающих на волнах Лэмба, в материалах, контролирующих функционирование конструкций, где необходимы свободные (не на подложке) гибкие композиционные пленки большой площади, которые можно было бы нанести на поверхности сложной формы.

Известен способ получения композиционных керамополимерных пленок на основе ПВДФ посредством внесения порошка пьезокерамики в раствор полимера, как правило, используемый для получения тонких (0,1-5 мкм) пленок. Например, предложенный в международной заявке №WO 2006/007830 (опубл. 26.01.2006) способ получения пленки включает следующие стадии: приготовление раствора ПВДФ в ацетилацетоне, приготовление взвеси ЦТС-керамики (цирконат-титанат свинца) с размером частиц менее 1 мкм в гексане, смешивание раствора полимера со взвесью керамики, поливка раствора на подложку и сушка при температуре около 100°С. Недостатками данного способа являются сложность контроля толщины пленки и большой расход растворителя из-за того, что ПВДФ, как и все фторопласты, имеет низкую растворимость, поэтому используют сильно разбавленные растворы. Кроме того, вследствие длительного процесса сушки может происходить седиментация керамики, что приводит к неравномерному распределению наполнителя по толщине пленки.

Похожая технология представлена в патенте Китая №101260217 (опубл. 13.10.2010). В качестве растворителя используется N,N-диметил-ацетамид, в качестве наполнителя - сегнетоэлектрическая керамика на основе танталатов скандия и свинца. Для получения пленки требуемой толщины проводится отливка раствора на вращающуюся подложку. Толщина получаемой пленки регулируется изменением скорости вращения. После отливки пленка сушится при температуре 100°С.

Аналогичный способ получения композиционных полимерных материалов с пьезоэлектрическими свойствами, обладающими повышенными механическими характеристиками, описан в патенте РФ №2207356 (опубл. 27.06.2003). Пленки изготавливают методом полива композиции на стеклянную подложку с последующим испарением растворителя, промывкой, сушкой, термообработкой и поляризацией.

Общим недостатком всех упомянутых способов является низкая производительность технологического процесса и малые толщины получаемых пленок.

Известен также способ и устройство для получения поляризованных пленок, где нанесение раствора полимера с керамическими частицами на подложку осуществляется в виде микроскопических капель, путем распыления диэлектрического раствора инертным газом через сопло (патент США №8465810, опубл. 18.06,2013). К распылителю приложено высокое напряжение в интервале от -1 кВ до -90 кВ, подложка заземлена. Капли раствора полимера электризуются, что приводит к дроблению крупных капель и выравниванию потока. При оседании и сушке раствора под напряжением формируется поляризованная пленка из ПВДФ β-фазы.

Недостатком данного способа является невозможность получения пленок с высокой долей наполнителя, так как вследствие высокой вязкости раствора (из-за ограниченной растворимости ПВДФ) имеется большая вероятность закупорки сопла. Кроме того, устройство для получения пленок сложно конструктивно и обладает повышенной опасностью при эксплуатации из-за наличия высокого напряжения в устройстве.

Известен способ получения композиционных керамополимерных листов посредством литья под давлением или экструзией расплава (заявка ЕПВ №1020487, опубл. 19.07.2000). В этом случае частицы пьезокерамики смешивают с частицами ПВДФ, нагревают до температуры 270°С (что выше температуры плавления ПВДФ, составляющей 160-180°С), далее дисперсную керамику перемешивают с расплавом с использованием месильной машины. Полученную смесь гранулируют, гранулы загружают в машину для литья и при температуре 250°С формуют листы керамополимерного композита. Недостатком данного способа является высокая температура, до которой необходимо нагревать полимер, чтобы получить расплав с вязкостью, достаточной для его перемешивания с керамикой до однородного состояния. При таких температурах в полимере могут протекать процессы термоокислительной деструкции, которые ухудшают пиро- и пьезоэлектрические свойства полимера (Семчиков Ю.Д. Высокомолекулярные соединения. М.: Academia. 2003. 367 с).

Для получения композиционных пленок из смеси порошков керамики и полимера используют также такие технологии как экструзию и одноосное холодное прессование с последующей термообработкой, горячее прессование, горячую прокатку (см., к примеру, заявку Кореи №2003/0075212, опубл. 26.09.2003; международную заявку №WO 97/35348, опубл. 25.09.1997). Особенностью пленок, получаемых методами прокатки и горячего прессования, является их низкая пористость.

Наиболее близким аналогом заявляемого способа изготовления композиционных керамополимерных пленок является способ, предложенный авторами патента Китая №102249596 (опубл. 15.08.2012). Он включает следующие этапы: растворение ПВДФ в органическом растворителе, ультразвуковое диспергирование в растворе углеродных трубок, добавление к раствору керамического порошка ниобата калия-натрия, перемешивание и сушка для удаления растворителя. Полученную композицию формуют холодным прессованием при давлении 5-20 МПа в заготовки диаметром 10-20 мм и толщиной 0,3-2 мм, которые отжигают в муфельной печи при температуре 80-250°С в течение 2-8 часов. Недостатком данного способа является низкая эффективность из-за длительности ряда технологических процессов, высокие тепловые нагрузки в течение значительного времени, ограниченность размерности изделий (размером печи).

Раскрытие изобретения

Настоящее изобретение направлено на преодоление недостатков известных аналогов и на достижение следующих технических результатов:

- повышение технологической эффективности способа изготовления композиционных керамополимерных пленок;

- уменьшение времени теплового воздействия на полимер и, тем самым, снижение вероятности термоокислительной деструкции в полимере;

- обеспечение возможности управления внутренней структурой (степенью связности) и пористостью композиционных керамополимерных пленок;

- снижение технологических ограничений на производство композиционных керамополимерных пленок большой размерности.

Для решения поставленной задачи и достижения указанных технических результатов в первом объекте настоящего изобретения предложен способ изготовления композиционной керамополимерной пленки, заключающийся в том, что: смешивают исходные порошки керамики и полимера; гомогенизируют полученную смесь исходных порошков; вводят гомогенизированную смесь в пресс-форму в виде свободно насыпанного слоя заданной толщины; прессуют этот слой под давлением заданной величины; производят термообработку прессованной заготовки лазерным излучением заданной мощности.

Особенность способа по первому объекту настоящего изобретения состоит в том, что исходные порошки могут выбирать с учетом требуемых свойств композиционной пленки.

Другая особенность способа по первому объекту настоящего изобретения состоит в том, что в качестве полимера могут выбирать поливини-лиденфторид, а в качестве керамики - цирконат-титанат свинца.

Еще одна особенность способа по первому объекту настоящего изобретения состоит в том, что гомогенизацию могут осуществлять на виброустановке.

Еще одна особенность способа по первому объекту настоящего изобретения состоит в том, что могут выбирать лазерное излучение с длиной волны, для которой коэффициенты поглощения материалов обоих порошков имеют один порядок величины.

Еще одна особенность способа по первому объекту настоящего изобретения состоит в том, что могут выбирать лазерное излучение с длиной волны, для которой полимер относительно прозрачен, а коэффициент поглощения материала керамики имеет относительно высокое значение.

Еще одна особенность способа по первому объекту настоящего изобретения состоит в том, что термообработку могут осуществлять путем сканирования поверхности прессованной заготовки по меньшей мере одним пучком лазерного излучения.

Наконец, еще одна особенность способа по первому объекту настоящего изобретения состоит в том, что термообработку могут осуществлять путем одномоментного облучения поверхности прессованной заготовки пучком лазерного излучения заданной формы и апертуры.

Для решения той же задачи и достижения тех же технических результатов во втором объекте настоящего изобретения предложена композиционная керамополимерная пленка, изготовленная способом по первому объекту настоящего изобретения.

Подробное описание вариантов осуществления

Для реализации предложенного способа изготовления композиционных керамополимерных пленок необходимо выполнить следующий порядок действий.

Сначала для получения требуемой композиционной керамополимерной пленки необходимо подобрать исходные порошки керамики и полимера, обладающие требуемой дисперсностью (от соотношения размеров частиц керамики и полимера существенно зависят параметры последующей лазерной обработки и возможные пьезосвойства готовой пленки), а затем смешать эти порошки керамики и полимера. Например в качестве полимера может быть выбран поливинилиденфторид (ПВДФ), а в качестве керамики цирконат-титанат свинца. В принципе, могут применяться и иные компоненты исходной смеси, например, такие, как указано в приведенных выше аналогах или в приведенных ниже примерах.

После этого следует гомогенизировать полученную смесь исходных порошков. Эту операцию целесообразно осуществлять на виброустановке, однако специалистам понятно, что в данном случае могут быть использованы и иные известные в технике методы.

Гомогенизированную смесь порошков вводят в пресс-форму в виде свободно насыпанного слоя заданной толщины, после чего прессуют этот слой под давлением заданной величины. Для приведенного ниже примера эта величина составляет не менее 5 МПа. Толщина же слоя определяется конкретными требованиями конечного продукта.

Затем производят термообработку прессованной заготовки, представляющую собой ее спекание лазерным излучением заданной мощности. Это спекание осуществляют путем нагревания смеси до по меньшей мере температуры плавления полимера (для приведенного ниже примера эта температура равна примерно 200°С) за счет поглощения компонентами, входящими в состав гомогенизированной смеси, энергии лазерного излучения определенной длины волны.

В разных вариантах осуществления способа по настоящему изобретению лазерное излучение можно выбирать с длиной волны, для которой коэффициенты поглощения материалов обоих исходных порошков имеют один порядок величины. Например, для композиции ПВДФ с наполнителем из частиц цирконата-титаната свинца (ЦТС) или титаната бария BaTiO3 подходит лазерное излучение с длиной волны 10,6 мкм, генерируемое СО2-лазером.

С другой стороны лазерное излучение можно выбирать с такой длиной волны, для которой полимер относительно прозрачен, а коэффициент поглощения материала керамики имеет относительно высокое значение. Например, может быть использовано лазерное излучение с длиной волны 1,06 мкм (Nd: YAG-лазера), для которого коэффициент пропускания полимера ПВДФ составляет порядка 40%. (см. Shaohui Liu, Shaomei Xiu, Во Shen, Jiwei Zhai and Ling Bing Kong. Dielectric Properties and Energy Storage Densities of Poly(vinylidenefluoride) Nanocomposite with Surface Hydroxylated Cube Shaped Ba0.6Sr0.4TiO3Nanoparticles // Polymers, 2016, 8(2), 45). Поскольку ПВДФ относительно прозрачен для излучения с длиной волны 1,06 мкм, то процесс формирования пленки в этом случае осуществляется передачей тепловой энергии от частиц керамики к частицам полимера.

Управление внутренней структурой и пористостью композиционных керамополимерных пленок осуществляется за счет выбора давления прессования и режимов обработки (выбором длины волны используемого излучения, его мощности и скорости сканирования). Размеры пленки, изготовленной данным способом, ограничиваются только параметрами оборудования: прессового устройства и системы сканирования лазерной установки (апертурой пучка излучения).

Используя композиции с различным сочетанием полимеров и керамических компонент, данным способом можно изготавливать пленки с заданными электромагнитными и механическим свойствами, например с определенным коэффициентом диэлектрической или магнитной проницаемости.

Так, использование в качестве наполнителя в полимере ПВДФ нанокристаллических частиц ZnO меняет проводимость и магнитные свойства композита, (см. R. Bhunia, А.К. Yadav, S.N. Jha, D. Bhattacharyya, S. Hussain, R. Bhar, A.K. Pal Probing local environment of Mn-doped nanocrys-talline-ZnO/PVDF composite thin films by XPS and EXAFS studies // Polymer 78 (2015) 1-12).

Наполнитель BaFe12O19 обладает ферромагнитными свойствами и меняет проводимость полимера, (см. J. Gutierrez, P. Martins, R. Goncalves, V. Sencadas, A. Lasheras, S. Lanceros-Mendez, J.M. Barandiaran Synthesis, physical and magnetic properties of BaFei20i9/P(VDF-TrFE) multifunctional composites // European Polymer Journal 69 (2015) 224-231).

Композит на основе винилиденфторида, легированного частицами CaCu3Ti4O12, обладает высокой диэлектрической проницаемостью, а также повышенными механическими свойствами, (см. A. Srivastava, К. Kumar Ja-na, P. Maiti, D. Kumar, O. Parkash. Poly(vinylidene fluoride)/ CaCu3Ti4O12 and La doped CaCu3Ti4O12 composites with improved dielectric and mechanical properties // Materials Research Bulletin 70 (2015) 735-742).

В композитной пленке на основе поливинилалкоголя и титаната свинца керамический наполнитель меняет диэлектрические свойства, (см. G.M. Joshi, S.M. Khatake, S. Kaleemulla, N.M. Rao, T. Cuberes Effect of dopant and DC bias potential on dielectric properties of polyvinyl alcohol (PVA)/PbTiO3-composite films // Current Applied Physics 11 (2011) 1322-1325).

Следует отметить, что термообработку можно осуществлять как путем сканирования поверхности прессованной заготовки по меньшей мере одним пучком лазерного излучения, так и путем одномоментного облучения поверхности прессованной заготовки пучком лазерного излучения заданной формы и апертуры, как это известно специалистам.

Ниже приведены некоторые примеры, иллюстрирующие осуществимость предложенного способа.

Пример 1. Композиционная керамополимреная пленка на основе порошка пьезокерамики цирконата-титаната свинца (ЦТС) и полимера ПВДФ в соотношении 1:1 получена в результате обработки излучением СО2-лазера с длиной волны 10,6 мкм мощностью порядка 40 Вт с диаметром пучка ~ 5 мм. Сканирование поверхности заготовки осуществлялось в виде треков с небольшим перекрытием при скоростях в интервале (100÷250) мм/сек.

Пример 2. Пленка на основе порошков ЦТС и ПВДФ в соотношении 2:1 получена при обработке излучением СО2-лазера с аналогичными параметрами при тех же условиях сканирования. Толщина пленок, полученных в указанных примерах, варьировалась в интервале (150÷300) мкм. Полученные пленки легко отделяются от прессованной заготовки.

Пример 3. Пленка на основе порошков ЦТС и ПВДФ в соотношении 1:1 получена в результате обработки излучением Nd:YAG-лазера с длиной волны 1,06 мкм мощностью 20 Вт с диаметром пучка от 5 до 10 мм при скорости сканирования (1-3) мм/сек. Толщина пленок достигала порядка (300-500) мкм.

Размер полученных пленок составил (40×70) мм и определялся исключительно геометрическими параметрами пресс-формы.

Таким образом, предложенный способ позволяет повысить технологическую эффективность изготовления композиционных керамополимерных пленок за счет исключения целого ряда технологических процессов, таких как растворение полимера в органическом растворителе, сушка для удаления растворителя, длительный отжиг в муфельной печи. Использование кратковременного лазерного облучения уменьшает время теплового воздействия на полимер, за счет чего снижается вероятность термоокислительной деструкции в полимере. В способе по настоящему изобретению обеспечивается возможность управления степенью связности и пористостью получаемых композиционных керамополимерных пленок. Все это вместе позволяет снизить технологические ограничения на производство композиционных керамополимерных пленок большой размерности.

Источник поступления информации: Роспатент

Показаны записи 11-20 из 43.
20.08.2014
№216.012.e9da

Способ повышения плотности мощности светового излучения внутри среды

Изобретение относится к оптике и касается способа повышения плотности мощности светового излучения внутри среды. Способ включает в себя формирование среды в виде многослойной периодической структуры, имеющей в спектре пропускания запрещенную зону, а также узкие резонансные пики полного...
Тип: Изобретение
Номер охранного документа: 0002525674
Дата охранного документа: 20.08.2014
10.10.2014
№216.012.fa13

Устройство для нанесения однородных гладких тонких пленок различных материалов на твердые подложки

Изобретение относится к области технологии сверхпроводящих тонких пленок и может найти применение в производстве сверхпроводящих лент на основе высокотемпературных сверхпроводников для сверхпроводящих кабелей передачи электрической энергии, работающих при температуре жидкого азота. Устройство...
Тип: Изобретение
Номер охранного документа: 0002529865
Дата охранного документа: 10.10.2014
27.11.2014
№216.013.0be6

Способ формирования субдифракционной квазирегулярной одно-и двумерной нанотекстуры поверхности материалов и устройство для его осуществления

Заявленная группа изобретений относится к средствам для формирования субдифракционной квазирегулярной одно- и двумерной нанотекстуры поверхности различных материалов для устройств нанофотоники, плазмоники, трибологии или для создания несмачиваемых покрытий. Данное изобретение позволяет повысить...
Тип: Изобретение
Номер охранного документа: 0002534454
Дата охранного документа: 27.11.2014
10.04.2015
№216.013.394c

Способ стабилизации эмульсий и коллоидных растворов и устройство для его осуществления

Изобретение относится к технологическим химическим процессам, в частности к нефтехимии, и может быть использовано для стабилизации различных эмульсий и коллоидных растворов, например, при производстве коллоидных и полимерных дисперсий, нефтяных масел, смазочных материалов, технических...
Тип: Изобретение
Номер охранного документа: 0002546156
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4b9a

Способ формирования микроструктурированного и высокодопированного слоя на поверхности кремния

Изобретение может быть использовано при изготовлении фоточувствительных элементов солнечной энергетики и приборов ночного видения. Сухую поверхность кремния облучают множественными фокусированными ультракороткими фемто- или короткими пикосекундными лазерными импульсами (УКИ) для её абляционного...
Тип: Изобретение
Номер охранного документа: 0002550868
Дата охранного документа: 20.05.2015
20.11.2015
№216.013.8f51

Генератор быстрых моноэнергетических нейтронов

Заявленное изобретение относится к генераторам быстрых моноэнергетических нейтронов. В заявленном устройстве предусмотрено использование алмазной кристаллической структуры, поверхность которой облучается ускоренным до нескольких десятков кэВ пучком ионов дейтерия, в качестве...
Тип: Изобретение
Номер охранного документа: 0002568305
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91da

Способ получения пористого кремния со стабильной фотолюминесценцией

Изобретение относится к области изготовления наноструктурных материалов и может быть использовано в оптоэлектронике для производства светоизлучающих индикаторов. Способ получения пористого кремния со стабильной фотолюминесценцией согласно изобретению осуществляют путем анодного...
Тип: Изобретение
Номер охранного документа: 0002568954
Дата охранного документа: 20.11.2015
20.06.2016
№217.015.035c

Аподизатор лазерного пучка

Аподизатор лазерного пучка включает зубчатую диафрагму и пространственный фильтр, в котором зубчатая диафрагма с радиусом окружности вершин зубцов R дополнена корректирующим элементом. Корректирующий элемент выполнен в виде установленного соосно с диафрагмой непрозрачного кольца с внешним...
Тип: Изобретение
Номер охранного документа: 0002587694
Дата охранного документа: 20.06.2016
27.04.2016
№216.015.3843

Дисковый лазер (варианты)

Изобретение относится к лазерной технике. Дисковый лазер состоит из оптического резонатора с первой оптической осью, активной пластины, имеющей первую поверхность и вторую поверхность, размещенной внутри оптического резонатора и закрепленной на хладопроводящей подложке своей первой...
Тип: Изобретение
Номер охранного документа: 0002582909
Дата охранного документа: 27.04.2016
25.08.2017
№217.015.bf97

Способ электрометрического измерения производной химического потенциала по температуре и устройство для его осуществления

Изобретение относится к области электрометрического анализа химического потенциала μ c помощью модуляции температуры T и может быть использовано для исследования характеристик имеющихся и для конструирования новых элементов наноэлектроники. Предложен способ измерения ∂μ/∂T, который позволяет...
Тип: Изобретение
Номер охранного документа: 0002617149
Дата охранного документа: 21.04.2017
Показаны записи 11-20 из 22.
10.07.2015
№216.013.5da8

Электромагнитный расходомер большого диаметра

Электромагнитный расходомер жидких металлов, имеющий цилиндрическую трубу, выполненную из немагнитного материала, два измерительных электрода, приваренных к внешней поверхности трубы, индуктор, имеющий индукционную катушку и магнитопровод, имеющий две полюсные пластины, соединенные скобой,...
Тип: Изобретение
Номер охранного документа: 0002555517
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69ca

Способ поверки электромагнитного расходомера жидких металлов

Предлагается способ поверки электромагнитного расходомера жидких металлов с помощью проливного расходомерного стенда, работающего на водопроводной воде при комнатной температуре. Электромагнитный расходомер для жидких металлов имеет трубу с электродами, индуктор низкочастотного магнитного поля...
Тип: Изобретение
Номер охранного документа: 0002558635
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ba7

Кондуктометрический способ измерения уровня жидкости

Изобретение относится к области контроля уровня электропроводных сред, преимущественно жидких металлов в атомно-энергетической промышленности. Кондуктометрический способ позволяет измерять уровень жидкого металла без введения каких-либо элементов конструкции уровнемера внутрь резервуара, где...
Тип: Изобретение
Номер охранного документа: 0002559117
Дата охранного документа: 10.08.2015
19.01.2018
№218.016.0861

Устройство для проведения малообъемной гемоперфузии

Изобретение относится к медицинской технике, а именно к устройству для проведения малообъемной гемоперфузии. Устройство включает емкость для гемоконтактного препарата с отверстием для протока крови. Емкость содержит сетку и фильтр и выполнена в форме патрона, состоящего из двух сочлененных с...
Тип: Изобретение
Номер охранного документа: 0002631630
Дата охранного документа: 25.09.2017
10.05.2018
№218.016.4ddb

Способ лазерного паротермического оксидирования металлических поверхностей и устройство для его осуществления (варианты)

Изобретение относится к способу и устройству (варианты) для паротермического оксидирования поверхностей деталей, изготовленных из металлов и сплавов. Покрывают изделие с подлежащей оксидированию поверхностью слоем воды заданной толщины. Воздействуют на покрытую водой поверхность лазерным...
Тип: Изобретение
Номер охранного документа: 0002652327
Дата охранного документа: 25.04.2018
03.10.2019
№219.017.d181

Способ оценки активационных возможностей гемоконтактных препаратов (в том числе сорбентов) по скорости адгезии клеток крови

Изобретение относится к области биологии и медицины и представляет собой способ оценки активационных возможностей гемоконтактных препаратов, при котором осуществляют контакт гепаринизированной донорской крови с гемоконтактным препаратом и инкубируют ее в динамическом режиме, причем в процессе...
Тип: Изобретение
Номер охранного документа: 0002701722
Дата охранного документа: 01.10.2019
01.02.2020
№220.017.fbe7

Применение гранул кремнеземного сорбента марки "силохром с-120" в качестве контактного гемоактиватора клеточных элементов крови

Изобретение относится к области биологических и медицинских исследований. Предложено применение гранул кремнеземного сорбента марки "Силохром С-120" в качестве контактного гемоактиватора клеточных элементов крови. Технический результат – усиление активационных процессов в клетках крови. 4 ил.,...
Тип: Изобретение
Номер охранного документа: 0002712626
Дата охранного документа: 30.01.2020
01.02.2020
№220.017.fc05

Применение гранул сорбента из сверхсшитого полистирола марки "стиросорб 516" в качестве контактного гемоактиватора клеточных элементов крови

Изобретение относится к области биологии и медицины, в частности к сорбентам из сверхсшитого полистирола, а именно к применению гранул сорбента из сверхсшитого полистирола марки «Стиросорб 516» при лечении различных заболеваний методом малообъемной гемоперфузии (МОГ). Предложено применение...
Тип: Изобретение
Номер охранного документа: 0002712630
Дата охранного документа: 30.01.2020
16.05.2023
№223.018.5e32

Способ поляризации плёнки из полимерного материала и устройство для его осуществления

Настоящее изобретение относится к способу поляризации пленок из полимерного материала и к устройству для осуществления этого способа. В способе поляризации пленки из полимерного материала согласно изобретению перемещают пленку 1, контактирующую с поверхностью заземленного электрода 2, с...
Тип: Изобретение
Номер охранного документа: 0002755643
Дата охранного документа: 17.09.2021
16.05.2023
№223.018.5e33

Способ поляризации плёнки из полимерного материала и устройство для его осуществления

Настоящее изобретение относится к способу поляризации пленок из полимерного материала и к устройству для осуществления этого способа. В способе поляризации пленки из полимерного материала согласно изобретению перемещают пленку 1, контактирующую с поверхностью заземленного электрода 2, с...
Тип: Изобретение
Номер охранного документа: 0002755643
Дата охранного документа: 17.09.2021
+ добавить свой РИД