×
21.10.2018
218.016.9494

Результат интеллектуальной деятельности: Лабораторный анализатор плотности газов

Вид РИД

Изобретение

Аннотация: Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов содержит турбулентное сужающее устройство, вход которого соединен через тройник с камерой для сжатия анализируемого газа, выполненной в виде спирали из тонкостенной металлической трубки и размещенной в емкости с охлаждающей жидкостью, и выходом измерительной камеры датчика давления. Вход измерительной камеры соединен через вентиль с линией анализируемого газа. Анализатор также содержит пневмотумблер, подключенный к выходу турбулентного сужающего устройства, устройство для сжатия анализируемого газа, входной канал которого соединен с выходным каналом камеры для сжатия анализируемого газа. При этом анализатор содержит два дополнительных пневмотумблера, микрокомпрессор и аналого-цифровой преобразователь, выполненный с возможностью подключения к компьютеру. Устройство для сжатия анализируемого газа выполнено в виде сильфона, размещенного в сильфонной коробке, снабженной входным штуцером. Сильфон снабжен дополнительным штуцером, соединенным с первым дополнительным тумблером. Входной штуцер сильфонной коробки через второй дополнительный тумблер подключен к микрокомпрессору, а выход датчика давления соединен с входом аналого-цифрового преобразователя. Технический результат – увеличение точности измерения плотности газа. 2 ил.

Изобретение относится к средствам аналитической лабораторной техники, а именно, к анализаторам плотности газов.

Известен лабораторный анализатор плотности газов (Кириллин В.А., Шейндлин А.Е. Исследования термодинамических свойств веществ. М.: Госэнергоиздат, 1963, с. 176-178), который содержит напорный сосуд, заполненный ртутью и установленный вертикально в штативе на определенной высоте, стеклянную трубку с открытым нижним торцом, в верхней части которого установлено миниатюрное турбулентное сужающее устройство для истечения анализируемого газа. Нижняя часть трубки расположена в стеклянной емкости, в которой размещена ртуть, служащая затворной жидкостью.

При перемещении напорного сосуда проба анализируемого газа, отобранная в трубку, за счет перемещения уровня ртути, перетекающей из напорного сосуда в емкость, начинает вытесняться последней через отверстие турбулентного сужающего устройства. В процессе истечения измеряется последовательно (с помощью секундомера) время достижения уровнем ртути двух электрических контактов, расположенных по высоте трубки, через которые замыкаются сигнальные электрические цепи. Расстояние по высоте между двумя контактами постоянно. Этим определяется постоянство объема, истекающей через турбулентное сужающее устройство пробы анализируемого газа. Время истечения этой пробы анализируемого газа однозначно определяется его плотностью.

Недостатком такого анализатора является необходимость использования в нем ртути в качестве запорной жидкости, что является нежелательным с позиции техники безопасности.

Наиболее близким по технической сущности является лабораторный анализатор плотности газа (RU №140253, G01N 9/00, 10.05.2014), содержащий турбулентное сужающее устройство, вход которого соединен через тройник с камерой для сжатия анализируемого газа, выполненной в виде спирали из тонкостенной металлической трубки и размещенной в емкости с охлаждающей жидкостью и выходом измерительной камеры датчика давления, а вход этой камеры соединен через вентиль с линией анализируемого газа, пневмотумблер, подключенный к выходу турбулентного сужающего устройства, и устройство для сжатия анализируемого газа, входной канал которого соединен с выходным каналом камеры для сжатия анализируемого газа.

Измерение плотности газа данным анализатором осуществляется путем измерения интервала времени истечения пробы анализируемого газа через турбулентное сужающее устройство после ее отбора и сжатия с помощью поршня в замкнутой емкости. При этом время истечения определяется как разность моментов времени, при которых в камере для сжатия анализируемого газа при непрерывно изменяющемся давлении достигаются выбранные заранее максимальное и минимальное значение давления.

Недостатками данного анализатора является необходимость использования большого числа вспомогательных элементов (измерители временных интервалов, компараторы минимального и максимального сигналов, устройства задания уровней срабатывания максимального и минимального значений сигналов) для определения времени истечения и необходимость дополнительной ручной обработки результатов измерений для получения искомых значений плотностей газов, что ведет к уменьшению точности измерения плотности.

Технической проблемой изобретения является создание лабораторного анализатора плотности газа, обладающего более высокой точностью и предоставляющего измерительную информацию в форме удобной для передачи, хранения и дальнейшей обработки.

Техническим результатом изобретения является увеличение точности измерения плотности газа.

Технический результат достигается тем, что лабораторный анализатор плотности газов содержит турбулентное сужающее устройство, вход которого соединен через тройник с камерой для сжатия анализируемого газа, выполненной в виде спирали из тонкостенной металлической трубки и размещенной в емкости с охлаждающей жидкостью, и выходом измерительной камеры датчика давления. Вход этой камеры соединен через вентиль с линией анализируемого газа, пневмотумблер, подключенный к выходу турбулентного сужающего устройства. Устройство для сжатия анализируемого газа, входной канал которого соединен с выходным каналом камеры для сжатия анализируемого газа. Согласно изобретению анализатор содержит два дополнительных пневмотумблера, микрокомпрессор и аналого-цифровой преобразователь, выполненный с возможностью подключения к компьютеру. Устройство для сжатия анализируемого газа выполнено в виде сильфона, размещенного в сильфонной коробке, снабженной входным штуцером. Сильфон снабжен дополнительным штуцером, соединенным с первым дополнительным тумблером, входной штуцер сильфонной коробки через второй дополнительный тумблер подключен к микрокомпрессору, а выход датчика давления соединен с входом аналого-цифрового преобразователя.

Такая конструкция позволяет измерять принятые максимальные и минимальные значения давления по значениям электрического сигнала преобразователя давления, после аналого-цифрового преобразования, использовать уже в цифровой сигнал в дальнейшей обработке, например, на компьютере или микропроцессорном устройстве. Такая структура обработки сигнала обеспечивает, в свою очередь, более высокую точность измерения за счет исключения возможных ошибок обслуживающего персонала и использования алгоритмов обработки сигнала, позволяющих уменьшить случайную погрешность измерения.

По сравнению с прототипом заявляемая конструкция имеет отличительную особенность в совокупности элементов и их взаимном расположении.

Лабораторный анализатор плотности газов поясняется чертежами, где на фиг. 1 - показана схема лабораторного анализатора плотности газов, на фиг. 2 - показаны примеры выбора пар максимального P1 и минимального Р2 давлений и соответствующие им значения времени истечения τ.

Лабораторный анализатор плотности газов содержит турбулентное сужающее устройство 1, вход 2 которого связан через тройник 3 с камерой 4 для сжатия анализируемого газа, выполненной в виде спирали из тонкостенной металлической трубки и размещенной в емкости с охлаждающей жидкостью 5, и выходом 6 измерительной камеры 7 датчика давления 8, а вход 9 этой камеры соединен через вентиль 10 с линией анализируемого газа 11, пневмотумблер 12, подключенный к выходу 13 турбулентного сужающего устройства.1, и устройство для сжатия анализируемого газа 14, входной канал которого 15 соединен с выходным каналом 16 камеры 4 для сжатия анализируемого газа.

Анализатор содержит два дополнительных пневмотумблера 17 и 18, микрокомпрессор 19 и аналого-цифровой преобразователь 20, выполненный с возможностью подключения к компьютеру, причем устройство для сжатия анализируемого газа выполнено в виде сильфона 21, размещенного в сильфонной коробке 22, снабженной входным штуцером 23, при этом сильфон 21 снабжен дополнительным штуцером 24, соединенным с первым дополнительным тумблером 18, входной штуцер 23 сильфонной коробки 22 через второй дополнительный тумблер 17 подключен к микрокомпрессору 19, а выход датчика давления 8 соединен с входом аналого-цифрового преобразователя 20.

Лабораторный анализатор плотности газов работает следующим образом.

После включения в работу датчика давления 8 и аналого-цифрового преобразователя 20 выход турбулентного сужающего устройства 1 с помощью пневмотумблера 12, входной штуцер 23 сильфонной коробки 22 с помощью пневмотумблера 17 и дополнительный штуцер 24 с помощью пневмотумблера 18 соединяют с атмосферой. После этого открывается вентиль 10 и анализируемый газ из линии 11 начинает поступать в атмосферу, протекая через камеры 4, 7 и сильфон 21, а также через турбулентное сужающее устройство 1. Таким образом, турбулентное сужающее устройство 1, камеры 4, 7 и сильфон 21 промываются анализируемым газом. Промывка длится 1-1,5 минуты. Затем с помощью тумблера 12 турбулентное сужающее устройство 1 отключается от атмосферы, а избыток анализируемого газа истекает в атмосферу через сильфон 21 и штуцер 24. На этом заканчивается режим работы анализатора «Подготовка».

После переключения пневмотумблеров 12, 17 и 18 и включения микрокомпрессора 19 анализируемый газ за счет перемещения сильфона 21, обусловленного увеличением давления в сильфонной коробке 22, сжимается до некоторого постоянного давления и микрокомпрессор 19 выключается. При сжатии газа его температура несколько увеличивается. По истечении некоторого отрезка времени, в течение которого температура газа принимает некоторое постоянное значение, например, равное температуре охлаждающей жидкости, в камерах 4 и 7 устанавливается постоянное давление, затем с помощью пневмотумблера 12 сужающее устройство 1 сообщается с атмосферойи анализируемый газ начинает истекать через сужающее устройство 1 в атмосферу (режим работы «Анализ»). При этом давление в камере начинает постепенно уменьшаться. Поэтому уменьшается и электрический сигнал, возникающей на выходе датчика давления 8. Этот сигнал поступает на вход аналого-цифрового преобразователя 20. С выхода аналого-цифрового преобразователя 20 сигнал измерительной информации поступает на компьютер или микропроцессорное устройство, где значения давления в определенные моменты времени записываются в виде массива данных, содержащего значения соответствующих давлений и времени, в которые эти давления измерены. Причем для повышения точности измерения в пределах одного анализа вычисляется несколько значений времени истечения анализируемого газа τai, определенных при нескольких разностях максимального Р1i минимального P2i давлений в измерительной камере (фиг. 2).

Все описанные операции необходимо повторить для эталонного газа, которым может служить осушенный воздух, при этом определяется несколько значений времени истечения эталонного газа τвi, определенных при выбранных ранее разностях максимального Р1i и минимального Р2i давлений в измерительной камере

Для каждой пары максимального Р1i и минимального P2i давлений рассчитывается значение плотности анализируемого газа по формуле:

,

где ρв - плотность воздуха в нормальных условиях.

Результат измерения плотности анализируемого газа определяется как среднее арифметическое полученных для каждой пары максимального Р1i и минимального Р2i давлений значений плотности анализируемого газа:

,

где n - число значений времени истечения анализирумого τai и эталонного τвi газов, определенных при выбранных разностях максимального Р1i и минимального P2i давлений в измерительной камере.

Экспериментальные исследования макета лабораторного анализаторов плотности газов показали, что он при использовании высокоточных современных преобразователей давления в электрический сигнал способен обеспечить измерение плотности газа с погрешностью ±0,2%.

Преимущества предлагаемого технического решения:

- простота конструкции и измерений

- высокая точность;

- низкая стоимость.

Предлагаемый лабораторный анализатор плотности газов может быть реализован на базе стандартного пьезорезистивного преобразователя давления и аналого-цифрового преобразователя.

Лабораторный анализатор плотности может найти широкое применение в практике заводских и исследовательских лабораторий различных предприятий газовой, нефтеперерабатывающей и нефтехимической промышленности.

Лабораторный анализатор плотности газов, содержащий турбулентное сужающее устройство, вход которого соединен через тройник с камерой для сжатия анализируемого газа, выполненной в виде спирали из тонкостенной металлической трубки и размещенной в емкости с охлаждающей жидкостью, и выходом измерительной камеры датчика давления, а вход этой камеры соединен через вентиль с линией анализируемого газа, пневмотумблер, подключенный к выходу турбулентного сужающего устройства, и устройство для сжатия анализируемого газа, входной канал которого соединен с выходным каналом камеры для сжатия анализируемого газа, отличающийся тем, что анализатор содержит два дополнительных пневмотумблера, микрокомпрессор и аналого-цифровой преобразователь, выполненный с возможностью подключения к компьютеру, причем устройство для сжатия анализируемого газа выполнено в виде сильфона, размещенного в сильфонной коробке, снабженной входным штуцером, при этом сильфон снабжен дополнительным штуцером, соединенным с первым дополнительным тумблером, входной штуцер сильфонной коробки через второй дополнительный тумблер подключен к микрокомпрессору, а выход датчика давления соединен с входом аналого-цифрового преобразователя.
Лабораторный анализатор плотности газов
Лабораторный анализатор плотности газов
Лабораторный анализатор плотности газов
Источник поступления информации: Роспатент

Показаны записи 41-50 из 64.
06.07.2019
№219.017.a722

Способ получения износостойкого покрытия

Изобретение относится к способу получения износостойкого покрытия. Способ включает нанесение порошкового материала на обрабатываемую поверхность и последующую лазерную наплавку. Дополнительно осуществляют повторное плавление нанесенного покрытия непрерывным лазерным излучением на глубину...
Тип: Изобретение
Номер охранного документа: 0002693716
Дата охранного документа: 04.07.2019
10.07.2019
№219.017.a9dd

Способ измерения параметров корпусной детали

Изобретение относится к способам измерения параметров корпусной детали. Сущность: базируют объект (2) измерения путем установки его одним из торцов (3) ступицы на установочную плоскость (1). Устанавливают на установочную плоскость (1) стойку (4) с размещенным на ней прибором (5) с измерительным...
Тип: Изобретение
Номер охранного документа: 0002693881
Дата охранного документа: 05.07.2019
10.07.2019
№219.017.a9e7

Устройство для измерения параметров паза и ступицы корпусной детали

Изобретение относится к устройствам для измерения параметров корпусной детали. Сущность: устройство содержит основание (1), установленную на нем стойку (2) с кронштейном (3). К кронштейну (3) с возможностью перемещения вдоль оси стойки (2) подвешена каретка (4) с помощью двух плоскопараллельных...
Тип: Изобретение
Номер охранного документа: 0002693882
Дата охранного документа: 05.07.2019
10.07.2019
№219.017.aa13

Способ получения алмазосодержащего композиционного материала

Изобретение относится к области порошковой металлургии и может быть использовано для изготовления абразивного инструмента. Способ получения композиционного алмазосодержащего материала включает смешивание алмазного порошка с алюминиевым порошком, последующее горячее прессование при температуре...
Тип: Изобретение
Номер охранного документа: 0002693885
Дата охранного документа: 05.07.2019
01.08.2019
№219.017.bb4e

Устройство для создания и измерения разрушающей нагрузки

Изобретение относится к области исследования прочностных свойств твердых материалов путем приложения к ним механических нагрузок, а именно к устройствам для измерения разрушающей нагрузки при испытании материалов. Устройство содержит станину, привод, столик с установочными опорами для крепления...
Тип: Изобретение
Номер охранного документа: 0002696070
Дата охранного документа: 30.07.2019
01.09.2019
№219.017.c5b0

Ленточный фильтр-пресс для непрерывного обезвоживания материала

Изобретение относится к устройствам для непрерывного обезвоживания различных материалов, например торфа, требующих отжатия из них избыточной влаги, и может быть использовано в различных производствах. Ленточный фильтр-пресс непрерывного действия состоит из рамы 1 с загрузочным бункером 2,...
Тип: Изобретение
Номер охранного документа: 0002698686
Дата охранного документа: 28.08.2019
17.10.2019
№219.017.d722

Способ гидромеханического фракционирования торфяного сырья

Изобретение относится к торфяной промышленности, а именно к способам добычи торфяного сырья и его переработки на продукты, используемые в промышленности и в сельском хозяйстве. Техническим результатом изобретения является расширение ассортимента продуктов, производимых из торфа. Способ...
Тип: Изобретение
Номер охранного документа: 0002703057
Дата охранного документа: 15.10.2019
01.11.2019
№219.017.dcf9

Способ получения стимулятора роста растений из растительного сырья

Изобретение относится к области биотехнологии. Изобретение представляет собой способ получения стимулятора роста растений из растительного сырья, включающий измельчение растительного сырья, смешивание сырья с водой, отделение хвойного экстракта фильтрованием. Согласно изобретению экстракцию...
Тип: Изобретение
Номер охранного документа: 0002704455
Дата охранного документа: 28.10.2019
07.11.2019
№219.017.dea9

Технологический комплекс гидромеханического фракционирования торфяного сырья

Изобретение относится к технологическим комплексам добычи торфяного сырья и его переработки на продукцию. Техническим результатом является расширение ассортимента по круглогодичному производству продукции из волокнистой массы и гумусового концентрата. Технологический комплекс гидромеханического...
Тип: Изобретение
Номер охранного документа: 0002705124
Дата охранного документа: 05.11.2019
13.12.2019
№219.017.ed73

Способ изготовления гипсовых изделий на основе отходов производства базальтовых волокон

Изобретение относится к области производства строительных материалов, а именно - способам повышения прочности гипсовых изделий, и может найти применение при производстве стеновых блоков, плит, панелей, мелкоштучных изделий из гипса. Способ изготовления гипсовых изделий на основе отходов...
Тип: Изобретение
Номер охранного документа: 0002708766
Дата охранного документа: 11.12.2019
Показаны записи 1-6 из 6.
20.07.2014
№216.012.e27b

Фотоионизационный детектор для газоаналитической аппаратуры

Изобретение относится к области аналитической техники, а именно к средствам измерений концентраций компонентов при газовом анализе. Фотоионизационный детектор для газоаналитической аппаратуры содержит лампу ультрафиолетового излучения с плоским выходным окном, над которым размещена проточная...
Тип: Изобретение
Номер охранного документа: 0002523765
Дата охранного документа: 20.07.2014
20.10.2014
№216.012.fea3

Лабораторный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов содержит миниатюрное турбулентное сужающее устройство, вход которого связан через тройник с камерой для сжатия анализируемого газа, выполненной...
Тип: Изобретение
Номер охранного документа: 0002531043
Дата охранного документа: 20.10.2014
10.04.2016
№216.015.2b5f

Автоматический анализатор теплоценности газообразных топлив

Изобретение относится к области аналитической техники и может быть использовано для автоматического контроля теплоценности газообразных топлив. Автоматический анализатор теплоценности газообразных топлив содержит камеру, в днище которой установлена горелка для формирования пламени во...
Тип: Изобретение
Номер охранного документа: 0002579832
Дата охранного документа: 10.04.2016
25.08.2017
№217.015.c28c

Активная зона термоэмиссионного реактора-преобразователя ядерной энергетической установки

Изобретение относится к активной зоне термоэмиссионного реактора-преобразователя ядерной энергетической установки. Заявленная активная зона содержит электрогенерирующие каналы, объединенные в шестигранные пучки, которые установлены с относительным смещением. Величина смещения в миллиметрах...
Тип: Изобретение
Номер охранного документа: 0002617710
Дата охранного документа: 26.04.2017
10.01.2019
№219.016.ae35

Лабораторный эффузионный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Заявлен лабораторный эффузионный анализатор плотности газов, который содержит турбулентный дроссель 1, выход 2 которого соединен с пневмотумблером 3, камеру для сжатия газов 4,...
Тип: Изобретение
Номер охранного документа: 0002676559
Дата охранного документа: 09.01.2019
24.01.2019
№219.016.b375

Лабораторный анализатор плотности газов

Изобретение относится к средствам аналитической лабораторной техники, а именно к анализаторам плотности газов. Лабораторный анализатор плотности газов состоит из турбулентного дросселя, вход которого соединен через тройник с выходом камеры для сжатия газов, выполненной в виде спирали из...
Тип: Изобретение
Номер охранного документа: 0002677926
Дата охранного документа: 22.01.2019
+ добавить свой РИД