×
11.10.2018
218.016.906c

Результат интеллектуальной деятельности: Способ увеличения управляющего напряжения на затворе GaN транзистора

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии силовой электроники, а именно к технологии получения дискретных силовых транзисторов на основе нитрида галлия, работающих в режиме обогащения. На поверхность полупроводниковой пластины с эпитаксиальной гетероструктрурой типа p-GaN/AlGaN/GaN плазмохимическими методами производится осаждение тонкой пленки диэлектрика на основе нитрида кремния толщиной от 1 до 50 нм. Далее формируется двухслойная резистивная маска. Затем пластина загружается в установку напыления тонких пленок в вакууме, где производится осаждение пленок на основе палладия толщиной 10-500 нм. Далее производится извлечение пластины из вакуумной камеры с последующим удалением резистивной маски. Далее методом селективного плазмохимического травления по твердой маске затворов формируется подзатворная p-GaN меза-область, а также межприборная меза-изоляция с последующим формированием омических контактов к областям стока и истока GaN транзистора. Изобретение обеспечивает увеличение напряжения управления на затворе GaN транзистора при использовании пленок барьерных металлов к р-GaN подзатворной области с высокой работой выхода электронов, таких как Ni, Pd и Ti. 5 з.п. ф-лы, 3 ил.

Изобретение относится к технологии силовой электроники, а именно к технологии получения дискретных силовых транзисторов на основе нитрида галлия (GaN), работающих в режиме обогащения.

Транзисторы с высокой подвижностью электронов на основе эпитаксиальных гетероструктур AlGaN/GaN являются перспективной элементной базой для создания устройств силовой электроники следующего поколения. Это обусловлено, как высокой подвижностью носителей заряда в канале транзистора, так и высокой электрической прочностью материала, позволяющей достичь высоких напряжений пробоя. Возможность работы GaN транзисторов на более высоких частотах позволит повысить энергоэффективность преобразователя и упростить его миниатюризацию, а также уменьшить себестоимость производства.

Для применения в силовых коммутационных устройствах требуются нормально-закрытые GaN транзисторы, работающие в режиме обогащения. Для создания нормально-закрытых GaN транзисторов чаще всего используют подзатворную область на основе GaN р-типа, легированного магнием (р-GaN). Основным недостатком данных транзисторов является низкое значение порогового напряжения отпирания (Uпор<2 В). При этом максимально допустимое значение управляющего напряжения на затворе p-GaN транзистора составляет всего Uзи max=6 В, что делает их не совместимыми с работой стандартных драйверов управления кремниевыми транзисторами у которых уровень управляющего сигнала на выходе может достигать Uзи=15 В, и тем самым, ограничивает область их применения. Таким образом, актуальной является задача по увеличению максимально допустимого напряжения на затворе GaN транзисторов с подзатворной p-GaN областью.

Известен способ изготовления силового GaN транзистора (N.E. Posthuma, S. You, Н. Liang, N. Ronchi, X. Kang, D. Wellekens, Y.N, Saripalli, S. Decoutere. Impact of Mg Out-diffusion and Activation on the p-GaN Gate HEMT Device Performance // Proceedings of the 2016 28th International Symposium on Power Semiconductor Devices and ICs, June 12-16 2016 Prague, Czech Republic, pp. 95-98), в котором для увеличения управляющего напряжения на затворе GaN транзистора используется оптимизация толщины p-GaN слоя, а также технологического процесса его эпитаксиального роста, а именно, скорости роста, температуры процесса, а также режимов термической активации магния.

Использование оптимальных режимов роста p-GaN слоя толщиной 75 нм позволило увеличить величину управляющего напряжения на затворе GaN транзистора с Uзи=5 В до Uзи=8 В.

Основным недостатком данного способа является низкая производительность технологических процессов роста тонких эпитаксиальных слоев на основе p-GaN.

Известен способ увеличения управляющего напряжения на затворе GaN транзистора (FinellaLee, Liang-YuSu, Chih-HaoWang, Yuh-RehnWuandJianjangHuang. ImpactofGateMetalonthePerformanceofp-GaN/AlGaN/GaNHighElectronMobilityTransistors // IEEEElectronDeviceLetters, Vol. 36, No. 3, pp. 232-234, 2015) по своей сущности наиболее близкий к предлагаемому техническому решению и выбранный нами за прототип.

Способ заключается в использовании в качестве материала барьера Шоттки к подзатворной области на основе p-GaN металлов с низкой работой выхода электронов, таких как, молибден. Данный способ позволяет получать силовые гетероструктурные GaN транзисторы с большим диапазоном рабочих напряжений на затворе до Uзи=10 В.

Недостатком данного способа является несовместимость технологических процессов магнетронного распыления, а также плазмохимического травления тугоплавких пленок молибдена с базовыми технологиями изготовления силовых GaN транзисторов, как на стандартных кремниевых фабриках, так и на СВЧ фабриках по производству мощных GaN транзисторов и монолитных интегральных схем на их основе.

Основной технической задачей предлагаемого способа является увеличение напряжения управления на затворе GaN транзисторапри использовании пленок барьерных металлов к p-GaN подзатворной области с высокой работой выхода электронов, таких как, Ni, Pd и Ti.

Основная техническая задача достигается тем, что в способе увеличения управляющего напряжения на затворе GaN транзистора, включающего очистку поверхности кремниевой пластины с эпитаксиальной гетероструктурой типа p-GaN/AlGaN/GaN, осаждение методом электроннолучевого испарения в вакууме тонких пленок затворной металлизации, формирование методами плазмохимического травления подзатворной p-GaN меза-области и межприборной меза-изоляции, формирование омических контактов к областям стока и истока транзистора, пассивацию активных областей транзистора, отличающийся тем, перед напылением тонких пленок затворной металлизации на поверхность пластины плазмохимическим методами производится осаждение тонкой пленки диэлектрика на основе нитрида кремния толщиной от 1 до 50 нм.

В частном случае в качестве материала осаждаемого диэлектрика могут использовать пленки оксида кремния, диоксида кремния, оксида алюминия, оксида гафния.

В частном случае осаждение тонких пленок диэлектрика может производиться методами атомно-слоевого осаждения.

В частном случае в качестве материала подложки для роста эпитаксиальной гетероструктуры может быть использован карбид кремния и/или сапфир.

В частном случае в качестве затворной металлизации могут быть использованы пленки тугоплавких металлов и их соединений (Та, W, TaN, TiN, WN, WSi), формируемые методами магнетронного распыления.

В частном случае термическая обработка затворной металлизации производится при температуре Т=300-600°С в течение t=0.5-30 мин в инертной среде и/или вакууме.

Результаты поиска известных решений в данной и в смежных областях техники с целью выявления признаков, совпадающих с отличительными от прототипа заявляемого изобретения, показали, что они не следуют явным образом из уровня техники.

Из определенного заявителем уровня техники не выявлена известность влияния предусматриваемых существенными признаками изобретения преобразований на достижение указанного технического результата.

На фиг. 1 представлены значения максимального управляющего напряжения на затворе UзиGaN транзистора с подзатворной p-GaN областью, полученных по способу прототипу (1) и предлагаемому способу при использовании подзатворной диэлектрика на основе нитрида кремния с толщинами 5 нм (2), 10 нм (3) и 15 нм (4).

Предлагаемый способ заключается в следующем. На поверхность полупроводниковой пластины с эпитаксиальной гетероструктрурой типа р-GaN/AlGaN/GaN плазмохимическими методами производится осаждение тонкой пленки диэлектрика на основе нитрида кремния толщиной от 1 до 50 нм. Далее для формирования барьерного контакта (затвора) GaN транзистора на поверхности диэлектрика формируется двухслойная резистивная маска. Для очистки поверхности в окнах маски пластина обрабатывается в водном растворе H2SO4 или HCl с последующей ее промывкой в деионизованной воде и сушкой в потоке очищенного азота. Затем пластина загружается в установку напыления тонких пленок в вакууме, где методами электроннолучевого, магнетронного и/или термического испарения в вакууме при остаточном давлении менее р=5×10-6 торр производится осаждение пленок на основе палладия толщиной 10-500 нм. Далее производится извлечение пластины из вакуумной камеры с последующим удалением резистивной маски. Далее методом селективного плазмохимического травления по твердой маске затворов формируется подзатворная p-GaN меза-область, а также межприборная меза-изоляция с последующим формированием омических контактов к областям сток и истока GaN транзистора.

В частном случае в качестве материала осаждаемого диэлектрика могут использовать пленки диоксида кремния, оксида кремния, оксида алюминия, оксида гафния.

В частном случае осаждение тонких пленок диэлектрика может производиться методами атомно-слоевого осаждения.

В качестве материала подложки для роста эпитаксиальной гетероструктуры может быть использован карбид кремния и/или сапфир.

В качестве затворной металлизации могут быть пленки тугоплавких металлов и их соединений (Та, W, TaN, TiN, WN, WSi), формируемые методами магнетронного распыления.

Термическая обработка затворной металлизации может производиться при температуре Т=300-600°С в течение t=0.5-30 мин в инертной среде и/или вакууме.

Минимальное значение толщины пленки подзатворного диэлектрика определяется тем, что при меньших значениях не достигается технический результат изобретения. Максимальное значение толщины пленки подзатворного диэлектрика определяется требуемыми значениями максимального допустимого управляющего напряжения на затворе GaN транзистора для их совместимости с работой стандартных микросхем драйверов управления кремниевыми транзисторами.

Пример.

Пример демонстрирует технический результат, достигаемый по предлагаемому способу, относительно способа прототипа, а также возможность достижения технического результата в широком диапазоне толщины пленки подзатворного диэлектрика.

В экспериментах использовались эпитаксиальные гетероструктуры типа p-GaN/AlGaN/GaN выращенные методом металл-органической газофазовой эпитаксии на подложках кремния Si диаметром 100 мм. Гетероструктура включала в себя буферный слой на основе легированного железом GaN, толщиной 2 мкм, канальный слой GaN, барьерный слой Al0.25Ga0.75N, толщиной 10 нм и p-GaN слой, легированный магнием. Толщина p-GaN слоя составляла 50 нм, концентрация атомов магния определялась вторичной ионной масс спектроскопией и составляла 5×1019 см-3.

На начальной стадии на поверхность пластин методом плазмохимического осаждения производилось осаждение тонких пленок диэлектрика на основе нитрида кремния (Si3N4) с толщинами 0, 5, 10 и 15 нм. Далее литографическими методами производилось формирование рисунка затворной металлизации с последующим осаждением пленок палладия (Pd) толщиной 100 нм методом электронно-лучевого испарения в вакууме. Методом плазмохимического травления производилось удаление пленки SiN с поверхности пластин при использовании твердой маски на основе пленки палладия. Далее по Pd маске производилось селективное плазмохимическое травление p-GaN слоя в плазме состава BCl3/SF6 с целью формирования самосовмещенной подзатворной p-GaN области. После формирования межприборной изоляции на пластине производилось формирование низкотемпературных (550°С) омических контактов на основе композиции Та/Al к областям стока и стока транзистора. Далее на поверхность пластин производилось плазмохимическое осаждение защитного диэлектрика на основе пленок нитрида кремния толщиной 170 нм.

Длина и ширина затвора GaN транзистора составляла 1 и 100 мкм, соответственно. Расстояние затвор-исток и затвор-сток составляли 1 и 6 мкм.

Электрические параметры GaN транзисторов по постоянному току исследовались с помощью измерителя характеристик полупроводниковых приборов НР4156А.

Из фиг. 1, на котором представлены значения управляющего напряжения на затворе GaN транзисторов с подзатворной p-GaN областью, полученных по способу прототипу (1) и предлагаемому способу при использовании подзатворного диэлектрика на основе нитрида кремния, видно, что использование предлагаемого способа при толщине диэлектрика 5 нм позволяет в 2 раза увеличить величину управляющего напряжения на затворе GaN транзистора. При этом в отличие от способа прототипа качестве материала барьера Шоттки к p-GaN области вместо вольфрама может быть использован металл с высокой работой выхода электронов и низкой температурой плавления (например, Ni, Pd, Ti), формируемый методами электронно-лучевого напыления в вакууме, что делает предлагаемый способ привлекательным с промышленной точки зрения.

На фиг. 2 представлены стоковые передаточные характеристики (Iси-Vзи) изготовленного по предлагаемому способу мощного GaN транзистора с подзатворным диэлектриком на основе нитрида кремния. Транзистор, изготовленный по способу прототипу с затвором на основе барьера Шоттки демонстрирует нормально-закрытый режим работы со значением порогового напряжения отпирания Uпор=1.5 В и начального тока стока Iси0=3 мкА/мм при Uзи=0 В. Величина максимального тока стока транзистора составляет Iси=0.52 А/мм при Uзи=15 В. Из результатов, представленных на фиг. 2, видно, что GaN транзисторы с подзатворным диэлектриком толщиной 5, 10 и 15 нм демонстрируют значения порогового напряжения Uпор=1.7 В, 3.8 В и 6.8 В, соответственно. При этом увеличение толщины подзатворного диэлектрика приводит к снижению начального тока стока транзистора в закрытом состоянии, что может быть обусловлено снижением плотности поверхностных состояний на границе раздела SiN/p-GaN в результате процесса пассивации. Следует отметить, что GaN транзисторы с толщиной подзатворного диэлектрика 15 нм демонстрируют меньшую величину максимального тока стока транзистора Iси=0.25 А/мм при Uзи=15 В.

На фиг. 3 представлены затворные передаточные характеристики (Iзи-Uзи) изготовленного по предлагаемому способу мощного GaN транзистора с подзатворным диэлектриком на основе нитрида кремния. Транзистор, изготовленный по способу прототипу с затвором на основе барьера Шоттки характеризуется большой величиной затворного тока Iзи=20 мкА/мм при Uзи=6 В. Из результатов, представленных на фиг. 3, видно, что осаждение пленки нитрида кремния толщиной 5 нм на подзатворную p-GaN область транзистора приводит к значительному снижению затворного тока транзистора в открытом состоянии, а также увеличению диапазона максимального рабочего напряжения затвор-исток до Uзи=12-15 В. При этом увеличение толщины пленки подзатворного диэлектрика до 15 нм приводит к дальнейшему уменьшению тока затвор-исток до уровня Iзи=0.1 мкА/мм при Uзи=15 В.

Наблюдаемые эффекты объясняет следующий механизм. Известно, что слой p-GaN, легированный магнием на поверхности барьерного слоя на основе AlGaN, а также канальный слой i-GaN транзистора представляют собой pin-диод, который открывается подаче положительного смещения на затвор. Барьер Шоттки на поверхности p-GaN является обратно смещенным по отношению к pin-диоду на основе p-GaN/AlGaN/GaN. Ток стока транзистора начинает протекать, когда напряжение на затворе транзистора (напряжение к емкости барьерного слоя AlGaN (CAlGaN) будет выше, чем величина порогового напряжения отпирания GaN транзистора. Введение подзатворного диэлектрика приводит к увеличению суммарной последовательной емкости, что приводит к увеличению порогового напряжения транзистора, а также максимального значения управляющего напряжения на затворе GaN транзистора.


Способ увеличения управляющего напряжения на затворе GaN транзистора
Способ увеличения управляющего напряжения на затворе GaN транзистора
Способ увеличения управляющего напряжения на затворе GaN транзистора
Источник поступления информации: Роспатент

Показаны записи 21-30 из 58.
14.12.2018
№218.016.a6c4

Устройство синхронизации микроконтроллеров

Изобретение относится к области электротехники и может быть использовано для синхронизации работы двух и более микроконтроллеров. Техническим результатом является обеспечение синхронной работы группы микроконтроллеров. Устройство синхронизации микроконтроллеров (МК), содержит: управляющее...
Тип: Изобретение
Номер охранного документа: 0002674878
Дата охранного документа: 13.12.2018
23.12.2018
№218.016.aa52

Радиометрический измеритель коэффициента отражения в широкой полосе частот

Изобретение относится к области радиотехники и может использоваться при определении отражательных свойств искусственных и естественных покрытий и материалов различных конструкций. Радиометрический измеритель коэффициента отражения содержит антенну, подключенную к первому входу направленного...
Тип: Изобретение
Номер охранного документа: 0002675670
Дата охранного документа: 21.12.2018
16.01.2019
№219.016.b050

Пигмент на основе порошка baso, модифицированного наночастицами sio

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой отраслях промышленности для термостатирования устройств или технологических объектов. Пигмент для терморегулирующих покрытий класса «солнечные оптические отражатели»...
Тип: Изобретение
Номер охранного документа: 0002677173
Дата охранного документа: 15.01.2019
26.01.2019
№219.016.b45b

Пигмент для терморегулирующих покрытий космических аппаратов на основе порошка baso, модифицированного наночастицами zro

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой промышленности для термостатирования устройств или технологических объектов. Пигмент для терморегулирующих покрытий класса «солнечные оптические отражатели» приготовлен из...
Тип: Изобретение
Номер охранного документа: 0002678272
Дата охранного документа: 24.01.2019
29.03.2019
№219.016.eda3

Способ защиты акустических параболических антенн от снега и наледи, и устройство для его реализации

Изобретение относится к области изготовления и использования акустической антенной техники, а именно к задаче борьбы со снегом и обледенением параболических зеркал антенн в таких устройствах, как, например, акустические локаторы (содары) с антеннами на основе параболического зеркала. Сущность:...
Тип: Изобретение
Номер охранного документа: 0002683131
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f91d

Вольтодобавочное зарядно-разрядное устройство аккумуляторной батареи

Изобретение относится к области электротехники и может быть использовано при проектировании и создании энергопреобразующей аппаратуры для систем электропитания от аккумуляторной батареи, в том числе систем электропитания космических аппаратов. Техническим результатом изобретения является...
Тип: Изобретение
Номер охранного документа: 0002683272
Дата охранного документа: 27.03.2019
30.03.2019
№219.016.f97e

Дисмембратор

Изобретение относится к области измельчения, диспергирования и механической активации материалов, в том числе с наноструктурой материалов. Дисмембратор содержит корпус с загрузочным патрубком и выгрузным отверстием, в котором вертикально установлены неподвижный и подвижный рабочие органы....
Тип: Изобретение
Номер охранного документа: 0002683531
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.f9b0

Способ дезинтегрирования кускового сырья

Изобретение относится к тонкому измельчению, смешиванию, горизонтальному и вертикальному транспортированию и механической активации материалов. Осуществляют подачу кускового сырья в ограниченное пространство камеры помола, внутри которой расположены вертикально два параллельных диска, на...
Тип: Изобретение
Номер охранного документа: 0002683526
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.fa06

Дисмембратор

Изобретение относится к области измельчения и может быть использовано, в частности, в горной и строительной промышленности, в энергетике. Дисмембратор содержит корпус с загрузочным разгрузочным патрубками, в котором вертикально установлены неподвижный и подвижный рабочие органы. Рабочие органы...
Тип: Изобретение
Номер охранного документа: 0002683528
Дата охранного документа: 28.03.2019
30.03.2019
№219.016.fa1e

Дисмембратор

Изобретение относится к области измельчения, диспергирования и механической активации материалов, в том числе с наноструктурой материалов, и может быть использовано в горной и строительной промышленности, в энергетике. Дезинтегратор содержит корпус с загрузочным и разгрузочным патрубками, в...
Тип: Изобретение
Номер охранного документа: 0002683530
Дата охранного документа: 28.03.2019
Показаны записи 11-11 из 11.
25.06.2020
№220.018.2b02

Способ формирования субмикронного т-образного затвора

Изобретение относится к технологии микроэлектроники, а именно к технологии получения СВЧ монолитных интегральных схем на основе полупроводниковых соединений типа AIIIBV, в частности к созданию гетероструктурных СВЧ-транзисторов с высокой подвижностью электронов. Способ формирования затвора...
Тип: Изобретение
Номер охранного документа: 0002724354
Дата охранного документа: 23.06.2020
+ добавить свой РИД