×
11.10.2018
218.016.8f8f

Результат интеллектуальной деятельности: СПОСОБ ВЫПОЛНЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ АЭРОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к теплозащите преимущественно гиперзвуковых летательных аппаратов. Способ заключается в разбивке теплозащитного покрытия на плитки и их закреплении на силовом каркасе аэродинамической поверхности (АП). Плитки примыкают друг к другу рядами шириной в одну плитку и высотой от передней кромки до бортовой хорды АП. Ряды перпендикулярны либо бортовой хорде, либо передней кромке (под углом α). Прямоугольные плитки в каждом ряду замыкаются трапециевидной плиткой. Высоты плиток кратны величине с=a⋅tgα, где с - разность между большей и меньшей параллельными сторонами трапециевидной плитки. Меньшую из этих сторон выполняют равной р, р+с или р+2⋅с, где р - остаток от деления нацело высоты ряда плиток на с. Плитки в ряду располагают со смещением к плиткам соседнего ряда на с или с/2. Технический результат состоит в упрощении технологии сборки и снижении затрат на производство плиток путём уменьшения их числа и количества их типоразмеров. 8 ил.

Заявляемое техническое решение относится к авиационной и ракетной технике и может быть использовано при выполнении теплозащитных покрытий на аэродинамических поверхностях (а.п.) и других несущих конструкциях гиперзвуковых летательных аппаратов (ГЛА).

Известен способ (см. книгу «Доспехи для «Бурана». Материалы и технологии «ВИАМ» для МКС «Энергия-Буран». Под общ. ред. академика РАН Каблова Е.Н. - М.: Фонд «Наука и жизнь», 2013, с. 18-19, с. 21-23, л. 4 иллюстраций между с. 48 и с. 49») выполнения теплозащитного покрытия на воздушно-космических самолетах (ВКС) «Шаттл» и «Буран», заключающийся в разбивке теплозащитного покрытия на плитки и их закреплении на поверхности планера ВКС путем приклейки к демпфирующим подложкам из специального фетра, которые перед этим приклеиваются к металлической поверхности планера. Таким способом решалась проблема существенной разницы коэффициентов температурного расширения металла и материала плиток. Размеры и форма плиток выбирались так, чтобы при нагреве (и соответственно расширении) они не разрушили друг друга, а при охлаждении между ними не появлялись бы слишком широкие зазоры. Плитки располагались примыкающими друг к другу рядами шириной в одну плитку.

Описанный выше способ принят авторами за ближайший аналог.

Ближайший аналог имеет следующие недостатки:

- большое количество типоразмеров плиток;

- большое количество плиток, выражающееся пятизначным числом;

- широкое применение квадратных плиток вместо прямоугольных, что эффективно только для определенных значений углов между передней кромкой и бортовой хордой а.п. (объяснение см. ниже).

Указанные недостатки привели к тому, что впервые в отечественной практике использовали компьютерное проектирование такого огромного количества разнообразных деталей. Вероятно, иной подход был бы попросту невозможен, ведь только на плитки пришлось бы выпустить более сорока тысяч чертежей.

Техническая задача, которая решается в предлагаемом техническом решении: оптимальная разбивка теплозащитного покрытия аэродинамической поверхности ГЛА на плитки, в результате которой мы получаем минимальное количество типоразмеров плиток и минимальное количество плиток, что существенно упрощает технологию изготовления и сборки и уменьшает затраты на производство.

Для а.п. ГЛА, угол «α» между передней кромкой и бортовой хордой меньше или равен 45°. Для того, чтобы «замостить» плитками площадь между передней кромкой и бортовой хордой необходимо иметь в наборе трапециевидные и прямоугольные (или как частный случай квадратные) плитки. Тогда, если ряды плиток расположены, например, перпендикулярно бортовой хорде, то трапециевидные плитки будут располагаться вдоль передней кромки.

Для достижения оптимального результата по критерию «минимальное число типоразмеров плиток и минимальное число плиток», необходимо стремиться к одному типоразмеру трапециевидных плиток и ограниченному числу типоразмеров прямоугольных плиток.

Для этого, при выборе высот плиток необходимо учитывать величину угла «α» и задавать высоты прямоугольных плиток кратными величине

с=a⋅tgα,

где с - разность между большей и меньшей параллельными сторонами трапециевидной плитки;

а - ширина плитки;

α - угол между передней кромкой и бортовой хордой а.п. (α≤45°).

В этом случае можно сформировать два или три типоразмера прямоугольных плиток с высотами кратными «с», а для получения трапециевидных плиток одного типоразмера необходимо для меньшей из параллельных сторон трапециевидных плиток взять величину «р» или «р+с» или «p+2⋅с»,

где «р» - величина, равная остатку от деления нацело высоты ряда плиток на величину «с».

При этом, плитки одного ряда смещают по отношению к плиткам соседнего ряда на величину «с» или «с/2». Это необходимо для уменьшения воздействия набегающего потока на а.п.

Рассмотрим условие оптимальной разбивки на квадратные плитки, исходя из того же условия кратности высот плиток величине с=a⋅tgα.

В случае квадратной плитки, ширина плитки «а» равна высоте плитки n⋅с,

где n - целое число из ряда 1, 2, 3, 4, 5, …….

Итак, а=n⋅с=n а⋅tgα; tgα=1/n.

Из последнего выражения получаем при:

n=1, α=45°.

n=2, α=26,565°.

n=3, α=18,435°.

n=4, α=14,036° и т.д.

Следовательно, для определенных дискретных значений угла α разбивка на квадратные плитки эффективна и приводит к оптимальному результату (см. примеры на фиг. 7 и фиг. 8).

Таким образом, техническая задача достигается способом, заключающимся в разбивке теплозащитного покрытия на плитки и их закреплении на силовом каркасе аэродинамической поверхности, при этом плитки установлены примыкающими друг к другу рядами шириной в одну плитку и высотой от передней кромки до бортовой хорды аэродинамической поверхности, ряды расположены перпендикулярно либо бортовой хорде, либо передней кромке, в каждом ряду размещены примыкающие друг к другу прямоугольные плитки и, замыкающая ряд, трапециевидная плитка, а высоты прямоугольных плиток выполнены кратными величине с=a⋅tgα,

где с - разность между большей и меньшей параллельными сторонами трапециевидной плитки;

а - ширина плитки;

α - угол между передней кромкой и бортовой хордой аэродинамической поверхности, α меньше или равен 45°,

при этом меньшая из параллельных сторон трапециевидной плитки выполнена равной величине р или р+с или р+2⋅c,

где р - величина, равная остатку от деления нацело высоты ряда плиток на величину «с»,

а плитки одного ряда расположены со смещением по отношению к плиткам соседнего ряда на величину «с» или «с/2».

Предложенное техническое решение поясняется чертежами.

На фиг. 1 показаны два отрезка прямых, расположенных в одной плоскости под углом α друг к другу (α≤45°). На некотором расстоянии от края первого отрезка построены с равным шагом «а» и перпендикулярно этому отрезку ряд параллельных прямых до пересечения со вторым отрезком. В качестве первого отрезка может выступать бортовая хорда а.п., второго отрезка - торец кромки передней, а плоскость двух отрезков в этом случае образует плоскость хорд а.п. ГЛА.

На фиг. 2 видно, что из точек пересечения прямых со вторым отрезком построены прямые, перпендикулярные исходным параллельным прямым. Образовавшиеся при этом ячейки в виде прямоугольных треугольников имеют катеты «а» и «с=а⋅tgα». Далее, с шагом «с» построен еще ряд параллельных прямых. При этом ближайшая к первому отрезку прямая будет находиться от него на расстоянии р≤с, образуя ячейки со сторонами и «р».

На фиг. 3 показано, что треугольные ячейки объединены с ячейками со сторонами и «р», тем самым со стороны передней кромки получены трапециевидные ячейки со сторонами «р» и «р+с».

На фиг. 4 видно, что трапециевидные ячейки объединены с примыкающими к ним ячейками со сторонами «с» и , поэтому стороны трапециевидных ячеек теперь равны «р+с» и «p+2⋅с». Это прибавление выполняют, если величины «р» и «р+с» малы по сравнению с «а».

На фиг. 5 показан вариант объединения ячеек со сторонами «с» и -«а». В итоге получены четыре типоразмера плиток, заполняющих всю площадь аэродинамической поверхности:

- поз. 1 -трапециевидная плитка;

- поз. 2 - прямоугольная плитка со сторонами «а» и «2⋅c»;

- поз. 3 - прямоугольная плитка со сторонами «а» и «3⋅c»;

- поз. 4 - прямоугольная плитка со сторонами «а» и «4⋅c».

При этом видно, что плитки одного ряда смещены по отношению к плиткам соседнего ряда на величину «с». Это необходимо для уменьшения воздействия набегающего потока на а.п.

На фиг. 6 показан такой же вариант объединения ячеек со сторонами «с» и , т.е. получены те же четыре типоразмера плиток, заполняющих всю площадь аэродинамической поверхности:

- поз. 1 - трапециевидная плитка;

- поз. 2 - прямоугольная плитка со сторонами «а» и «2⋅c»;

- поз. 3 - прямоугольная плитка со сторонами «а» и «3⋅c»;

- поз. 4 - прямоугольная плитка со сторонами «а» и «4⋅c».

Но плитки поз. 2, поз. 3, поз. 4 расположены в другом сочетании, что позволило уменьшить общее число плиток. С этой точки зрения на фиг. 6 показана более оптимальная разбивка на плитки.

На фиг. 7 приведен пример разбивки на квадратные плитки при угле α, равном 18,435°, для которого разбивка на квадратные плитки эффективна.

На фиг. 8 приведен пример разбивки на квадратные плитки при угле α, равном 26,565°, для которого разбивка на квадратные плитки эффективна.

Предложенный способ выполнения теплозащитного покрытия а.п. ГЛА был реализован в конструкции, которая успешно прошла лабораторно-стендовые и летно-конструкторские испытания.

Использование предлагаемого технического решения позволит получить минимальное количество типоразмеров плиток и минимальное количество плиток, а это упростит технологию изготовления и сборки плиток и уменьшит затраты на их производство.


СПОСОБ ВЫПОЛНЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ АЭРОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ ВЫПОЛНЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ АЭРОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ ВЫПОЛНЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ АЭРОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ ВЫПОЛНЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ АЭРОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА
СПОСОБ ВЫПОЛНЕНИЯ ТЕПЛОЗАЩИТНОГО ПОКРЫТИЯ АЭРОДИНАМИЧЕСКОЙ ПОВЕРХНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 161.
25.08.2017
№217.015.a302

Способ стабилизации движения ракеты при подводном старте и устройство для его осуществления

Изобретение относится к области ракетной техники, в частности к способам и устройствам стабилизации ракеты при подводном старте с движущегося носителя. Стабилизация движения ракеты при подводном старте сводится к обеспечению работы механизмов устройства стабилизации и последовательным командам...
Тип: Изобретение
Номер охранного документа: 0002607126
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.ae28

Способ теплового нагружения неметаллических конструкций

Изобретение относится к способам воспроизведения аэродинамического теплового воздействия на конструкцию летательного аппарата в наземных условиях и может быть использовано при стендовых испытаниях. Заявленный способ включает зонный нагрев с помощью радиационных нагревателей наружной поверхности...
Тип: Изобретение
Номер охранного документа: 0002612887
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b070

Регулируемое сопло

Изобретение относится к ракетной технике и описывает устройство регулируемого сопла с регулирующим приводом и механизмом синхронизации. Регулируемое сверхзвуковое сопло содержит корпус, шарнирно закрепленные на нем дозвуковые и сверхзвуковые створки, образующие канал для истечения продуктов...
Тип: Изобретение
Номер охранного документа: 0002613358
Дата охранного документа: 16.03.2017
25.08.2017
№217.015.b124

Способ изготовления деталей из титановых сплавов

Изобретение относится к области металлургии и может быть использовано для оптимизации технологического процесса сверхпластической формовки ответственных силовых деталей. Изобретение позволяет улучшить прочностные характеристики деталей из титанового сплава ВТ8. Изготавливают силовые элементы из...
Тип: Изобретение
Номер охранного документа: 0002613003
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b138

Контрольный ротор для проверки балансировочного станка

Изобретение относится к области машиностроения и предназначено для проверки балансировочных станков и подтверждения их характеристик. Контрольный ротор состоит из вала и диска, на валу установлены радиально-упорные подшипники, зафиксированные от осевого перемещения разрезными стопорными...
Тип: Изобретение
Номер охранного документа: 0002613017
Дата охранного документа: 14.03.2017
25.08.2017
№217.015.b13f

Универсальный модуль фиксации ракет в пусковой установке

Изобретение относится к военной технике, в частности к устройствам удержания боеприпасов (ракет), и представляет собой универсальный модуль фиксации ракет в пусковой установке (УМФР). УМФР в пусковой установке (ПУ) состоит из металлического корпуса, выполненного из двух идентичных половин,...
Тип: Изобретение
Номер охранного документа: 0002613205
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b1e7

Передняя кромка летательного аппарата в условиях ее аэродинамического нагрева

Изобретение относится к тепловой защите главным образом сверх- и гиперзвуковых летательных аппаратов (ЛА). Передняя кромка ЛА выполнена в виде оболочки со сферическим затуплением, воспринимающим пиковые тепловые нагрузки, и боковыми поверхностями, воспринимающими пониженные тепловые нагрузки....
Тип: Изобретение
Номер охранного документа: 0002613190
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b208

Способ ориентации орбитального космического аппарата с программно-управляемыми батареями солнечными

Изобретение относится к управлению относительным движением космических аппаратов (КА), преимущественно с одноосно вращающимися панелями солнечных батарей (СБ). В процессе полета ориентированный по местной вертикали КА непрерывно вращается по курсу, а панели СБ синхронно и непрерывно...
Тип: Изобретение
Номер охранного документа: 0002613097
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b7a8

Способ изготовления деталей из титановых сплавов

Изобретение может быть использовано для изготовления методом сверхпластической деформации ответственных силовых деталей из титанового сплава ВТ6, в частности шпангоутов, люков, обтекателей. Предварительно проводят электролитическую модификацию сплава никелем. Нагревают сплав до температуры...
Тип: Изобретение
Номер охранного документа: 0002614919
Дата охранного документа: 30.03.2017
25.08.2017
№217.015.b7fa

Шаровая опора

Изобретение относится к области авиа- и ракетостроительного машиностроения и может быть использовано в создании узлов трения, где в качестве опор скольжения используются сферические шарнирные подшипники. Шаровая опора содержит корпус, выполненный из двух крышек, независимо соединенных между...
Тип: Изобретение
Номер охранного документа: 0002615024
Дата охранного документа: 03.04.2017
Показаны записи 21-30 из 47.
09.06.2018
№218.016.5b6e

Фазоповоротное устройство

Изобретение относится к области электротехники и электроэнергетики, и в частности к фазоповоротным устройствам (ФПУ). Техническим результатом является уменьшение стоимости и увеличение КПД ФПУ. Фазоповоротное устройство содержит сериесный трансформатор, каждая фаза сетевой обмотки которого...
Тип: Изобретение
Номер охранного документа: 0002655922
Дата охранного документа: 30.05.2018
06.07.2018
№218.016.6cdd

Крепежное соединение деталей из материалов с разными коэффициентами теплового расширения

Изобретение относится к болтовым соединениям деталей, выполненных из материалов с разными коэффициентами теплового расширения, и может быть использовано в различных отраслях техники, включая конструкции высокоскоростных летательных аппаратов. Крепежное соединение деталей из материалов с разными...
Тип: Изобретение
Номер охранного документа: 0002660308
Дата охранного документа: 05.07.2018
12.07.2018
№218.016.7029

Однофазный регулятор переменного напряжения

Изобретение относится к области электротехники и силовой электроники и может быть использовано для регулирования и стабилизации напряжения в бытовых и промышленных электрических сетях переменного тока. Технический результат - повышение дискретности уровней регулирования напряжения на выходе...
Тип: Изобретение
Номер охранного документа: 0002660926
Дата охранного документа: 11.07.2018
13.07.2018
№218.016.70d4

Система обеспечения теплового режима приборного отсека летательного аппарата

Система обеспечения теплового режима приборного отсека летательного аппарата (ЛА) содержит теплоизолированный корпус и двухконтурную систему охлаждения с разомкнутым внешним испарительным контуром, внутренним контуром в виде контурных тепловых труб, установленных на теплонапряженных приборах и...
Тип: Изобретение
Номер охранного документа: 0002661178
Дата охранного документа: 12.07.2018
07.09.2018
№218.016.8409

Подвижный агрегат для термостатирования и газонасыщения компонентов ракетного топлива и заправки ракетной техники компонентами ракетного топлива

Изобретение относится к наземному оборудованию для изделий ракетно-космической техники. Подвижный агрегат (3) содержит емкость (8) для перевозки компонентов ракетного топлива (КРТ) на высокопроходимой колесной базе (2). Емкость (8) соединена с теплообменником (9) для термостатирования КРТ и...
Тип: Изобретение
Номер охранного документа: 0002665998
Дата охранного документа: 05.09.2018
07.09.2018
№218.016.8494

Способ оперативной доставки полезной нагрузки

Изобретение относится к авиационно-космической технике. Способ включает выведение космоплана и размещенного на нем гиперзвукового летательного аппарата (ГЛА) с полезной нагрузкой (ПН) на орбиту дежурства. При поступлении команды о доставке ПН в заданный район космоплан спускают в атмосферу...
Тип: Изобретение
Номер охранного документа: 0002666011
Дата охранного документа: 05.09.2018
09.11.2018
№218.016.9bb8

Регулятор вольтодобавочного переменного напряжения

Изобретение относится к области электротехники и электроэнергетики, может быть использовано в электрических сетях для гибкого регулирования и стабилизации напряжения и направлено на повышение надежности работы регулятора вольтодобавочного переменного напряжения и уменьшение его стоимости....
Тип: Изобретение
Номер охранного документа: 0002671829
Дата охранного документа: 07.11.2018
28.11.2018
№218.016.a16a

Система контроля и регистрации условий транспортирования ракетной и ракетно-космической техники

Изобретение относится к системам контроля и регистрации условий транспортирования. Система контроля и регистрации условия транспортирования изделий ракетно-космической техники включает в себя блок регистрации воздействий (БРВ) со встроенными датчиками температуры, влажности и виброускорения,...
Тип: Изобретение
Номер охранного документа: 0002673414
Дата охранного документа: 26.11.2018
26.12.2018
№218.016.abc8

Установка для испытаний контурной тепловой трубы системы терморегулирования летательного аппарата

Техническое решение относится к теплотехнике, в частности к системам терморегулирования (СТР) приборов авиационной и ракетной техники. В установке для испытаний контурной тепловой трубы СТР ЛА, содержащей каркас, нагреватель, охладитель и средства измерения температуры, каркас выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002675970
Дата охранного документа: 25.12.2018
20.02.2019
№219.016.bc23

Регулятор переменного напряжения

Изобретение относится к области электротехники и электроэнергетики и может быть использовано в электрических сетях. Техническим результатом является расширение области применения за счет увеличения диапазона и дискретности регулирования напряжения на нагрузке без повышения массогабаритных...
Тип: Изобретение
Номер охранного документа: 0002680146
Дата охранного документа: 18.02.2019
+ добавить свой РИД