×
03.10.2018
218.016.8d03

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ

Вид РИД

Изобретение

Аннотация: Использование: для измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования вентильных металлов. Сущность изобретения заключается в том, что способ определения толщины покрытия включает измерение напряжения в процессе получения покрытия, где измеряют среднее и амплитудное значения напряжения обработки, затем находят их отношение, а толщину покрытия h определяют по формуле где k и k - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым; U и U - среднее и амплитудное значения напряжения обработки соответственно. Технический результат: повышение точности определения толщины оксидного покрытия для своевременного прекращения процесса плазменно-электролитического оксидирования. 5 ил., 1 табл.

Изобретение относится к области электрохимической обработки, в частности, к плазменно-электролитическому оксидированию и может быть использовано для измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования вентильных металлов, например, алюминия, магния, титана, циркония и сплавов на их основе.

Известен способ контроля толщины покрытий в процессе осаждения, заключающийся в том, что объект контроля размещают в ванне с электролитом, на электроды, одним из которых является объект контроля, подают постоянное напряжение электроосаждения и определяют информативный параметр, по которому судят о толщине нарастающего покрытия, по которому в качестве электролита используют электропроводящий раствор лакокрасочного материала, одновременно с постоянным напряжением электроосаждения подают стабилизированное по амплитуде переменное напряжение, в качестве информативного параметра используют межэлектродную емкость, а в качестве второго электрода используют корпус ванны электроосаждения. (А.С. СССР №1578452 A1, G01B 7/06, 7/08, публ. 15.07.90).

Недостатком данного способа является его применимость только при работе на постоянном токе, а также необходимость наложения переменного напряжения, что может негативно сказываться на технологическом режиме обработки.

Известен способ определения момента окончания процесса плазменно-электролитического оксидирования на основе определения толщины покрытия по величине сдвига фаз, заключающийся в том, что измеряют переменную составляющую тока и анализируют ее изменение во времени, измеряют и анализируют переменную составляющую напряжения, которая периодически или постоянно изменяется с частотой 200-20000 Гц. При этом переменные составляющие тока и напряжения поступают на полосовые фильтры с граничными частотами 200-18000 и 500-20000 Гц, после которых измеряют сдвиг фаз между отфильтрованными сигналами тока и напряжения. Момент окончания процесса определяется по достижении значения сдвига фаз 20-80 градусов (патент РФ №2366765, C25D 11/00, публ. 10.09.2009).

Недостатком данного способа является сложность его практической реализации, которая заключается в необходимости использования дополнительных модуляторов частоты, фильтрации сигналов тока и напряжения, а также использования фазометров для измерения угла сдвига фаз между сигналами тока и напряжения.

Наиболее близким по технической сущности является способ определения толщины покрытия, заключающийся в том, что выполняют измерение амплитуды анодного импульсного поляризационного напряжения Uп, при этом определяют длительность т спада напряжения до порогового значения U1=(0,2…0,8)⋅Uп, а толщину покрытия рассчитывают по формуле:

h=k1+k2⋅τ,

где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым;

τ - длительность спада поляризационного напряжения Uп до порогового значения U1 (патент РФ №2540239, G01B 7/06, публ. 10.02.2015).

Недостатком прототипа является необходимость выделять длительность спада поляризационного напряжения в быстроменяющемся сигнале, что требует значительной технической сложности системы измерения и управления.

Задачей, решаемой заявляемым изобретением, является снижение энергопотребления при плазменно-электролитическом оксидировании вследствие исключения передержки за счет своевременного отключения технологического источника тока при достижении заданной толщины покрытия.

Техническим результатом является повышение точности определения толщины оксидного покрытия для своевременного прекращения процесса плазменно-электролитического оксидирования.

Поставленная задача решается, а технический результат достигается тем, что в способе определения толщины покрытия, включающем измерение напряжения в процессе получения покрытия, согласно изобретению, измеряют среднее и амплитудное значение напряжения обработки, затем находят их отношение, а толщину покрытия h определяют по формуле:

где k1 и k2 - эмпирические коэффициенты, зависящие от природы обрабатываемого материала и состава электролита, определяемые по тарировочным кривым;

Ucp и Umax - среднее и амплитудное значения напряжения обработки соответственно.

Сущность изобретения поясняется изображениями. На Фиг. 1 и Фиг. 2 представлены осциллограммы напряжения после 5 мин и 35 мин обработки соответственно, на которых наблюдается увеличение напряжения во время паузы между импульсами. На Фиг. 3 показан график изменения во времени для отношения среднего напряжения к амплитудному. На Фиг. 4 показан график изменения толщины покрытия во времени. На Фиг. 5 показана тарировочная кривая, построенная по этим зависимостям.

Физически сущность способа объясняется тем, что в начале процесса толщина оксидного покрытия мала, его активное сопротивление также сравнительно невелико и емкость двойного электрического слоя покрытия разряжается с малой постоянной времени (Фиг. 1). Далее, с ростом оксидной пленки, ее активное сопротивление растет и постоянная времени разряда емкости значительно увеличивается (Фиг. 2), что вызывает повышение среднего значения напряжения при постоянной амплитуде импульсов. Между указанными величинами наблюдается высокая степень корреляции (R2>0,95), что позволяет построить тарировочную кривую (Фиг. 5), которая может быть использована для определения толщины оксидного слоя в ходе процесса. Таким образом, предлагаемый способ имеет ясный физический смысл и простую реализацию, а также обладает высокой помехозащищенностью, так как измеряемые уровни напряжений имеют значительные величины и мало подвержены внешним искажениям.

Пример конкретной реализации способа.

Образцы из алюминия обрабатывали методом плазменно-электролитического оксидирования в растворе, содержащем 1 г/л КОН, 2 г/л Na4P2O7⋅10Н2О и 2 г/л Na2SiO3 при температуре 20°С в течение 45 минут в режиме импульсного напряжения с фиксированной амплитудой импульса 580 В и частотой 1 кГц. В процессе получения покрытия измеряли среднее и амплитудное значения напряжения, а толщину покрытия определяли по формуле:

где эмпирические коэффициенты

k1=80,87±0,94 мкм;

k2=51,44±0,67 мкм,

соответствующие обрабатываемому материалу и указанному составу электролита, были рассчитаны по тарировочной кривой (Фиг. 5).

После обработки толщину покрытия на образцах также измеряли вихретоковым толщиномером. Результаты приведены в таблице:

Как видно из таблицы, заявляемый способ позволяет определять толщину покрытия с разбросом, сравнимым с неравномерностью толщины покрытия по поверхности детали. Так, после 30 минут обработки толщина покрытия, измеренная вихретоковым толщиномером составила 18,1±1,4 мкм, а измеренная в соответствии с заявляемым способом - 17,6±1,2 мкм.

Итак, заявляемое изобретение позволяет измерять толщину покрытия в ходе плазменно-электролитического оксидирования вентильных металлов без вмешательства в ход технологического процесса за счет измерения напряжений, участвующих в формировании оксидного слоя.


СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ
СПОСОБ ИЗМЕРЕНИЯ ТОЛЩИНЫ ПОКРЫТИЯ В ХОДЕ ПРОЦЕССА ПЛАЗМЕННО-ЭЛЕКТРОЛИТИЧЕСКОГО ОКСИДИРОВАНИЯ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 146.
26.09.2018
№218.016.8ba3

Способ лечения заболеваний пародонта и электрод для его реализации

Группа изобретений относится к медицине, в частности к стоматологии, и может быть использована для лечения заболеваний пародонта. Выполняют анестезию. Альвеолярный отросток челюсти пациента изолируют ватными валиками от слюны. Вводят электрод в пародонтальный карман. Размер электрода...
Тип: Изобретение
Номер охранного документа: 0002667958
Дата охранного документа: 25.09.2018
09.11.2018
№218.016.9b58

Способ измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования и устройство для его реализации

Изобретение относится к области электрохимической обработки материалов и касается способа определения толщины покрытия. Способ включает в себя измерение через 5-300 с после начала обработки интенсивности излучения детали в диапазоне длин волн шириной 3-50 нм, включающем характеристическую...
Тип: Изобретение
Номер охранного документа: 0002672036
Дата охранного документа: 08.11.2018
17.11.2018
№218.016.9e4f

Многофазный синхронный генератор с однополупериодным выпрямителем

Изобретение относится к области энергомашиностроения, в частности к устройствам, использующимся в системах автономного электроснабжения. Технический результат: повышение надежности многофазного синхронного генератора с возможностью подключения в трехфазную сеть, а также повышение...
Тип: Изобретение
Номер охранного документа: 0002672562
Дата охранного документа: 16.11.2018
16.01.2019
№219.016.afd0

Способ получения износостойкого покрытия на основе интерметаллида системы ti-al

Изобретение относится к области машиностроения, в частности к получению износо-, ударо-, тепло-, трещино- и коррозионностойких покрытий, и может быть использовано для повышения надежности и долговечности широкого ассортимента деталей машин и инструмента. Способ получения износостойкого...
Тип: Изобретение
Номер охранного документа: 0002677043
Дата охранного документа: 15.01.2019
24.01.2019
№219.016.b2d7

Способ химико-термической обработки детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, режущего инструмента и штамповой...
Тип: Изобретение
Номер охранного документа: 0002677908
Дата охранного документа: 22.01.2019
24.01.2019
№219.016.b388

Устройство для выведения малых космических аппаратов

Изобретение относится к системам разделения космических аппаратов (КА) и м.б. использовано для запуска на орбиту малых КА массой от 1 до 50 кг. Устройство для выведения КА (2) содержит основание (3), на котором КА удерживается гибкими токопроводящими пластинами (1). Пластины подключены к блоку...
Тип: Изобретение
Номер охранного документа: 0002677974
Дата охранного документа: 22.01.2019
14.02.2019
№219.016.ba48

Способ автоматизированной очистки солнечных панелей

Изобретение относится к области электроэнергетики, энергосбережения и может быть использовано для очистки солнечных панелей от снега и льда в зимнее время. Технический результат: повышение эффективности работы солнечных панелей и увеличение их кпд, а также возможность постоянного использования...
Тип: Изобретение
Номер охранного документа: 0002679771
Дата охранного документа: 12.02.2019
26.02.2019
№219.016.c815

Способ ионно-имплантационной обработки моноколеса компрессора с лопатками из титановых сплавов

Изобретение относится к способу упрочнения рабочих лопаток моноколеса компрессора ГТД из титановых сплавов и может быть использовано в авиационном двигателестроении и энергетическом турбостроении. Способ включает установку моноколеса на валу держателя, помещение его внутрь вакуумной установки...
Тип: Изобретение
Номер охранного документа: 0002680630
Дата охранного документа: 25.02.2019
14.03.2019
№219.016.df01

Система автоматического управления углом курса и ограничения угла крена летательного аппарата

Система автоматического управления углом курса и ограничения угла крена летательного аппарата содержит задатчик угла курса, четыре элемента сравнения, вычислитель заданного угла крена, алгебраический селектор минимального сигнала, вычислитель автопилота угла крена, сервопривод элеронов, датчик...
Тип: Изобретение
Номер охранного документа: 0002681817
Дата охранного документа: 12.03.2019
20.03.2019
№219.016.e2e7

Способ упрочнения лопаток моноколеса из титанового сплава

Изобретение относится к способу упрочнения лопаток моноколеса из титанового сплава. Способ включает ионно-имплантационную обработку материала поверхностного слоя лопаток энергией от 20 кэВ до 35 кэВ и дозой от 1,6⋅10 см до 2,0⋅10 см с последующим нанесением ионно-плазменного многослойного...
Тип: Изобретение
Номер охранного документа: 0002682265
Дата охранного документа: 18.03.2019
Показаны записи 1-5 из 5.
20.02.2013
№216.012.27c4

Способ измерения шероховатости поверхности в процессе электролитно-плазменной обработки

Изобретение относится к контрольно-измерительной технике и может быть использовано в машиностроении для контроля шероховатости поверхности электропроводных изделий, например, из нержавеющей стали в процессе электролитно-плазменной обработки. Сущность: прикладывают высоковольтное напряжение...
Тип: Изобретение
Номер охранного документа: 0002475700
Дата охранного документа: 20.02.2013
10.02.2015
№216.013.2252

Способ определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что выполняют измерение амплитуды анодного импульсного поляризационного напряжения U, при этом определяют длительность τ спада напряжения до...
Тип: Изобретение
Номер охранного документа: 0002540239
Дата охранного документа: 10.02.2015
25.08.2017
№217.015.aac8

Способ определения толщины покрытия в ходе процесса твердого анодирования

Изобретение относится к области гальванотехники, в частности к твердому анодированию алюминиевых сплавов. Способ определения толщины оксидного покрытия в процессе твердого анодирования алюминиевого сплава включает измерение плотности тока и времени анодирования, а также измеряют напряжение на...
Тип: Изобретение
Номер охранного документа: 0002611632
Дата охранного документа: 28.02.2017
09.11.2018
№218.016.9b58

Способ измерения толщины покрытия в ходе процесса плазменно-электролитического оксидирования и устройство для его реализации

Изобретение относится к области электрохимической обработки материалов и касается способа определения толщины покрытия. Способ включает в себя измерение через 5-300 с после начала обработки интенсивности излучения детали в диапазоне длин волн шириной 3-50 нм, включающем характеристическую...
Тип: Изобретение
Номер охранного документа: 0002672036
Дата охранного документа: 08.11.2018
22.06.2019
№219.017.8e52

Способ определения толщины покрытия в ходе процесса плазменно-электролитического оксидирования

Использование: для определения толщины покрытия в процессе плазменно-электролитического оксидирования. Сущность изобретения заключается в том, что способ определения толщины покрытия при плазменно-электролитическом оксидировании включает измерение остаточного значения напряжения, отличающийся...
Тип: Изобретение
Номер охранного документа: 0002692120
Дата охранного документа: 21.06.2019
+ добавить свой РИД