×
26.09.2018
218.016.8ba7

Результат интеллектуальной деятельности: ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА

Вид РИД

Изобретение

№ охранного документа
0002667913
Дата охранного документа
25.09.2018
Аннотация: Изобретение относится к противотурбулентной присадке для углеводородных жидкостей и может быть использовано в трубопроводном транспорте нефти, нефтепродуктов и газового конденсата. Присадка содержит полидецен-1 в качестве полимера высших α-олефинов, метиловый эфир пропиленгликоля, BNX 1076 в качестве ингибитора окислительной деструкции и стеарат кальция в качестве ингибитора термической деструкции. Присадка по изобретению обладает высокими эксплуатационными характеристиками, увеличивает пропускную способность трубопроводов, а также обеспечивает снижение энергетических затрат, возникающих при транспортировке углеводородных жидкостей. 1 з.п. ф-лы, 2 табл., 2 ил., 4 пр.

Изобретение относится к противотурбулентным присадкам для углеводородных жидкостей и может быть использовано при транспортировке в трубопроводном транспорте нефти, нефтепродуктов и газового конденсата с целью увеличения пропускной способности трубопроводов.

Известна противотурбулентная присадка FLO МХА (ТУ 2548-002-17642043-2010), состоящая из суспензии полимера со сверхмолекулярным весом, диспергированным в алкиловом спирте.

Недостатками данной присадки является высокая стоимость, необходимость дополнительного перемешивания присадки перед применением.

Известен состав для уменьшения гидравлического сопротивления, содержащий полимер, например поли-α-олефин, в количестве 1-60% и натуральный жир или масло в количестве 40-99%. Состав предпочтительно содержит также диспергирующе-стабилизирующий агент, например мыло жирной кислоты, в количестве 0,1-50% от общего веса (EA 5628, МПК C08L 23/18, опубликовано 28.04.2005 г.).

Недостатком данной присадки является высокая стоимость состава и низкая стабильность, связанная со склонностью натуральных масел к окислительным процессам при контакте с кислородом воздуха.

Известна жидкая присадка к углеводородной жидкости, содержащая высокомолекулярный полиизобутилен, имеющий молекулярную массу (3,7-4,9)⋅106 а.е.м. (патент РФ №2343187, опубликован 10.01.2009 г.).

К недостаткам изобретения можно отнести низкую растворимость присадки в углеводородной жидкости и высокую длительность ее приготовления, поскольку при получении присадки используют полиизобутилен со сверхвысокой молекулярной массой, кроме того, известная присадка имеет недостаточную продолжительность действия.

Известна противотурбулентная присадка (патент РФ №2277103, опубликован 27.05.2006 г.), получаемая полимеризацией высших α-олефинов в растворе углеводорода, и представляющая собой вязкий раствор. Противотурбулентные присадки на основе высокомолекулярных полимеров α-олефинов, растворимых в углеводородных жидкостях, вследствие возможности получения относительно недорогих сверхвысокомолекулярных, а значит, эффективных в качестве противотурбулентных присадок, полимеров получили широкое распространение. Полиальфаолефины, получаемые из альфаолефиновых мономеров, как правило, включают в себя мономеры от С4 до С16. Установлено, что именно такой состав альфаолефиновых мономеров позволяет получить полимеры, характеризующиеся наивысшим качеством и наибольшей эффективностью.

К недостаткам данного изобретения следует отнести следующее. Сверхвысокомолекулярный полимер получается лишь на начальной стадии полимеризации, и ее приходится прерывать при 20%-ной конверсии мономера, так как дальнейшая полимеризация приводит к образованию балластного полимера, не активного в снижении сопротивления (Г.В. Несын, Ю.В. Сулейманова, Н.М. Полякова, Г.П. Филатов. Антитурбулентная присадка суспензионного типа на основе полимеров высших альфаолефинов. Известия Томского политехнического университета. 2006. т. 309. №3).

Известна противотурбулентная присадка суспензионного типа (Известия Томского политехнического университета. 2006. Т. 309. №3. с. 112-115; Г.В. Несын, Ю.В. Сулейманова и др. Антитурбулентная присадка суспензионного типа на основе высших α-олефинов), приготовление которой включает полимеризацию высших α-олефинов в массе, затем полученный полимер измельчают при криогенных температурах и готовят суспензию измельченного полимера в водной или неводной среде. Однако при криогенном измельчении идет процесс деструкции полимера, что снижает его молекулярную массу и его эффективность как антитурбулентной присадки.

Известна противотурбулентная присадка (патент РФ №2579583, МПК C08F 10/14, опубликовано 10.04.2016 г.), содержащая полиолефин (смесь полиолефинов) и дисперсионную среду в соотношении, равном 1:10÷1:2. В качестве дисперсионной среды используются триглицериды жирных кислот, обладающие низкой стабильностью в связи со склонностью к окислительным процессам при контакте с кислородом воздуха.

Наиболее близким аналогом является противотурбулентная присадка (патент РФ №2505551, опубликован 27.01.2014 г.), для которой приготавливают суспензию смешением высшего поли-α-олефина со средой присадки и антиагломератом. В качестве полимера берут полимер, полученный с использованием осадителя в виде вещества с температурой кипения выше температуры кипения исходного мономера не менее чем на 73°C, а компоненты суспензии противотурбулентной присадки берут в следующем количественном соотношении, мас. %:

Полимер 25,0-55,0
Среда полимера 39,5-72,5
ПАВ 2,5-5,5

Недостатком данного изобретения является возможность большого разброса молекулярных масс макромолекул полимера в процессе его изготовления, что сказывается на нестабильности показателей присадки по сравнению с использованием промышленно производимых полимеров.

Задачей изобретения является разработка состава противотурбулентной присадки с высокими эксплуатационными характеристиками для снижения затрат на транспортировку углеводородных жидкостей.

Технический результат заключается в увеличении пропускной способности трубопроводов, снижении перепада давления и энергетических затрат, возникающих при транспортировке углеводородных жидкостей.

Технический результат достигается противотурбулентной присадкой для углеводородных жидкостей, содержащей полимер высших α-олефинов Полидецен-1, метиловый эфир пропиленгликоля, BNX 1076 в качестве ингибитора окислительной деструкции, стеарат кальция в качестве ингибитора термической деструкции, при следующем соотношении компонентов, % масс.:

Полидецен-1 30-40
BNX 1076 0,05-0,1
Стеарат кальция 1,0-1,5
Метиловый эфир пропиленгликоля до 100

Технический результат достигается противотурбулентной присадкой, содержащей полимер высших α-олефинов Полидецен-1, метиловый эфир пропиленгликоля, BNX 1076 в качестве ингибитора окислительной деструкции, стеарат кальция в качестве ингибитора термической деструкции, синтерол АМФ-12 в качестве ингибитора асфальто-смолистых парафиновых отложений, при следующем соотношении компонентов, % масс.:

Полидецен-1 28,3-36,36
BNX 1076 0,05-0,09
Стеарат кальция 1,00-1,36
Синтерол АМФ-12 6-10
Метиловый эфир пропиленгликоля до 100

На фиг. 1 представлена зависимость относительного перепада давления на участке трубопровода опытной установки при перекачке газового конденсата от дозировки противотурбулентной присадки.

На фиг. 2 представлена зависимость относительного снижения потребляемой электроэнергии на участке трубопровода опытной установки при перекачке газового конденсата от дозировки противотурбулентной присадки.

На иллюстрациях обозначены следующие элементы:

1 - присадка без ингибитора АСПО;

2 - присадка с добавлением ингибитора АСПО.

Состав противотурбулентных присадок представлен в табл. 1 и табл. 2, величины снижения перепада давления на участке трубопровода опытной установки в табл. 3.

На движение жидкости по трубопроводу оказывают влияние такие факторы, как скорость движения, диаметр, материал трубопровода, степень шероховатости его поверхности, плотность и вязкость жидкостей. При этом режим движения жидкости, с учетом влияния перечисленных факторов, характеризуется безразмерным параметром - числом Рейнольдса (Re). С увеличением Re эффективность присадок возрастает, и при достаточно больших значениях (турбулентный режим) наблюдается режим максимального снижения сопротивления, когда эффект перестает зависеть от типа полимера присадки, размера трубы и Re. Максимальное снижение сопротивления трения в технически гладких трубах определяется только концентрацией раствора используемого полимера и не зависит от диаметра трубы (Новоселов В.Ф., Муфтахов Е.М. «Технологический расчет нефтепроводов», Уфа: Изд-во УГНТУ, 1996 г. - 43 с., Бударин В.А. «Метод расчета движения жидкости», Одесса: «Астропринт», 2006 г. - 138 с.).

С увеличением вязкости система не переходит из ламинарного в турбулентный режим, поэтому присадки для снижения сопротивления можно применять для углеводородных жидкостей, имеющих кинематическую вязкость не более 15÷20⋅10-6 м2/с.

С увеличением температуры жидкости уменьшается вязкость жидкости и увеличивается эффективность присадок, т.к. повышается их растворимость при введении в поток жидкости. Однако увеличение температуры выше 60-70°C иногда приводит к снижению эффективности присадок, что объясняется снижением растворимости и выпадением из раствора полимеров, имеющих верхнюю критическую температуру смешения.

Заданная величина эффекта снижения гидродинамического сопротивления определяется на основе технико-экономического расчета с учетом типа присадки, гидромеханических параметров, существующих затрат и т.д. После определения оптимальной величины снижения сопротивления с учетом молекулярных характеристик присадок определяется концентрация присадки в углеводородных жидкостях, которая обычно лежит в пределах 50-100 г/т («Композиционные составы для снижения гидравлического сопротивления в системах трубопроводного сбора и транспорта продукции нефтяных скважин», диссертация кандидата технических наук: 02.00.13/ Хуснуллин Руслан Ринатович, Казань, 2015 г. - 149 c.).

С увеличением молекулярной массы полимера при прочих равных условиях эффект снижения сопротивления растет, что связано с увеличением линейного размера молекул с ростом молекулярной массы. Характерным свойством высокомолекулярных полимеров является деструкция (разрушение макромолекул), которая приводит к резкому снижению или полному прекращению их влияния на гидравлическое сопротивление. Деструкция полимеров, как правило, происходит при механическом давяще-трущем воздействии. С увеличением концентрации присадок влияние деструкции на гидродинамическое сопротивление снижается, с ростом температуры раствора - повышается.

Предложенный состав противотурбулентной присадки включает полимер высших α-олефинов - Полидецен-1, который обладает высокой детурбулизирующей способностью, и в сочетании с указанными компонентами обеспечивает высокие эксплуатационные характеристики присадки. Соотношение компонентов определяется необходимой эффективностью присадки, а также требованиями технологичности изготовления, условиями хранения и эксплуатации. В частности, концентрация Полидецена -1 менее 30% приводит к увеличению удельного расхода присадки для достижения необходимой эффективности, концентрация более 40% приводит к повышению вязкости, что вызывает сложности при изготовлении, дозировании и хранении реагентов при низкой температуре окружающей среды. Ингибитор окислительной деструкции - BNX 1076 представляет собой пространственно-затрудненные фенолы. Его содержание менее 0,05% не обеспечивает достаточной эффективности, а более 0,1% использовать нецелесообразно. Аналогично, ингибитор термической деструкции - стеарат кальция, при содержании менее 1% не обеспечивает достаточной эффективности, более 1,5 % использовать нецелесообразно. Метиловый эфир пропиленгликоля - это растворитель, его процентное содержание в составе присадки определяется по остаточному принципу и, в общем, обусловлено предельным значением вязкости и устойчивости суспензии при низких температурах.

Допускается добавка к присадке ингибитора асфальто-смолистых парафиновых отложений (АСПО) на трубах, например синтерола АМФ-12 (оксиэтилированный неонол), который представляет собой натриевую (калиевую) соль карбоксиметилата оксиэтилированного изононилфенола - имеет структурную формулу: C9H19-C6H4-O(-CH2-CH2O)9-CH2-COO-Na. Получают реакцией конденсации оксиэтилированных алкилфенолов, в качестве которых используют соединения марок "неонол" с монохлорацетатом натрия. Синтерол АФМ-12 марки А выпускают по ТУ 2481-007-14331137-2009.

При содержании в количестве менее 5% добавка не проявляет достаточной ингибирующей эффективности, в количестве более 10% использовать нежелательно, т.к. при этом снижается содержание активных компонентов самой противотурбулентной присадки.

Оценка эффективности действия противотурбулентных присадок в композиции с ингибитором АСПО и без него в газовом конденсате Ачимовских отложений Уренгойского НГКМ проводилась на лабораторной установке ООО «НТЦ Салаватнефтеоргсинтез» путем количественного определения:

1) относительного перепада давления на участке трубопровода при перекачке нефти/газового конденсата без и с использованием присадки;

2) относительного изменения потребляемой электроэнергии электроприводом насоса для перекачки 1 м3 нефти/газового конденсата (кВт⋅ч/м3) без и с использованием присадки.

Относительное снижение перепада давления рассчитывается по формуле

где - перепад давления в трубопроводе при перекачке продукта в отсутствии присадки, МПа;

- перепад давления в трубопроводе при перекачке продукта в присутствии присадки, МПа.

Относительное снижение потребляемой энергии электродвигателем насоса для перекачки нефти/газового конденсата рассчитывается по формуле (2): DRe(%)=(Е0θ)⋅100/Е0,

где E0 - потребляемая энергия для перекачки жидкости объемом 1 м3 в отсутствии присадки, кВт⋅ч/м3;

Еθ - потребляемая энергия для перекачки жидкости объемом 1 м3 в присутствии присадки, кВт⋅ч/м3.

Требуемая скорость потока жидкости была предварительно рассчитана при помощи системы точного моделирования технологических процессов Aspen HYSYS.

Эффективность предлагаемой противотурбулентной присадки без добавления ингибитора АСПО (пример 1) и с добавлением (пример 2) подтверждена испытаниями на лабораторной установке, результаты представлены в таблице 1.

Результаты испытаний показали, что после ввода присадки в газовый конденсат как с добавлением ингибитора АСПО, так и без него происходит снижение перепада давления до (20,3-20,5) % и энергозатрат до (13,6-13,8) %. Снижение данных показателей указывает на повышение пропускной способности трубопровода после введения в поток присадки.

На иллюстрациях представлены зависимости относительного перепада давления (фиг. 1) и относительного снижения потребляемой электроэнергии (фиг. 2) от дозировки опытных образцов противотурбулентных присадок.

Эффективность ингибирования АСПО проводилась над используемым ингибитором АСПО и его смесью с противотурбулентной присадкой методом «холодного стержня» («cold finger test»). Суть эксперимента заключалась в следующем: в газовый конденсат добавляли ингибиторы парафиноотложений в дозировке 1000 г/т, охлаждали до температуры 10°C, затем на 30 секунд вносили предварительно взвешенные на аналитических весах металлические пластинки, охлажденные до 0°C. Пластинки вынимали, давали стечь конденсату и взвешивали. Аналогичный опыт проделывали с газовым конденсатом, не содержащим ингибитор парафиноотложений (холостой опыт), и с ингибитором, смешанным с противотурбулентной присадкой.

Эффективность действия ингибитора (Э,%) рассчитывали по формуле (3):Э(%)=(m1-m2)⋅100/m1,

где m1 - масса парафина, отложившегося на пластинке, погруженной в холостую пробу, г;

m2 - масса парафина, отложившегося на пластинке, погруженной в пробу с ингибитором, г.

Полученные данные представлены в таблице 2.

Пример 1 соответствует опыту с использованием противотурбулентной присадки (ПТП) без ингибитора АСПО, пример 2-е использованием смеси противотурбулентной присадки и ингибитора АСПО.

Из полученных данных следует, что действие ингибитора наиболее эффективно при дозировке присадки (300-500) г/т.

Готовят присадку следующим образом.

Полидецен-1 в виде полимерных гранул смешивают растворителем - метиловым эфиром пропиленгликоля. Смесь нагревают до температуры 70°C, затем добавляют ингибитор окислительной деструкции - BNX 1076 и ингибитор термической деструкции - стеарат кальция. При этом используют следующее соотношение компонентов, % масс.: Полидецен-1 - 30-40; BNX 1076 - 0,05-0,1; стеарат кальция - 1,0-1,5; метиловый эфир пропиленгликоля - до 100. Далее осуществляют постепенное охлаждение и слабое перемешивание до снижения температуры до 25°C. При этом образуется маловязкая суспензия полимера - противотурбулентной присадки.

Пример 1. Полидецен-1 в количестве 30 г смешали с 68,95 г метилового эфира пропиленгликоля, смесь нагрели до температуры 70°C, затем добавили ингибиторы окислительной и термической деструкции - BNX 1076 и стеарат кальция, соответственно 50 мг и 1 г. Далее, используя поэтапное охлаждение и слабое перемешивание, снизили температуру до 25°C, при этом образовалась маловязкая суспензия полимера.

Пример 2. При указанной в примере 1 последовательности действий используют следующие количества компонентов: Полидецен-1 - 35 г; метиловый эфир пропиленгликоля 63,73 г, BNX 1076 - 70 мг, стеарат кальция - 1,2 г. Получают присадку в виде маловязкой суспензии полимера.

Пример 3. При указанной в примере последовательности действий используют следующие количества компонентов: Полидецен-1 - 40 г; метиловый эфир пропиленгликоля 58,4 г, BNX 1076 - 100 мг, стеарат кальция - 1,5 г. Получают присадку в виде маловязкой суспензии полимера.

Пример 4. Готовят присадку по примеру 1, отмеряют 92 г полученной суспензии и добавляют в нее 8 г ингибитора АСПО - синтерола АМФ-12. После перемешивания получают готовый продукт.

Таким образом, предложенное изобретение позволяет при невысоких затратах и достаточно простой технологии получить противотурбулентную присадку с высокими эксплуатационными характеристиками.


ПРОТИВОТУРБУЛЕНТНАЯ ПРИСАДКА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 39.
13.01.2017
№217.015.79c3

Способ подготовки углеводородного газа к транспорту

Изобретение относится к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. Технический результат заключается в интенсификации процесса низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002599157
Дата охранного документа: 10.10.2016
13.01.2017
№217.015.7b51

Способ подготовки углеводородного газа к транспорту

Изобретение относится к газонефтяной промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. Целью данного изобретения является...
Тип: Изобретение
Номер охранного документа: 0002600141
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.a1ba

Способ диагностирования вторичного источника питания и устройство для его осуществления

Изобретение относится к контрольно-измерительной технике, в частности к измерению и контролю параметров в автоматике, и может быть использовано для непрерывного автоматического диагностирования вторичных источников питания систем автоматического управления, регулирования и контроля в различных...
Тип: Изобретение
Номер охранного документа: 0002606806
Дата охранного документа: 10.01.2017
26.08.2017
№217.015.e97d

Способ подготовки углеводородного газа к транспорту

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки к транспорту конденсатсодержащего пластового газа. Способ подготовки конденсатсодержащего...
Тип: Изобретение
Номер охранного документа: 0002627754
Дата охранного документа: 11.08.2017
20.01.2018
№218.016.1a92

Способ сбора и подготовки углеводородного газа к транспорту

Изобретение относится к газовой промышленности, в частности к сбору и обработке природного углеводородного газа по технологии абсорбционной осушки, и может применяться в процессах промысловой подготовки к транспорту продукции газовых месторождений. Согласно способу сбора и подготовки...
Тип: Изобретение
Номер охранного документа: 0002636499
Дата охранного документа: 23.11.2017
10.05.2018
№218.016.38b0

Способ подготовки углеводородного газа к транспорту

Изобретение относится к газовой промышленности, в частности к обработке углеводородного газа с использованием низкотемпературного процесса, и может быть использовано в процессах промысловой подготовки конденсатсодержащего газа. Технический результат заключается в повышении энергоэффективности...
Тип: Изобретение
Номер охранного документа: 0002646899
Дата охранного документа: 12.03.2018
29.05.2018
№218.016.557e

Переносной калибровочный модуль для калибровки и поверки сигнализаторов горючих газов стм-30-50

Изобретение относится к области промышленной безопасности в системах контроля загазованности опасных производственных объектов. Сущность заявленного технического решения заключается в том, что легкосъемный переносной калибровочный модуль содержит разборный корпус с размещенными внутри линиями...
Тип: Изобретение
Номер охранного документа: 0002654381
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.5873

Способ возведения основания для куста скважин на многолетнемерзлых грунтах

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при возведении и эксплуатации нефтяных, газовых и газоконденсатных скважин на многолетнемерзлых грунтах. Способ возведения основания куста скважин на многолетнемерзлых грунтах включает сооружение площадок и...
Тип: Изобретение
Номер охранного документа: 0002655134
Дата охранного документа: 23.05.2018
05.07.2018
№218.016.6b82

Способ установки образцов-свидетелей коррозии в трубопровод

Изобретение относится к коррозионным исследованиям, а именно к способу установки образцов-свидетелей коррозии в трубопровод для определения коррозионной агрессивности исследуемых сред. Поставленная цель достигается способом установки образцов-свидетелей коррозии в трубопровод, включающим...
Тип: Изобретение
Номер охранного документа: 0002659862
Дата охранного документа: 04.07.2018
01.11.2018
№218.016.9842

Способ и установка для измерения жидкостной и газовой составляющей продукции нефтяных, газовых и газоконденсатных скважин

Изобретение относится к нефтегазодобывающей отрасли и может быть использовано для оперативного учета дебитов продукции газовых, нефтяных и газоконденсатных скважин в режиме реального времени, в том числе в условиях высоких давлений скважинной продукции. Технический результат заключается в...
Тип: Изобретение
Номер охранного документа: 0002671013
Дата охранного документа: 29.10.2018
Показаны записи 11-20 из 26.
20.11.2015
№216.013.929f

Установка комплексной очистки стоков (варианты)

Группа изобретений относится области нефтехимической промышленности и представляет собой установку комплексной очистки стоков (варианты). Установка согласно изобретению содержит последовательно соединенные блок предварительной очистки сульфидно-щелочных стоков от нефтепродуктов и/или...
Тип: Изобретение
Номер охранного документа: 0002569153
Дата охранного документа: 20.11.2015
27.12.2015
№216.013.9d58

Способ очистки медьсодержащего сульфидно-щелочного смешанного стока

Изобретение может быть использовано для обезвреживания сульфидно-щелочных смешанных сточных вод на нефтехимических предприятиях, содержащих основные процессы по переработки нефти и нефтепродуктов, а также производство акриловой кислоты, на котором используют медьсодержащие ингибиторы...
Тип: Изобретение
Номер охранного документа: 0002571910
Дата охранного документа: 27.12.2015
10.01.2016
№216.013.9ef2

Способ очистки медьсодержащих сточных вод производства акриловой кислоты (варианты)

Изобретения могут быть использованы на нефтехимических предприятиях для обезвреживания сточных вод производства акриловой кислоты, содержащих медь. Способ включает смешение очищаемых сточных вод и сернисто-щелочного стока, с последующим отделением образующегося осадка, при этом отношение...
Тип: Изобретение
Номер охранного документа: 0002572327
Дата охранного документа: 10.01.2016
13.01.2017
№217.015.79c3

Способ подготовки углеводородного газа к транспорту

Изобретение относится к обработке углеводородного газа с использованием низкотемпературного процесса и может быть использовано в процессах промысловой подготовки к транспорту продукции газоконденсатных месторождений. Технический результат заключается в интенсификации процесса низкотемпературной...
Тип: Изобретение
Номер охранного документа: 0002599157
Дата охранного документа: 10.10.2016
04.04.2018
№218.016.362e

Способ получения судового маловязкого топлива

Изобретение раскрывает способ получения судового маловязкого топлива путем атмосферно-вакуумной перегонки нефти с выделением фракций, каталитического крекинга вакуумного газойля, компаундирования этих фракций, характеризующийся тем, что при атмосферно-вакуумной перегонке нефти выделяют...
Тип: Изобретение
Номер охранного документа: 0002646225
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.4831

Способ удаления меди из сточных вод производства акриловой кислоты

Изобретение может быть использовано в нефтехимической промышленности для обезвреживания сточных вод производства акриловой кислоты, содержащих медь. Способ включает обработку сточных вод сернисто-щелочным стоком с добавлением коагулянта и последующее отделение образующегося осадка....
Тип: Изобретение
Номер охранного документа: 0002650991
Дата охранного документа: 18.04.2018
29.05.2018
№218.016.5873

Способ возведения основания для куста скважин на многолетнемерзлых грунтах

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при возведении и эксплуатации нефтяных, газовых и газоконденсатных скважин на многолетнемерзлых грунтах. Способ возведения основания куста скважин на многолетнемерзлых грунтах включает сооружение площадок и...
Тип: Изобретение
Номер охранного документа: 0002655134
Дата охранного документа: 23.05.2018
29.03.2019
№219.016.ef2a

Присадка к дизельному топливу, дизельное топливо

Настоящее изобретение относится к составу присадки к дизельному топливу и дизельному топливу нефтяного или газоконденсатного происхождения, содержащему эту присадку. Присадка содержит до 50% алкил (С-С) нитрата и до 100 полимера этилена или его сополимера с альфа-олефинами С-С с мол. массой...
Тип: Изобретение
Номер охранного документа: 0002280068
Дата охранного документа: 20.07.2006
29.03.2019
№219.016.ef2b

Присадка к дизельному топливу, дизельное топливо

Настоящее изобретение относится к области нефте- и газохимии, конкретно к составу присадки к дизельному топливу и дизельному топливу, содержащему эту присадку. Присадка к дизельному топливу содержит до 75% алкил (C-C) нитрата, 0,1-15% алкилсукцинимида, где алкил C-C, и до 100 сополимера...
Тип: Изобретение
Номер охранного документа: 0002280067
Дата охранного документа: 20.07.2006
29.03.2019
№219.016.ef2d

Присадка к дизельному топливу, дизельное топливо

Настоящее изобретение относится к области нефте- и газохимии, конкретно к составу присадки к дизельному топливу и дизельному топливу нефтяного или газоконденсатного происхождения, содержащему эту присадку. Присадка к дизельному топливу содержит до 55 % алкил (С-С)нитрата, 0,1-15%...
Тип: Изобретение
Номер охранного документа: 0002280069
Дата охранного документа: 20.07.2006
+ добавить свой РИД