×
22.09.2018
218.016.8990

Результат интеллектуальной деятельности: Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины

Вид РИД

Изобретение

№ охранного документа
0002667248
Дата охранного документа
18.09.2018
Аннотация: Изобретение относится к проведению гидравлического разрыва пласта (ГРП) и может быть применено для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП. Способ включает проведение ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва до и после проведения ГРП геофизическим методом путем спуска на колонне труб геофизического прибора в интервал перфорации пласта, подлежащего гидроразрыву. Перед проведением процесса ГРП в горизонтальном стволе скважины в интервале перфорации обсаженного ствола или интервале ствола, через который планируется проведение ГРП, геофизическим методом проводят нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(1), затем осуществляют проппантный ГРП с применением жидкости разрыва на основе сшитого геля с использованием боратных сшивателей, после проведения ГРП осуществляют технологическую выдержку до спада давления до нуля, затем свабированием осуществляют отбор из скважины жидкости в объеме (V): V=k⋅V, где V - объем использованной для проведения ГРП гелированной жидкости, м; k - коэффициент перевода, k=0,1, далее замещают жидкость в скважине на жидкость с плотностью, равной плотности жидкости при проведении первого ННК-Т(1), затем проводят повторный нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(2) с применением того же геофизического прибора и при той же скорости прохождения в стволе горизонтальной скважины в интервале проведенного гидроразрыва, сравнивают записи проведения ННК-Т(1) с записью проведения ННК-Т(2) в интервале проведения ГРП и определяют пространственную ориентацию трещины в горизонтальном стволе скважины, если длина участка с искажением записи ННК-Т(2) после проведения ГРП - L' относительно длины записи ННК-Т(1) до проведения ГРП - L и если L'=L с отклонением до 2 м, то трещина ГРП ориентирована вдоль горизонтального ствола скважины, если L''≤0,5⋅L, то трещина ГРП ориентирована под углом 30÷60° относительно горизонтального ствола скважины, если L'''≤0,25⋅L, то трещина ГРП ориентирована под углом 60+90° относительно горизонтального ствола скважины. Технический результат заключается в повышении эффективности определения направления пространственной ориентации трещины в горизонтальном стволе скважины. 4 ил.

Изобретение относится к нефтедобывающей промышленности, а именно к проведению гидравлического разрыва пласта (ГРП), и может быть использовано для определения ориентации трещины в горизонтальном стволе скважины, полученной в результате ГРП.

Известен способ определения параметров системы трещин гидроразрыва (патент RU №2507396, МПК Е21В 47/14, опубл. 20.02.2014 в бюл. №5), включающий возбуждение упругих колебаний источником колебаний в скважине, пересекающей трещины гидроразрыва, регистрацию в точках приема по меньшей мере в одной соседней скважине резонансных колебаний, излучаемых системой трещин гидроразрыва при возбуждении в буровой жидкости упругих колебаний, и определение параметров системы трещин по возникающим при этом в трещинах резонансным колебаниям. С целью повышения однозначности определения параметров системы трещин гидроразрыва возбуждение колебаний в скважине и их регистрацию проводят до и после гидроразрыва. При этом для каждой фиксированной пары источник-приемник формируют разностную сейсмическую запись из записей, полученных до и после гидроразрыва. На разностной сейсмозаписи выделяют сигналы, излучаемые системой трещин, и по этим сигналам судят о параметрах трещин. Причем резонансную частоту системы трещин гидроразрыва определяют по максимуму интенсивности возбуждаемых системой трещин колебаний путем изменения частоты в скважине колебаний в пределах от нижней границы диапазона возбуждаемых непрерывных колебаний до верхней границы. Сейсмические колебания, излучаемые системой трещин гидроразрыва, регистрируют в скважинах, расположенных в различных направлениях от скважины, пересекающей трещины гидроразрыва, и по кинематическим и динамическим параметрам зарегистрированных сигналов судят о параметрах системы трещин, причем дополнительно одновременно с регистрацией колебаний в соседней скважине регистрируют колебания в точках приема, расположенных в приповерхностной зоне.

Недостатки способа:

- во-первых, технологическая сложность реализации способа, связанная с тем, что дополнительно одновременно с регистрацией колебаний в соседней скважине регистрируют колебания в точках приема, расположенных в приповерхностной зоне;

- во-вторых, низкая надежность определения пространственной ориентации трещины гидроразрыва, так как направление трещин регистрируют в скважинах, расположенных в различных направлениях от скважины, пересекающей трещины гидроразрыва, и по кинематическим и динамическим параметрам зарегистрированных сигналов судят о параметрах направления трещины, причем если сигнал слабый, то информация будет недостоверной, т.е. направление развития трещины будет определено ошибочно;

- в-третьих, длительность реализации способа, связанная с регистрацией сигналов о параметрах направления трещины в соседних скважинах.

Также известен способ определения пространственной ориентации трещины гидроразрыва (а.с. №1629521, МПК Е21В 47/10, опубл. 23.02.1991 в бюл. №7), включающий возбуждение вблизи устья скважины поперечной сейсмической волны, после проведения гидроразрыва измерение расположенными на поверхности земли приемниками амплитуд волнового поля, по которым определяют пространственную ориентацию трещины гидроразрыва. Дополнительно возбуждают поперечную волну до проведения гидроразрыва, ориентируют приемники вдоль линии поляризации возбуждаемой волны и измеряют амплитуду волнового поля. Изменяют направление поляризации на угол α, повторяют возбуждение волны и измерение амплитуды волнового поля n раз до момента n⋅α>180°, а пространственную ориентацию трещины гидроразрыва определяют по величине разности амплитуд, измеренных при одинаковом направлении поляризации волны, возбужденной до и после гидроразрыва.

Недостатки способа:

- во-первых, сложность реализации способа, связанная с возбуждением вблизи устья скважины поперечной сейсмической волны, а также дополнительной одновременно с регистрацией колебаний в соседней скважине регистрацией колебаний в точках приема, расположенных в приповерхностной зоне;

- во-вторых, низкая надежность определения пространственной ориентации трещины гидроразрыва, так как приемники амплитуд волнового поля, по которым определяют пространственную ориентацию трещины, расположены на поверхности земли и могут иметь нечеткий сигнал, особенно в скважинах с глубиной до 2000 м, в связи с чем определить направление ориентации трещины будет невозможно;

- в-третьих, низкая эффективность способа, обусловленная тем, что направление пространственной ориентации трещины гидроразрыва определяют расчетным путем по величине разности амплитуд, измеренных при одинаковом направлении поляризации волны, возбужденной до и после гидроразрыва, причем ошибка в расчете может указать иное направление пространственной ориентации трещины гидроразрыва, чем то направление, в котором она сориентирована в действительности;

- в-четвертых, длительность реализации способа, связанная с многократными повторениями возбуждения волны и измерения амплитуды волнового поля n раз до момента n/α>180°, что увеличивает трудозатраты на реализацию способа.

Наиболее близким по технической сущности и достигаемому результату является способ определения пространственной ориентации трещины гидроразрыва (патент RU №2626502, МПК Е21В 43/267, опубл. 28.07.2017 в бюл. №22), включающий проведение ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва после проведения ГРП. Перед проведением ГРП в скважину в интервал пласта, подлежащего гидроразрыву, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта, извлекают колонну труб с геофизическим прибором из скважины, производят ГРП с образованием и креплением трещины разрыва проппантом, причем в процессе крепления трещины проппант закачивают двумя порциями, первой порцией закачивают проппант в 4/5 части от его общей массы, а второй порцией закачивают маркированный проппант, содержащий 0,4 мас.% гадолиния (Gd64157,25) в 1/5 части от общей массы проппанта, при этом фракции проппанта одинаковы в обеих порциях, по окончании крепления трещины стравливают давление из скважины и промывают забой скважины от излишков маркированного проппанта, извлекают колонну труб с пакером из скважины, в скважину в интервал пласта с трещиной, закрепленной в призабойной зоне маркированным проппантом, на колонне труб спускают геофизический прибор, вращением колонны труб с геофизическим прибором на угол 360° производят импульсно-нейтронный каротаж путем замера нейтронно-поглощающей способности породы пласта и трещины разрыва и определяют пространственную ориентацию трещины гидроразрыва.

Недостатки способа:

- во-первых, данный способ предназначен для применения только в вертикальных скважинах и имеет низкую эффективность при определении ориентации трещин в горизонтальных скважинах;

- во-вторых, сложный в реализации способ, связанный с тем, что в процессе ГРП вместе с проппантом необходимо порционно закачивать гадолиний, т.е. маркировать закачиваемый проппант, а затем промывать забой скважины от маркированного проппанта;

- в-третьих, низкая точность определения пространственной ориентации трещины, обусловленная тем, что после проведения ГРП в процессе промывки скважины гадолиний оседает на забой скважины, что искажает дальнейшие показания геофизического прибора;

- в-четвертых, дополнительные затраты при реализации способа, связанные с приобретением гадолиния, который является дорогим, что увеличивает стоимость проведения процесса ГРП;

- в-пятых, данный способ реализуется только в обсаженном стволе вертикальной скважины.

Техническими задачами изобретения являются повышение эффективности определения направления пространственной ориентации трещины в горизонтальном стволе скважины, упрощение технологии реализации способа, а также повышение точности определения пространственной ориентации трещины и снижение стоимости реализации способа с возможностью реализации способа как в необсаженном, так и в обсаженном горизонтальном стволе скважины.

Технические задачи решаются способом определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины, включающим проведение гидроразрыва пласта - ГРП с образованием трещины разрыва и определение пространственной ориентации трещины гидроразрыва до и после проведения ГРП геофизическим методом путем спуска на колонне труб геофизического прибора в интервал перфорации пласта, подлежащего гидроразрыву.

Новым является то, что перед проведением процесса ГРП в горизонтальном стволе скважины в интервале перфорации обсаженного ствола или интервале ствола, через который планируется проведение ГРП, геофизическим методом проводят нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(1), затем осуществляют проппантный ГРП с применением жидкости разрыва на основе сшитого геля с использованием боратных сшивателей, после проведения ГРП осуществляют технологическую выдержку до спада давления до нуля, затем свабированием осуществляют отбор из скважины жидкости в объеме (Vo):

Vo=k-Vг,

где Vг - объем использованной для проведения ГРП гелированной жидкости, м3;

k - коэффициент перевода, k=0,1,

далее замещают жидкость в скважине на жидкость с плотностью, равной плотности жидкости при проведении первого ННК-Т(1), затем проводят повторный нейтрон-нейтронный каротаж по тепловым нейтронам - ННК-Т(2) с применением того же геофизического прибора и при той же скорости прохождения в стволе горизонтальной скважины в интервале проведенного гидроразрыва, сравнивают записи проведения ННК-Т(1) с записью проведения ННК-Т(2) в интервале проведения ГРП и определяют пространственную ориентацию трещины в горизонтальном стволе скважины, если длина участка с искажением записи ННК-Т(2) после проведения ГРП-L2' относительно длины записи ННК-Т(1) до проведения ГРП - L1 и если L2'=L1 с отклонением до 2 м, то трещина ГРП ориентирована вдоль горизонтального ствола скважины, если L2''≤0,5⋅L1, то трещина ГРП ориентирована под углом 30÷60° относительно горизонтального ствола скважины, если L2'''≤0,25⋅L1, то трещина ГРП ориентирована под углом 60÷90° относительно горизонтального ствола скважины.

На фиг. 1-4 схематично показан порядок реализации предлагаемого способа.

Суть способа заключается в следующем.

Перед проведением процесса ГРП в горизонтальном стволе 1 скважины (см. фиг. 1-4) в интервале перфорации 2 длиной L1 или интервале открытого ствола, через который планируется проведение ГРП, спускают геофизический прибор на колонне труб. В горизонтальном стволе геофизическим методом проводят нейтрон-нейтронный каротаж по тепловым нейтронам ННК-Т(1)-3'. Плотность жидкости, находящейся в стволе горизонтальной скважины, равна 1000 кг/м3.

Осуществляют проппантный ГРП (по любой известной технологии) с применением жидкости разрыва на основе сшитого геля с использованием боратных сшивателей. После проведения ГРП осуществляют технологическую выдержку до спада давления до нуля, например, в течение 30 мин.

Свабированием осуществляют отбор из скважины жидкости в объеме (Vo):

Vo=k⋅Vг,

где Vг - объем использованной для проведения ГРП гелированной жидкости, м3;

k - коэффициент перевода, k=0,1.

Например, объем использованной для проведения ГРП гелированной жидкости Vг=50 м. Тогда, подставляя числовые значения, получим: Vo=0,1⋅50 м3=5,0 м3.

Свабированием по горизонтальному стволу скважины отбирают 5,0 м3 жидкости. Отбор жидкости из горизонтального ствола 1 скважины проводят с целью промывки интервала проведения ГРП от пленки геля для повышения достоверности дальнейших геофизических исследований. Коэффициент перевода k=0,1 получен опытным путем исходя из необходимого объема отбора жидкости из скважины для промывки интервала проведения ГРП от пленки геля после проведения ГРП.

С помощью насосного агрегата замещают жидкость в скважине, например жидкость в скважине после проведения ГРП плотностью 1100 кг/м3 замещают на жидкость с плотностью, равной плотности жидкости при проведении первого ННК-Т(1), т.е. на жидкость с плотностью 1000 кг/м3, например в объеме горизонтального ствола скважины, равного 25 м3. Это исключает искажение данных при дальнейшей интерпретации полученных геофизических данных.

Затем проводят повторный ННК-Т(2)-3'' (см. фиг. 2-4) с применением того же геофизического прибора и при той же скорости прохождения в стволе горизонтальной скважины в интервале проведенного гидроразрыва.

Сравнивают записи проведения ННК-Т(1)-3' и ННК-Т(2)-3'' в интервале проведения ГРП. На показания ННК-Т большое влияние оказывают элементы-поглотители, обладающие большим сечением захвата тепловых нейтронов.

Бор, входящий в состав сшивателя для гелирования воды, имеет аномально высокую способность захвата тепловых нейтронов, поэтому записи нейтронного каротажа до ГРП и после будут отличаться.

Определяют ориентацию трещины относительно ствола скважины.

Фиг. 1. L1 - длина интервала перфорации 2, м. Запись ННК-Т (1) до проведения ГРП.

Фиг. 2. L2' - длина участка с искажением записи ННК-Т (2) после ГРП относительно ННК-Т(1) до проведения ГРП. Если L2'=L1 с отклонением до 2 м, то трещина 4 ГРП ориентирована вдоль горизонтального ствола скважины.

Фиг. 3. L2'' - длина участка с искажением записи ННК-Т (2) после ГРП относительно ННК-Т(1) до проведения ГРП. Если L2''≤0,5⋅L1, то трещина 4 ГРП ориентирована под углом 30÷60° относительно горизонтального ствола скважины.

Фиг. 4. L2''' - длина участка с искажением записи ННК-Т (2) после ГРП относительно ННК-Т(1) до проведения ГРП. Если L2'''≤0,25⋅L1, то трещина 4 ГРП ориентирована под углом 60÷90° относительно горизонтального ствола скважины.

На основе полученных результатов определяют направления горизонтальных стволов скважин, оптимизируют сетку скважин для разбуривания с учетом информации о преимущественном направлении трещин ГРП.

Предлагаемый способ позволяет эффективно определять ориентацию трещин в горизонтальных стволах скважин как в необсаженных, так и в обсаженных.

Упрощается процесс реализации способа, так как проппантный ГРП осуществляют по любой известной технологии без маркировки проппанта гадолинием и порционной закачки проппанта с ним, кроме того, исключается промывка забоя скважины от маркированного проппанта.

Исключаются дополнительные затраты при реализации способа, связанные с приобретением гадолиния, который является дорогим, что также снижает стоимость проведения процесса ГРП.

Повышается точность определения пространственной ориентации трещины, так как из-за отсутствия применения гадолиния при реализации способа исключается его оседание на забой скважины, а это повышает точность показаний геофизического прибора.

Предлагаемый способ позволяет:

- повысить эффективность определения направления пространственной ориентации трещины в горизонтальном стволе скважины;

- упростить технологию реализации способа;

- повысить точность определения пространственной ориентации трещины;

- снизить стоимости реализации способа;

- реализовать способ как в необсаженном, так и в обсаженном горизонтальном стволе скважины.


Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины
Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины
Способ определения пространственной ориентации трещины гидроразрыва в горизонтальном стволе скважины
Источник поступления информации: Роспатент

Показаны записи 341-350 из 432.
24.10.2019
№219.017.da6d

Способ строительства скважины в сложных геологических условиях

Изобретение относится к нефтяной промышленности и может найти применение при строительстве наклонно направленной скважины с зенитным углом более 25° на участках ствола с кавернообразованием и поглощением пород, расположенных ниже верейского горизонта. В предлагаемом способе до начала бурения на...
Тип: Изобретение
Номер охранного документа: 0002704089
Дата охранного документа: 23.10.2019
26.10.2019
№219.017.dac4

Способ изоляции водопритока в скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам ограничения водопритока в обводненных коллекторах. Способ включает закачку в пласт гелеобразующей композиции, содержащей водорастворимый полимер полиакриламида - ПАА, ацетат хрома и воду. При этом производят...
Тип: Изобретение
Номер охранного документа: 0002704168
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.dad1

Состав для ремонтно-изоляционных работ в скважине

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для ремонтно-изоляционных работ в скважине. Состав для ремонтно-изоляционных работ в скважине содержит 40-50 мас. % каустического магнезита, 25-30 мас. % хлористого магния, 25-30 мас. %, 0,2-0,7 мас. % сверх 100%...
Тип: Изобретение
Номер охранного документа: 0002704163
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.db26

Способ разработки нефтяного пласта

Изобретение относится к нефтедобывающей промышленности, в частности к способам разработки нефтяного пласта, и может найти применение при разработке неоднородных по проницаемости нефтяных пластов. Технический результат - увеличение нефтеотдачи пластов и снижение обводненности добывающих скважин...
Тип: Изобретение
Номер охранного документа: 0002704166
Дата охранного документа: 24.10.2019
26.10.2019
№219.017.db35

Солянокислотный состав для обработки и разглинизации прискважинной зоны пласта

Изобретение относится к области нефте- и газодобычи. Технический результат - повышение растворяющей способности и степени стабилизации не только карбонатной матрицы коллектора и диспергирования полимер-глинистой фильтрационной корки, но также растворяющей способности и диспергирования...
Тип: Изобретение
Номер охранного документа: 0002704167
Дата охранного документа: 24.10.2019
01.11.2019
№219.017.dc2b

Способ разработки нефтяного месторождения с использованием закачки углекислого газа

Изобретение относится к области добычи нефти и может быть использовано в способах разработки месторождений с карбонатными и терригенными коллекторами, содержащими, в том числе высоковязкую нефть, а также месторождений с низким газовым фактором. Технический результат - повышение надежности и...
Тип: Изобретение
Номер охранного документа: 0002704660
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc5f

Способ селективной кислотной обработки неоднородного карбонатного пласта

Изобретение относится к нефтедобывающей промышленности. Технический результат – временное блокирование интервалов пласта с высоким коэффициентом удельной приемистости более 2,0 м/(МПа⋅ч), эффективное воздействие кислотным составом на породу, выравнивание фронта обработки, увеличение дебита...
Тип: Изобретение
Номер охранного документа: 0002704668
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc8b

Система обустройства месторождения тяжелой нефти и природного битума

Изобретение относится к системе обустройства месторождения тяжелой нефти и природного битума. Техническим результатом является повышение эффективности работы. Система обустройства месторождения тяжелой нефти и природного битума включает добывающие скважины, соединенные через трубопровод...
Тип: Изобретение
Номер охранного документа: 0002704664
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dc91

Состав для ограничения водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и обработки нагнетательных скважин с целью выравнивания профиля приемистости. Состав содержит 8,0-15,0 мас. % силиката натрия, 85-92 мас. % пресной воды, 0,3-0,8 мас. % сверх...
Тип: Изобретение
Номер охранного документа: 0002704661
Дата охранного документа: 30.10.2019
01.11.2019
№219.017.dcb3

Состав для изоляции водопритока в скважину

Изобретение относится к нефтедобывающей промышленности, в частности к составам для изоляции водопритока в добывающих и нагнетательных скважинах, и предназначено для проведения водоизоляционных работ в скважинах. Состав содержит 14-20 мас. % силиката натрия, 0,3-1,0 мас. % ацетата хрома, 0,5-1,5...
Тип: Изобретение
Номер охранного документа: 0002704662
Дата охранного документа: 30.10.2019
Показаны записи 301-303 из 303.
21.05.2023
№223.018.6aeb

Устройство для опрессовки двухрядного превентора на скважине

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для опрессовки двухрядного превентора на скважине. Расширяются функциональные возможности устройства, повышается надёжность устройства в работе, снижается трудоёмкость проведения работ по опрессовке превентора с...
Тип: Изобретение
Номер охранного документа: 0002795662
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.6aec

Устройство для опрессовки двухрядного превентора на скважине

Изобретение относится к нефтедобывающей промышленности, в частности к устройствам для опрессовки двухрядного превентора на скважине. Расширяются функциональные возможности устройства, повышается надёжность устройства в работе, снижается трудоёмкость проведения работ по опрессовке превентора с...
Тип: Изобретение
Номер охранного документа: 0002795662
Дата охранного документа: 05.05.2023
26.05.2023
№223.018.7063

Переходная катушка устьевой арматуры для превентора с двумя рядами плашек (варианты)

Изобретение относится к устьевой арматуре и может быть использовано в нефтедобывающей промышленности при ремонте скважин в процессе последовательного проведения спуско-подъемных операций (СПО) с двумя колоннами труб в одной скважине. Переходная катушка устьевой арматуры для превентора с двумя...
Тип: Изобретение
Номер охранного документа: 0002796145
Дата охранного документа: 17.05.2023
+ добавить свой РИД