×
14.09.2018
218.016.87b1

Результат интеллектуальной деятельности: Способ диагностики уплотнительных поверхностей запорной арматуры

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу диагностики уплотнительных поверхностей запорной арматуры. Способ диагностики уплотнительных поверхностей запорной арматуры, включающий подключение электропривода к запорной арматуре и последующее измерение и фиксацию электрических сигналов, отличающийся тем, что фиксируют электрический сигнал с фазового провода, идущий на электропривод за интервал времени открытия и закрытия запорной арматуры, при этом измерение электрического сигнала осуществляется за счет измерения силы тока с помощью внешнего измерительного преобразователя - токовых клещей, фиксирование сигнала осуществляется осциллографом, выполненным с возможностью построения графиков, отражающих зависимость средних квадратичных значений силы тока. Изобретение обеспечивает повышение точности диагностики уплотнительных поверхностей запорной арматуры. 5 ил.

Изобретение относится устройствам для приведения в движение запорных элементов с иной целью, чем открывание или закрывание клапана, крана или задвижки, например, для притирки, для предотвращения заедания в частности к способу диагностики уплотнительных поверхностей запорной арматуры.

Известно устройство (патент РФ №110160, опубл. 10.11.2011, F16K 31/04) управления запорно-регулирующим органам трубопроводной арматуры, состоящее из электропривода, содержащего электродвигатель, блок датчиков, включающий датчик положения, блок аналогового выхода, блок дискретных выходов, модуля управления в корпусе, содержащего блок силового коммутатора, блоки дискретных входов и выходов, блок обработки данных и диагностики, выполненный с возможностью подключения к внешнему управляющему устройству посредством дискретных сигналов, переносной пульт настройки, кроме этого в электропривод введены: датчик температуры, установленный в обмотке электродвигателя, датчик момента, связанный с дискретными входами модуля управления, в модуль управления - блок тепловой защиты, вход которого предназначен для подключения датчика температуры, а выход соединен с блоком обработки данных, блок сетевого интерфейса для реализации возможности подключения к внешнему управляющему устройству посредством цифровой связи, блок микропереключателей, при этом датчик положения электропривода выполнен бесконтактным, по крайней мере, токовым.

Недостатком способа диагностики реализуемого в данном устройстве является сложность и малая точность диагностики, именно уплотнительных поверхностей запорной арматуры.

Известен способ (патент РФ №2382991, опубл. 27.02.2010, G01H 1/00), включающий внешнее воздействие на устройство, подлежащее диагностике, запись осциллограммы вибраций устройства, подлежащего диагностике, с использованием, по меньшей мере, одного датчика вибрации, частотный анализ полученных результатов измерений, выделение частот, характеризующихся наибольшей выраженностью среди прочих, формирование средневзвешенного спектра частот, измерение спектра собственных колебаний устройства, выделение частот, характеризующихся наибольшей выраженностью среди прочих, формирование разностного спектра частот, характеризующихся наибольшей выраженностью, с его последующей оценкой, отличающийся тем, что в подлежащей анализу запорной арматуре - агрегате, подлежащем диагностике, выделяются составные элементы, образующие переменно-упругие механические связи, предварительно определяется частота собственных колебаний агрегата h, связанная с размерами, и частота собственных колебаний агрегата Fm, связанная с массой тела, производится активное внешнее воздействие на агрегат, подлежащий диагностике, с диапазоном амплитуд, превышающим величину промышленных помех, а также полосу частот, превышающую полосу частот собственных колебаний объекта Fd, связанную с размерами, и полосу частот Fm, связанную с массой тела, с последующим возбуждением во всем агрегате, подлежащем диагностике, а также в каждом из составных элементов агрегата, собственных колебаний, при этом частотный анализ полученных результатов измерений выполняется с использованием преобразования Фурье с последующим формированием спектров возбужденных колебаний для агрегата, подлежащего диагностике, а также составных элементов агрегата, формирование средневзвешенного спектра частот производится без учета частот, характеризующихся наибольшей выраженностью, измерение спектра собственных колебаний производится как для всего агрегата, подлежащего диагностике, так и для составных элементов агрегата, причем среди частот, характеризующихся наибольшей выраженностью, среди прочих выделяются частоты, являющиеся наиболее низкими гармониками в ряду, при формировании разностного спектра частот, характеризующихся наибольшей выраженностью, выполняется оценка средневзвешенного спектра частот резонансного сигнала, а оценка разностного спектра и выделение частот, характеризующихся наибольшей выраженностью, производится для всех составных элементов агрегата, подлежащего диагностике, с последующим выводом о перемещении составных элементов агрегата относительно друг друга с последующим формированием массива значений, качественно характеризующих степень механической взаимосвязи каждого из составных элементов агрегата, подлежащего диагностике.

Недостаткам данного решения является сложность и низкая точность диагностики уплотнительных поверхностей запорной арматуры.

Известен способ (патент РФ №2045007, опубл. 27.09.1995, G01M 3/16), заключающийся в том, что создают в изделии испытательное давление воздуха, отключают изделие от источника давления и регистрируют наличие утечки воздуха из изделия, при этом фиксируют изменение электрического потенциала изделия и по этому изменению регистрируют наличие утечки.

Недостаткам данного решения является невозможность диагностики уплотнительных поверхностей запорной арматуры.

На данный момент предложенный способ диагностики уплотнительных поверхностей запорной арматуры в документах не раскрывается, то есть существует необходимость создания такого способа и применение его в производстве.

Технической задачей заявляемого решения является упрощение конструкции и повышение точности диагностики уплотнительных поверхностей запорной арматуры.

Указанный технический результат достигается тем, что способ диагностики уплотнительных поверхностей запорной арматуры включает подключение электропривода к запорной арматуре и последующее измерение и фиксацию электрических сигналов. Фиксируют электрический сигнал с, по крайней мере, одного из фазовых проводов, идущих на электропривод за интервал времени соответствующий: процессам открытия и закрытия запорной арматуры, при этом измерение электрического сигнала осуществляется за счет измерения силы тока с помощью внешнего измерительного преобразователя - токовых клещей, фиксирование сигнала осуществляется осциллографом.

Осциллограф выполнен с возможностью построения графиков, отражающих зависимость средних квадратичных значений силы тока.

Снимаемый с токовых клещей сигнал поступает на контроллер, где полученные мгновенные значения силы толка преобразуются в среднеквадратичные значения силы тока по формуле:

где i1, i2, …, in - мгновенные значения силы тока, А;

n - количество точек усреднения.

Величина крутящего момента зависит от величины давления в трубопроводе, конструктивных особенностей самой запорной арматуры, а также от технического состояния уплотнительных поверхностей запорного органа. Так как, крутящий момент создается приводом, работающим от электрической сети, то существует зависимость между электрической мощностью в обмотках электродвигателя привода и его крутящим моментом, которая определяется формулой:

где:

М - крутящий момент, Н⋅м;

Р - мощность, Вт;

ω - угловая частота, рад/с;

U - напряжение, В;

I - сила тока, А;

ϕ - сдвиг фаз между U и I, радиан.

То есть о техническом состоянии запорного органа арматуры можно судить по значениям электрической мощности, а при стабильном сетевом напряжении - по значениям силы тока электропривода. Для исключения влияния на работу привода измерения силы тока выполняются с помощью внешнего измерительного преобразователя - токовых клещей, охватывающих силовые фазные провода, по которым подается питание на привод. На фиг. 1 представлена схема измерений, используемых в данном способе.

Измерительная схема содержит: осциллограф - 1, выполняющий контроль, токовые клещи 2, которые измеряют сигнал, один из фазовых силовых проводов 3 идущих на электропривод 4, связанный с запорной арматурой 5. Полученный с токовых клещей сигнал поступает на осциллограф, полученный с токовых клещей сигнал регистрируется осциллографом, при этом полученные мгновенные значения силы толка преобразуются в средне-квадратичные значения силы (СКЗ) тока. Дальнейшая математическая обработка полученных мгновенных значений силы толка производится и заключается в вычислении средних квадратичных значений (СКЗ) силы тока по формуле:

где ii, i2, …, in - мгновенные значения силы тока, А;

n - количество точек усреднения.

Техническое состояние запорного узла определяется во время открытия и закрытия запорной арматуры. На фигуре 2 представлен график зависимости СКЗ силы тока от времени при открытии задвижки с односторонним давлением на затворе. На фигуре 3 представлен фрагмент, изображенный на фигуре 2 «срыв запорного органа». На фигуре 4 представлен график зависимости СКЗ силы тока при закрытии запорной арматуры. На фигуре 5 представлены графики зависимости СКЗ силы тока от времени на всем интервале открытия и закрытия задвижки, с односторонним давлением на затворе - при трех различных состояниях уплотнительной поверхности запорной арматуры. Информативной является как величина тока при «срыве» и открытии/закрытии запорного органа, так и наличие (отсутствие) скачкообразных его изменений, свидетельствующих о появлении дефектов на уплотнительных поверхностях. На фигуре 5 кривая 6 соответствует исправной задвижке, кривая 7 иллюстрирует появление задиров и рисков на уплотнительных поверхностях запорного органа, кривая 8 показывает характер изменения СКЗ силы тока в случае, когда запорная арматура не обеспечивает герметичность запорного органа.

Способ диагностики уплотнительных поверхностей запорной арматуры включает подключение электропривода к запорной арматуре и последующее измерение и фиксацию электрических сигналов, при этом фиксируют электрический сигнал с фазового провода, идущего на электропривод за интервал времени, соответствующий: процессам открытия и закрытия запорной арматуры, так что данный интервал времени включает начало переходного процесса включения электропривода, процесс выборки зазоров запорной арматуры, процесс срыва запорного органа с односторонним давлением на затворе арматуры, процесс хода на открытие с односторонним давлением на затворе арматуры, начало переходного процесса на закрытие на электроприводе с односторонним давлением на затворе арматуры, процесс уменьшения зазоров при ходе на закрытие и процесс установления запорного органа с односторонним давлением на затворе арматуры, а измерение электрического сигнала осуществляется за счет измерения силы тока с помощью внешнего измерительного преобразователя - токовых клещей, фиксирование измеренного с помощью внешнего измерительного преобразователя - токовых клещей электрического сигнала осуществляется с помощью запоминающего осциллографа, при этом состояние уплотнительных поверхностей запорной арматуры определяется по графикам зависимости средних квадратичных значений силы тока (см. фиг. 2-5).

Таким образом, достигается техническая задача - упрощение конструкции и повышение точности диагностики уплотнительных поверхностей запорной арматуры.


Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Способ диагностики уплотнительных поверхностей запорной арматуры
Источник поступления информации: Роспатент

Показаны записи 51-60 из 151.
10.05.2018
№218.016.4742

Способ проведения внутритрубной диагностики в подвижной жидкостной пробке

Использование: для обнаружения дефектов в стенке трубопровода. Сущность изобретения заключается в том, что перемещают внутритрубный инспекционный прибор по трубопроводу, снабженный передатчиками, сигналы от которых получают и обрабатывают в наземных пунктах обработки, при этом внутритрубный...
Тип: Изобретение
Номер охранного документа: 0002650621
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4814

Стенд для исследования процессов транспортировки тяжелой и битуминозной нефти

Изобретение относится к области гидродинамики жидкостей, а именно к устройствам (стендам) для исследования процессов прокачки смеси нефтей, парафиноотложения, остывания трубопровода при транспортировке тяжелой и битуминозной нефти. Стенд предназначен для поиска способов повышения эффективности...
Тип: Изобретение
Номер охранного документа: 0002650727
Дата охранного документа: 17.04.2018
18.05.2018
№218.016.50ce

Способ заполнения раствором межтрубного пространства тоннельного перехода магистрального трубопровода

Изобретение относится к трубопроводному транспорту и может быть использовано при сооружении и/или реконструкции переходов магистральных трубопроводов через естественные и искусственные препятствия, построенные бестраншейными методами. В предложенном способе заполнение раствором межтрубного...
Тип: Изобретение
Номер охранного документа: 0002653277
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.517d

Способ обследования фундаментов насосных агрегатов

Изобретение относится к области обследования технического состояния фундаментов насосных агрегатов и может быть использовано при эксплуатации насосных станций для своевременного предупреждения аварий насосных агрегатов при транспортировке газа, нефти и нефтепродуктов. Способ обследования...
Тип: Изобретение
Номер охранного документа: 0002653215
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.523e

Способ изготовления стенда сухой протяжки для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне

Использование: для проверки работоспособности внутритрубных инспекционных приборов на испытательном трубопроводном полигоне. Сущность изобретения заключается в том, что используют катушки трубных секций с естественными дефектами с действующих трубопроводов и катушки трубных секций с нанесенными...
Тип: Изобретение
Номер охранного документа: 0002653138
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5a44

Способ измерения радиусов изгиба трубопровода на основе данных диагностического комплекса для определения положения трубопровода

Изобретение относится к измерительной технике и может быть использовано для определения положения трубопровода в пространстве, например в горизонтальной и вертикальной плоскостях при эксплуатации и строительстве трубопроводов. Технический результат – расширение функциональных возможностей на...
Тип: Изобретение
Номер охранного документа: 0002655614
Дата охранного документа: 29.05.2018
20.06.2018
№218.016.647f

Способ внутритрубной диагностики трубопроводов с использованием метода "сухой протяжки"

Использование: для внутритрубной диагностики трубопроводов. Сущность изобретения заключается в том, что c одной стороны трубопровода производят монтаж камеры пуска средств очистки и диагностики (далее - СОД), причем СОДом может быть магнитный дефектоскоп, профилемер или очистной скребок, с...
Тип: Изобретение
Номер охранного документа: 0002658122
Дата охранного документа: 19.06.2018
05.07.2018
№218.016.6ae6

Способ защиты трубопроводов систем пенного пожаротушения и водяного охлаждения резервуаров нефти или нефтепродуктов от воздействия взрыва газовоздушной смеси

Изобретение относится к области пожарной безопасности, а именно к системам пожаротушения стальных вертикальных резервуаров для хранения нефти или нефтепродуктов. Способ защиты трубопроводов системы пожаротушения и системы охлаждения резервуаров от воздействия взрыва газовоздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002659981
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6b04

Рюкзак для переноски оборудования и инструментов

Изобретение относится к приспособлениям для переноски ручных инструментов, а именно к специализированным рюкзакам для переноски товарными операторами инструмента, оборудования и материалов при производстве работ по замеру уровня и отбору проб в резервуарах для приема, хранения, подготовки,...
Тип: Изобретение
Номер охранного документа: 0002660085
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6ba5

Способ оценки эффективности противотурбулентной присадки

Изобретение относится к области гидродинамики жидкостей, в частности к способам оценки эффективности гидродинамического сопротивления углеводородных жидкостей, и может быть использовано при создании гидродинамических стендов для изучения углеводородных жидкостей и испытания присадок к ним,...
Тип: Изобретение
Номер охранного документа: 0002659754
Дата охранного документа: 03.07.2018
+ добавить свой РИД