×
13.09.2018
218.016.875a

Результат интеллектуальной деятельности: Способ обзора пространства

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиолокации и предназначено для построения обзорных радиолокационных станций с цифровыми антенными решетками. Технический результат - увеличение точности измерения азимутальной координаты объекта за счет использования моноимпульсного метода измерения вместо метода максимума. Указанный результат достигается за счет того, что в каждом азимутальном положении диаграммы направленности (ДН) в режиме передачи цифровая антенная решетка формирует веерную передающую ДН в угломестной плоскости, в режиме приема в случае размещения приемных лучей в узлах квадратной сетки формируют две приемных многолучевых в угломестной плоскости ДН с лучами игольчатой формы, при этом соседние лучи в ДН перекрываются по уровню L, равному половине мощности от максимума, размещают первую и вторую ДН параллельно друг другу таким образом, чтобы лучи с одинаковыми угломестными координатами перекрывались по уровню L, а азимутальная координата передающего луча соответствовала линии пересечения лучей первой и второй ДН. В случае размещения приемных лучей в узлах треугольной сетки формируют три приемных многолучевых в угломестной плоскости ДН с лучами игольчатой формы, при этом соседние лучи в ДН перекрываются по уровню L, размещают вторую и третью ДН параллельно друг другу таким образом, чтобы лучи с одинаковыми угломестными координатами перекрывались по уровню L, а азимутальная координата передающего луча соответствовала линии пересечения лучей второй и третьей ДН, совмещают линию расположения максимумов лучей первой ДН с линией пересечения лучей второй и третьей ДН, совмещают угломестные координаты максимумов лучей второй и третьей приемных ДН с линией пересечения лучей первой приемной ДН, при обнаружении объектов, измерении их дальности и угловых координат используется моноимпульсный метод обработки сигналов каждой из соседних пар приемных лучей. 8 ил.

Изобретение относится к радиолокационной технике, а именно, к способам обзора пространства и предназначено для использования в радиолокационных системах (РЛС) с цифровыми антенными решетками (ЦАР).

Известен способ обзора пространства [1 - стр. 39 - Обработка сигналов в многоканальных РЛС / Под ред. А.П. Лукошкина. М.; Радио и связь. 1983 - 328 с.] путем параллельного обзора по всем измеряемым координатам с помощью многолучевой РЛС, при этом формируются перекрывающиеся лучи диаграммы направленности (ДН), охватывающие всю зону обзора.

Недостатками известного способа являются избыточные ресурсы, которые требуются для формирования параллельных лучей по всем измеряемым координатам.

Известен способ обзора пространства [2 - стр. 233 - Белоцерковский Г.Б. Основы радиолокации и радиолокационные устройства. М.; Сов. радио. 1975 - 336 с], в котором формируется многолучевая ДН в угломестной плоскости за счет облучения зеркальной антенны несколькими излучателями (рупорами), при этом линейка излучателей расположена в угломестной плоскости и зафиксирована относительно оси зеркала, каждый излучатель соединен со своим приемо-передатчиком отдельным фидером и формирует парциальный луч на своей несущей частоте. Прием отраженных сигналов каждым излучателем также осуществляется на своей частоте. Сканирование по азимуту осуществляется механическим вращением антенны.

Недостатками известного способа обзора пространства являются: - низкий КПД передающей части устройства за счет больших потерь излучаемого и принимаемого сигнала в фидерах, соединяющих излучатели (рупоры) и приемо-передающие каналы, поскольку они значительно разнесены в пространстве;

- недостаточно высокая надежность, поскольку при выходе из строя одного приемо-передатчика обзор пространства становится невозможен в том секторе угломестного обзора, который обеспечивал этот приемо-передатчик.

Известен способ обзора пространства [3 - Способ обзора пространства и сопровождения объектов поверхности при маловысотном полете - Патент РФ 2211459, опубл. 27.08.2003], заключающийся в том, что обнаружение объектов включает последовательную обработку данных в дискретном времени с привязкой к каждому текущему такту tn обработки, полученных при обзоре пространства с использованием веерной диаграммы направленности и занимающей М положений по горизонтали и диаграммы направленности с игольчатой формой, зондирующей отдельные выбранные участки зоны обзора с малым периодом обзора, при этом обе диаграммы направленности формируются одной антенной системой с электронным управлением лучом.

Недостатками известного способа обзора пространства являются:

- большое время обзора, так как измерение координат объекта выполняется в два этапа: вначале используется веерная ДН в режиме приема и передачи, при этом производится грубое измерение координат объекта, а для уточнения координат дополнительно используется ДН с игольчатой формой, что значительно удлиняет время обзора при увеличении числа объектов;

- недостаточную точность измерения координат объекта, поскольку для измерения используется единственная ДН с игольчатой формой, и метод максимума [2 - стр. 87].

Наиболее близким по технической сущности к изобретению является способ обзора пространства [4 - Способ обзора пространства - Патент РФ 2610833, опубл.16.02.2017 г.], взятый за прототип, заключающийся в том, что для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, при этом в каждом азимутальном положении диаграммы направленности в режиме передачи формируют передающую диаграмму направленности веерной формы в угломестной плоскости, в режиме приема принимаемые отраженные сигналы представляются в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню половинной мощности, при этом ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости, выполняют обнаружение объектов, измерение их дальности и угломестной координаты моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую азимутальную координату.

Недостатком прототипа является недостаточная точность измерения азимутальных координат объекта, поскольку для измерения координат в азимутальной плоскости используется ДН с игольчатой формой и метод максимума [2 - стр. 87].

Задачей, на решение которой направлено предлагаемое изобретение, является увеличение точности измерения азимутальных координат объекта.

Для решения указанной задачи предлагается способ обзора пространства, при котором для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, при этом в каждом азимутальном положении диаграммы направленности в режиме передачи формируют передающую диаграмму направленности веерной формы в угломестной плоскости, в режиме приема принимаемые отраженные сигналы представляют в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют первую приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню, при этом ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости, выполняют обнаружение объектов, измерение их дальности и угломестной координаты моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую азимутальную координату.

Согласно изобретению, соседние лучи первой диаграммы направленности перекрываются по уровню L от максимума, в случае размещения приемных лучей в узлах квадратной сетки, формируют вторую приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму а соседние лучи перекрываются по уровню L от максимума, при этом количество лучей в первой и второй приемной диаграмме направленности одинаковы, располагают первую и вторую приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L от максимума, направляют азимутальную координату вертикальной линии пересечения лучей первой и второй приемных диаграмм направленности в направлении максимума передающей диаграммы направленности, в случае размещения приемных лучей в узлах треугольной сетки, формируют вторую и третью приемные многолучевые в угломестной плоскости диаграммы направленности, каждый луч которых имеет игольчатую форму, соседние лучи в диаграмме направленности перекрываются по уровню L от максимума, при этом количество лучей во второй и третьей приемных диаграммах направленности одинаково и на один меньше, чем в первой приемной диаграмме направленности, располагают вторую и третью приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L от максимума, совмещают азимутальную координату вертикальной линии пересечения лучей второй и третьей приемных диаграмм направленности с линией расположения максимумов лучей первой приемной диаграммы направленности и направлением максимума передающей диаграммы направленности, совмещают угломестные координаты максимумов лучей второй и третьей приемных диаграмм направленности с линиями пересечения лучей первой приемной диаграммы направленности, выполняют измерение азимутальной координаты обнаруживаемых объектов моноимпульсным методом обработки сигналов каждой из соседних пар лучей, имеющих одинаковые угломестные координаты, устанавливают следующее азимутальное положение диаграммы направленности и выполняют перечисленные операции для этого положения.

Техническим результатом является увеличение точности измерения азимутальной координаты объекта за счет использования моноимпульсного метода измерения вместо метода максимума.

Проведенный сравнительный анализ заявленного способа и прототипа показывает, что их отличие заключается в следующем:

- в прототипе измерение угломестной координаты объекта производится моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей, однако измерение азимутальной координаты осуществляется методом максимума. В предлагаемом способе для измерения азимутальной координаты используется моноимпульсная обработка сигналов каждой из соседних пар лучей, один луч из пары из первой, а второй луч - из второй приемной диаграмм направленности с одинаковыми угломестными координатами, что обеспечивает значительное снижение ошибки измерения азимутальной координаты [2 - стр. 91] по сравнению с методом максимума, применяемом в прототипе.

Сочетание отличительных признаков и свойства предлагаемого способа обзора пространства из литературы не известно, поэтому он соответствует критериям новизны и изобретательского уровня.

На фиг. 1 приведена структурная схема устройства, обеспечивающего реализацию предложенного способа.

На фиг. 2 приведена структурная схема системы управления и цифрового диаграммообразования.

На фиг. 3 приведена структурная схема преобразователя частоты.

На фиг. 4 приведена структурная схема модуля управления и цифровой обработки сигналов.

На фиг. 5 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах квадратной сетки и использования по два луча в первой и второй приемных ДН.

На фиг. 6 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах квадратной сетки и использования по три луча в первой и второй приемных ДН.

На фиг. 7 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах треугольной сетки и использования двух лучей в первой приемной ДН и по одному лучу во второй и третьей приемных ДН.

На фиг. 8 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах треугольной сетки и использования трех лучей в первой приемной ДН и по два луча во второй и третьей приемных ДН.

При реализации предложенного способа выполняется следующая последовательность действий:

- в каждом азимутальном положении диаграммы направленности в режиме передачи формируют веерную передающую диаграмму направленности в угломестной плоскости с помощью многоэлементной цифровой антенной решетки - 1;

- в случае размещения приемных лучей в узлах квадратной сетки в режиме приема принимаемые отраженные сигналы представляют в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют первую и вторую приемные многолучевые в угломестной плоскости диаграммы направленности, каждый луч которых имеет игольчатую форму, а соседние лучи в диаграмме направленности перекрываются по уровню L от максимума, при этом количество лучей в первой и второй приемной диаграмме направленности одинаковы, а ширина приемных и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости - 2;

- располагают первую и вторую приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L от максимума - 3;

- направляют азимутальную координату вертикальной линии пересечения лучей первой и второй приемных диаграмм направленности в направлении максимума передающей диаграммы направленности - 4;

- в случае размещения приемных лучей в узлах треугольной сетки, формируют первую, вторую и третью приемные многолучевую в угломестной плоскости диаграммы направленности, каждый луч которых имеет игольчатую форму, а соседние лучи в диаграмме направленности перекрываются по уровню L от максимума, при этом количество лучей во второй и третьей приемных диаграммах направленности одинаково и на один меньше, чем в первой приемной диаграмме направленности - 5;

- располагают вторую и третью приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L от максимума - 6,

- совмещают азимутальную координату вертикальной линии пересечения лучей второй и третьей приемных диаграмм направленности с линией расположения максимумов лучей первой приемной диаграммы направленности и направлением максимума передающей диаграммы направленности, совмещают угломестные координаты максимумов лучей второй и третьей приемных диаграмм направленности с линиями пересечения лучей первой приемной диаграммы направленности - 7;

- выполняют обнаружение объектов, измерение их дальности и угломестной координаты с использованием моноимпульсного метода обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую азимутальную координату - 8;

- выполняют измерение азимутальной координаты объектов с использованием моноимпульсного метода обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую угломестную координату - 9;

- устанавливают следующее азимутальное положение диаграммы направленности и выполняют перечисленные операции для этого положения - 10.

Предложенный способ может работать как при электронном сканировании диаграммы направленности (ДН) по азимуту при неподвижной цифровой антенной решетке (ЦАР), так и при сканировании ДН по азимуту за счет механического перемещения (вращения) ЦАР.

Реализация предложенного способа обзора пространства возможна, например, с помощью устройства, включающего в себя (фиг. 1) ЦАР 1, блок управления (БУ) 2, первый управляющий выход которого подключен к управляющему входу ЦАР 1, второй управляющий выход - ко входу управления опорно-поворотного устройства (ОПУ) 3, третий управляющий выход - к управляющему входу блока обнаружения и измерения координат объектов (БОИКО) 4, а вход - к выходу БОЙКО 4.

ЦАР 1 включает в себя N приемопередающих модулей (ППМ) 5, систему формирования и распределения сигналов (СФРС) 6 и систему управления и цифрового диаграммообразования (СУЦДО) 7.

СФРС 6 имеет N выходов зондирующего сигнала (ЗС), соединенных со входами ЗС ППМ 5, N выходов дискретизации Fд, соединенных со входами дискретизации ППМ 5, N выходов гетеродина Fгeт, соединенных с гетеродинными входами ППМ 5.

ППМ 5 содержат последовательно соединенные фазовращатель (ФВ) 8, твердотельный усилитель мощности (УМ) 9, циркулятор 10 и антенный элемент (АЭ) 11. К выходу циркулятора 10 подключены последовательно соединенные малошумящий усилитель (МШУ) 12, преобразователь частоты (ПРЧ) 13, гетеродинный вход которого является гетеродинным входом ППМ 5 и модуль управления и цифровой обработки сигналов (МУЦОС) 14, вход дискретизации которого является входом дискретизации ППМ 5.

Выход данных МУЦОС 14 является выходом данных ППМ 5 и соединен с одним из N входов данных СУЦДО 7, управляющий вход МУЦОС 14 является управляющим входом ППМ 5 и соединен с одним из N управляющих выходов СУЦДО 7. Первый, второй и третий управляющие выходы МУЦОС 14 соединены соответственно с управляющими входами ПРЧ 13, УМ 9 и фазовращателя 8. Выход данных СУЦДО 7 соединен со входом данных БОЙКО 4.

СУЦДО 7 (фиг. 2) имеет К формирователей 15 по числу формируемых лучей, каждый из которых содержит N каналов, при этом входы i-тых каналов в формирователях 15 объединены. Каждый канал формирователя 15 содержит перемножитель 16, первый вход которого является входом канала, ко второму входу подключен выход постоянного запоминающего устройства (ПЗУ) 17, а выход перемножителя 16 является выходом канала и подключен к одному из N входов цифрового сумматора 18, выход которого подключен к одному из К входов интерфейса (И) 19. Выход интерфейса 19 является выходом СУЦДО 7. Устройство управления (УУ) 20, вход которого является управляющим входом СУЦДО 7, имеет N+1 управляющих выходов, которые являются управляющими выходами СУЦДО 7. Все блоки СУЦДО 7 могут быть выполнены, в зависимости от числа ППМ 5 и числа лучей К, в виде одной или нескольких программируемых логических интегральных схем (ПЛИС).

ПРЧ 13 (фиг. 3) представляет собой последовательно соединенные смеситель (СМ) 21, вход которого является входом ПРЧ 13, а гетеродинный вход - гетеродинным входом ПРЧ 13 и усилитель промежуточной частоты (УПЧ) 22, выход которого является выходом промежуточной частоты (ПЧ) ПРЧ 13, а управляющий вход - управляющим входом ПРЧ 13.

МУЦОС 14 (фиг. 4) представляет собой последовательно соединенные аналого-цифровой преобразователь (АЦП) 23, вход которого является входом ПЧ МУЦОС 14, а тактовый вход является входом дискретизации МУЦОС 14 и блок управления и обработки (БУО) 24. Первый, второй и третий управляющие выходы БУО 24 являются соответственно первым, вторым и третьим управляющим выходами МУЦОС 14. Выход данных и управляющий вход БУО 24 являются соответственно выходом данных и управляющим входом МУЦОС 14.

СФРС 6 представляет собой три синтезатора частоты, обеспечивающих формирование зондирующего сигнала ЗС, сигнала тактовой частоты дискретизации Fд, и сигнала гетеродина Fгет. При этом могут быть использованы, например, синтезаторы из [4 - стр. 142-143. Mini-Circuits. RF & Microwave components guide. 2010]. Сформированные в синтезаторах сигналы разветвляются на N выходов с помощью делителей мощности [4 - стр. 136 - 140].

БОИКО 4 представляет собой ЭВМ, обеспечивающую обработку отсчетов сигнала по заданному алгоритму.

БУ 2 представляет собой ЭВМ, обеспечивающую управление работой устройств ЦАР 1, ОПУ 3 и БОИКО 4, а также отображение координат обнаруженных объектов.

ОПУ 3 представляет собой устройство, обеспечивающее вращение ЦАР 1 в азимутальной плоскости, и может быть выполнено на основе опорно-поворотного круга с подшипником и червячного вала с электромотором.

Устройство может работать как при электронном сканировании ДН по азимуту при неподвижной ЦАР 1, так и при сканировании ДН по азимуту за счет механического вращения ЦАР 1 с помощью ОПУ 3. Сектор сканирования по азимуту в первом случае ограничивается характеристиками ЦАР 1, а во втором случае равен 360°.

В каждом азимутальном положении ДН в режиме передачи формируют веерную передающую диаграмму направленности в угломестной плоскости с помощью ЦАР 1. Формирование передающей ДН производится путем установки в ППМ 5 из состава ЦАР 1 требуемых фазовых и амплитудных соотношений регулировкой сдвига фазы зондирующего сигнала ЗС в фазовращателях 8 и коэффициента усиления усилителей мощности УМ 9.

Для случая плоской прямоугольной ЦАР, апертура которой содержит Nx АЭ 11, установленных вдоль координаты X на расстоянии dx, и Ny АЭ 11, установленных вдоль координаты Y, на расстоянии dy, диаграмма направленности F(ϕ,θ) определяется как [5 - стр. 27-28, Кузьмин С.З Цифровая радиолокация. Введение в теорию. - КВИЦ. 2000]:

где

где Axi, Ayi - коэффициенты амплитудного распределения в УМ 9, соединенных с АЭ 11, которые расположены вдоль координат X и Y соответственно;

ψxi, ψyi - коэффициенты фазового распределения, представленные в виде фазовых сдвигов в фазовращателях 8, соединенных через УМ 9 и циркулятор 10 с АЭ 11, которые расположены вдоль координат X и Y соответственно.

Для наземных обзорных РЛС веерная ДН может иметь косекансную форму [6 - рис. 5.1 б - Бакулев П.А. Радиолокационные системы. М.: Радиотехника. 2007. - 376 с]. Такая форма ДН формируется путем установки соответствующих амплитудных и фазовых коэффициентов в усилителях мощности 9 и фазовращателях 8, например, как описано в [7 - Лопатенко Э.В., Марусич А.А. Диаграмма направленности антенны cosec с низким уровнем боковых лепестков. //Радиотехника, 2006, №12, с. 49-53.].

После усиления зондирующего сигнала ЗС в УМ 9 он поступает на подключенный к этому каналу антенный элемент (АЭ) 11 по соединительной цепи минимальной длины.

После излучения зондирующего сигнала ЗС ЦАР 1 переходит в режим приема.

В режиме приема принимаемые отраженные сигналы с выхода каждого АЭ 11 в каждом ППМ 5 проходят через циркулятор 10, усиливаются в МШУ 12, преобразуются по частоте в ПРЧ 13 и представляются в виде цифровых отсчетов Smn(t) с помощью АЦП 23.

Из полученных цифровых отсчетов формируют приемные многолучевые в угломестной плоскости ДН с лучами игольчатой формы путем взвешенного суммирования в СУЦДО 7. В случае размещения приемных лучей в узлах квадратной сетки в режиме приема формируют две приемных ДН, а в случае размещения приемных лучей в узлах треугольной сетки, формируют три приемных ДН.

Отсчеты i-го луча с направлением максимума ϕi, θi вычисляются путем умножения цифрового потока с каждого АЦП 23 в перемножителях 16 на весовой множитель Wmnii) из ПЗУ 17 и суммирования в цифровом сумматоре 18. Диаграмма направленности для i-го луча имеет вид

,

где ,

Число лучей К в каждой ДН определяется требуемой зоной обзора в угломестной плоскости и шириной одного луча. Лучи приемной многолучевой ДН имеют игольчатую форму, расположены в угломестной плоскости, при этом направления их максимумов обеспечивает перекрытие соседних лучей по уровню L от максимума. Величина L может быть принята половине от максимума (половинной мощности) или другому значению, в зависимости от алгоритма работы аппаратуры. Ширина приемной диаграммы направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости.

Сформированные отсчеты К приемных лучей с выходов формирователей 15 поступают в интерфейс 19, где преобразуются в последовательную форму и в виде последовательных кодов передаются в БОИКО 4, где в каждой из соседних пар сформированных приемных лучей выполняется обнаружение объектов, например, движущихся, измерение их дальности и угломестных координат, соответствующих угломестному и азимутальному положению тех приемных лучей, в которых они были обнаружены [8, стр. 185-189 - Справочник по радиолокации/ Под ред. М.И. Сколника. М: Техносерв. 2014. т. 1].

Ширина ДН в угломестной плоскости соответствует угловому размеру угломестной зоны обнаружения, на фиг. 5-8 приведены примеры конфигураций лучей ЦАР 1 для разных угловых размеров зоны обнаружения.

На фиг. 5 приведен пример схемы расположения приемных и передающей ДН в случае размещения приемных лучей в узлах прямоугольной сетки при использовании двух лучей 25 и 26 в первой приемной ДН и двух лучей 27 и 28 во второй приемной ДН. Направление азимутальной координаты вертикальной линии 30 пересечения лучей первой и второй приемных ДН или линии равносигнального направления (РСН) по азимуту совпадает с максимумом передающей ДН 29. Линия РСН по углу места 31 совпадает для обеих ДН. Схемы на фиг. 5-8 приведены для плоскости сечения, параллельной плоскости раскрыва ЦАР.

На фиг. 6 приведен пример схемы расположения приемных и передающей ДН в случае размещения приемных лучей в узлах прямоугольной сетки при использовании трех лучей 25, 26 и 32 в первой приемной ДН и трех лучей 27, 28 и 33 во второй приемной ДН. Линии РСН по углу места 31 совпадают для обеих ДН. Направление вертикальной линии 30 РСН по азимуту совпадает с максимумом передающей ДН 29.

На фиг. 7 приведена схема расположения лучей приемных и передающей ДН в случае размещения приемных лучей в узлах треугольной сетки при использовании двух лучей 25 и 26 в первой приемной ДН и по одному лучу во второй 27 и третьей 34 приемных ДН. Направление вертикальной линии 30 РСН по азимуту лучей второй 27 и третьей 34 ДН совпадает с максимумом передающей ДН 29 и максимумами лучей 25 и 26 первой ДН. Угломестные координаты максимумов лучей второй 27 и третьей 34 приемных ДН совпадают с линией РСН по углу места 31 лучей 25 и 26 первой приемной ДН.

На фиг. 8 приведена схема расположения лучей приемных и передающей ДН при размещении приемных лучей в узлах треугольной сетки в случае использования трех лучей 25, 26 и 32 в первой приемной ДН и по два луча: 27, 33 во второй и 34, 35 в третьей приемных ДН. Направление вертикальной линии 30 РСН по азимуту лучей второй 27, 33 и третьей 34, 35 ДН совпадает с максимумом передающей ДН 29 и максимумами лучей 25, 26 и 32 первой ДН. Угломестные координаты максимумов лучей второй 27, 33 и третьей 34, 35 приемных ДН совпадают с линиями РСН по углу места 31 лучей 25, 26 и 32 первой приемной ДН.

Выбор вида размещения лучей по прямоугольной или треугольной сетке может осуществляться, например, из условия снижения числа приемных лучей с учетом того, что для обзора того же угломестного сектора при использовании прямоугольной сетки и общем числе приемных лучей более шести требуется на один луч меньше.

В предлагаемом способе измерение осуществляется моноимпульсным способом как угломестной, так и азимутальной координаты, в то время как в прототипе таким способом осуществляется измерение только угломестной координаты, а измерение азимутальной координаты осуществляется методом максимума. Применение в предлагаемом способе моноимпульсной обработки для измерения азимутальной координаты объекта снижает ошибку измерения до 10 раз [2 - стр. 91] по сравнению с методом максимума, используемым в прототипе.

Применение ЦАР с N приемопередающими модулями, содержащими твердотельные усилители мощности, расположенными в непосредственной близости от антенных элементов, обеспечивает снижение потерь передаваемого и принимаемого сигнала за счет уменьшения длины соединений с антенным элементом. Повышение надежности многоэлементной ЦАР обеспечивается за счет медленного снижения характеристик ЦАР при выходе из строя части приемо-передающих модулей.

Работоспособность предлагаемого способа была проверена на макете устройства (фиг. 1). Испытания показали совпадение полученных характеристик с расчетными.

Способ обзора пространства, при котором для формирования передающей и приемной диаграмм направленности используют многоэлементную цифровую антенную решетку, при этом в каждом азимутальном положении диаграммы направленности в режиме передачи формируют передающую диаграмму направленности веерной формы в угломестной плоскости, в режиме приема принимаемые отраженные сигналы представляют в виде цифровых отсчетов, из которых путем взвешенного суммирования формируют первую приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню половинной мощности от максимума диаграммы направленности, при этом ширина приемной и передающей диаграмм направленности соответствует угловому размеру зоны обнаружения в угломестной плоскости, выполняют обнаружение объектов, измерение их дальности и угломестной координаты моноимпульсным методом обработки сигналов каждой из соседних пар приемных лучей, имеющих одинаковую азимутальную координату, отличающийся тем, что соседние лучи первой диаграммы направленности перекрываются по уровню L, равному половине мощности от максимума, в случае размещения приемных лучей в узлах квадратной сетки, формируют вторую приемную многолучевую в угломестной плоскости диаграмму направленности, каждый луч которой имеет игольчатую форму, а соседние лучи перекрываются по уровню L, при этом количество лучей в первой и второй приемной диаграмме направленности одинаково, располагают первую и вторую приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L, направляют азимутальную координату вертикальной линии пересечения лучей первой и второй приемных диаграмм направленности в направлении максимума передающей диаграммы направленности, в случае размещения приемных лучей в узлах треугольной сетки, формируют вторую и третью приемные многолучевые в угломестной плоскости диаграммы направленности, каждый луч которых имеет игольчатую форму, соседние лучи в диаграмме направленности перекрываются по уровню L, при этом количество лучей во второй и третьей приемных диаграммах направленности одинаково и на один меньше, чем в первой приемной диаграмме направленности, располагают вторую и третью приемные диаграммы направленности параллельно друг другу таким образом, чтобы их лучи, имеющие одинаковые угломестные координаты, перекрывались по уровню L, совмещают азимутальную координату вертикальной линии пересечения лучей второй и третьей приемных диаграмм направленности с линией расположения максимумов лучей первой приемной диаграммы направленности и направлением максимума передающей диаграммы направленности, совмещают угломестные координаты максимумов лучей второй и третьей приемных диаграмм направленности с линиями пересечения лучей первой приемной диаграммы направленности, выполняют измерение азимутальной координаты обнаруживаемых объектов моноимпульсным методом обработки сигналов каждой из соседних пар лучей, имеющих одинаковые угломестные координаты, устанавливают следующее азимутальное положение диаграммы направленности и выполняют перечисленные операции для этого положения.
Способ обзора пространства
Способ обзора пространства
Способ обзора пространства
Источник поступления информации: Роспатент

Показаны записи 31-40 из 105.
10.11.2015
№216.013.8b01

Двухсферовая антенная система с частичной металлизацией радиопрозрачного защитного кожуха

Изобретение относится к антенной технике. Двухсферовая антенная система с частичной металлизацией радиопрозрачного защитного кожуха содержит первый радиопрозрачный защитный кожух, закрепляемый растяжками, зеркало антенны, выполненное металлизацией внутренней части второго радиопрозрачного...
Тип: Изобретение
Номер охранного документа: 0002567192
Дата охранного документа: 10.11.2015
20.12.2015
№216.013.9c3c

Антенная система

Изобретение относится к области радиотехники и может быть использовано при создании антенных систем, изготавливаемых с привлечением новых технологий. Технический результат - упрощение конструкции антенной системы и наведения антенны по азимуту и углу места, повышение качества фокусировки...
Тип: Изобретение
Номер охранного документа: 0002571621
Дата охранного документа: 20.12.2015
27.01.2016
№216.014.bc6a

Способ калибровки мобильного пеленгатора - корреляционного интерферометра с применением навигационной аппаратуры потребителя глобальной навигационной спутниковой системы

Изобретение относится к радиотехнике, в частности к радиопеленгации. Техническим результатом является уменьшение временных затрат на калибровку мобильного пеленгатора - корреляционного интерферометра при сохранении высокой точности калибровки. Указанный технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002573819
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c3f5

Многодиапазонная зеркальная антенна

Многодиапазонная зеркальная антенна содержит ориентированные соосно основное параболическое зеркало, вспомогательный отражатель и первый облучатель. При этом вспомогательный отражатель выполнен в виде выпукло-вогнутого тела вращения, ограниченного гиперболическим зеркалом с выпуклой в...
Тип: Изобретение
Номер охранного документа: 0002574170
Дата охранного документа: 10.02.2016
10.04.2016
№216.015.2cc6

Конструкция согласующей гребневой секции волноводно-микрополоскового перехода

Изобретение относится к радиотехнике, а именно к антенной технике. Конструкция содержит волноводно-микрополосковый переход, в котором согласующий элемент выполнен в виде гребнеобразной конструкции со ступеньками различной высоты. Соединение с корпусом выполнено запрессовкой гребней в сквозные...
Тип: Изобретение
Номер охранного документа: 0002579549
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.3349

Датчик угловой скорости

Изобретение относится к измерительным приборам, в частности к измерителям угловой скорости. Датчик угловой скорости содержит двигатель вращения и диэлектрический вал, при этом в него дополнительно введены по четыре инерционные массы, оси, шарнира, стержня, пьезоэлектрических датчика,...
Тип: Изобретение
Номер охранного документа: 0002582230
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.39ea

Модифицированный микроакустомеханический гироскоп

Изобретение относится к акустоэлектронным приборам, предназначенным для преобразования угловой скорости вращения основания в электрический сигнал. Сущность изобретения заключается в том, что на внешней поверхности несущего основания выполнен трапецеидальный выступ, размещенный зеркально...
Тип: Изобретение
Номер охранного документа: 0002582483
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3b13

Способ цифровой обработки сигналов при обзорной моноимпульсной амплитудной суммарно-разностной пеленгации с использованием антенной решетки (варианты) и обзорный моноимпульсный амплитудный суммарно-разностный пеленгатор с использованием антенной решетки и цифровой обработки сигналов

Изобретение относится к области радиотехники и может быть применено в системах моноимпульсной радиолокации и радиопеленгации, использующих антенную решетку и цифровую обработку сигналов. Достигаемый технический результат изобретения - повышение точностных характеристик и быстродействия,...
Тип: Изобретение
Номер охранного документа: 0002583849
Дата охранного документа: 10.05.2016
13.01.2017
№217.015.6b34

Способ построения антенной решетки

Изобретение относится к области радиотехники и может быть использовано в приемопередающих АФАР. Техническим результатом предлагаемого изобретения является снижение массы и увеличение вибропрочности антенной решетки. Сущность: в способе устанавливают диэлектрические подложки прямоугольной...
Тип: Изобретение
Номер охранного документа: 0002592731
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.6c1f

Способ построения антенной решетки

Изобретение относится к области радиотехники и может быть использовано в приемо-передающих АФАР. Техническим результатом предлагаемого изобретения является снижение массы и увеличение вибропрочности антенной решетки. Сущность: в способе устанавливают диэлектрические подложки прямоугольной...
Тип: Изобретение
Номер охранного документа: 0002592721
Дата охранного документа: 27.07.2016
Показаны записи 31-40 из 57.
22.03.2019
№219.016.ec57

Способ активной обзорной моноимпульсной радиолокации с инверсным синтезированием апертуры антенны

Изобретение относится к области радиотехники и может быть использовано в наземных системах обзорной активной радиолокации и радиовидения. Достигаемый технический результат - определение значения углового разрешения лоцируемых объектов (ЛО), разрешение отдельных элементов групповых ЛО и более...
Тип: Изобретение
Номер охранного документа: 0002682661
Дата охранного документа: 20.03.2019
10.05.2019
№219.017.5157

Способ определения параметров движения и траекторий воздушных объектов при полуактивной бистатической радиолокации

Изобретение относится к области радиотехники и может применяться в системах трехкоординатной полуактивной радиолокации с использованием, в качестве сигналов подсвета, излучений радиоэлектронных систем различного назначения, в частности сигналов цифрового телевизионного вещания стандарта DVB-T2,...
Тип: Изобретение
Номер охранного документа: 0002687240
Дата охранного документа: 08.05.2019
22.06.2019
№219.017.8e74

Способ построения приёмопередающего модуля активной фазированной антенной решётки

Изобретение относится к приемопередающим устройствам СВЧ-колебаний, предназначенным для работы в составе активной фазированной антенной решетки (АФАР). Технический результат - снижение размеров приемопередающего модуля и снижение потерь передаваемого и принимаемого сигналов. Достигается тем,...
Тип: Изобретение
Номер охранного документа: 0002692091
Дата охранного документа: 21.06.2019
15.08.2019
№219.017.bffc

Способ построения активной фазированной антенной решётки

Изобретение относится к антенной технике и предназначено для построения активных фазированных антенных решеток (АФАР) для систем радиосвязи и радиолокации. Техническим результатом является снижение потерь принимаемого и передаваемого сигналов. Указанный технический результат достигается за счет...
Тип: Изобретение
Номер охранного документа: 0002697194
Дата охранного документа: 13.08.2019
09.09.2019
№219.017.c959

Способ построения антенной решётки

Изобретение относится к области радиотехники и может быть использовано в приемопередающих активных фазированных антенных решетках (АФАР). Техническим результатом предлагаемого изобретения является снижение массы и увеличение вибропрочности антенной решетки. Согласно способу, делят антенную...
Тип: Изобретение
Номер охранного документа: 0002699555
Дата охранного документа: 06.09.2019
09.09.2019
№219.017.c96b

Способ пассивной однопозиционной угломерно-доплеровской локации перемещающихся в пространстве радиоизлучающих объектов

Изобретение относится к области радиотехники и может использоваться в системах пассивной радиолокации и радиотехнического наблюдения для однопозиционного определения скоростей, координат и траекторий перемещающихся в пространстве радиоизлучающих объектов (РИО). Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002699552
Дата охранного документа: 06.09.2019
15.11.2019
№219.017.e286

Микрополосковая антенна

Изобретение относится к антенной технике и может быть использовано в качестве приемной или передающей антенны или элемента фазированной антенной решетки в системах радиосвязи или радиолокации. Техническим результатом является сокращение срока изготовления микрополосковой антенны за счет...
Тип: Изобретение
Номер охранного документа: 0002705937
Дата охранного документа: 12.11.2019
15.11.2019
№219.017.e297

Мобильная антенная установка

Изобретение относится к антенной технике, в частности к мобильным вышкам (опорам) для антенных систем с подъемной антенной. Мобильная антенная установка содержит транспортное средство с платформой, выносные опоры с домкратами, основание, опорно-поворотное устройство с приводом вращения,...
Тип: Изобретение
Номер охранного документа: 0002705938
Дата охранного документа: 12.11.2019
12.12.2019
№219.017.ec74

Способ обзора воздушного пространства радиолокационной станцией с активной фазированной антенной решеткой

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях, в которых в качестве антенны используется активная фазированная антенная решетка (АФАР) с цифровым диаграммообразованием. Достигаемый технический результат - уменьшение периода определения...
Тип: Изобретение
Номер охранного документа: 0002708371
Дата охранного документа: 09.12.2019
06.02.2020
№220.017.fef4

Способ углового сверхразрешения в приемных цифровых антенных решетках

Изобретение относится к антенной технике, в частности к формированию диаграммы направленности цифровой антенной решетки для определения местоположения источников радиоизлучений. Техническим результатом является увеличение углового сектора, в котором выполняется различение угловых положений...
Тип: Изобретение
Номер охранного документа: 0002713503
Дата охранного документа: 05.02.2020
+ добавить свой РИД