×
29.08.2018
218.016.80eb

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА В УСЛОВИЯХ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к газовой промышленности, конкретно к технологиям сжижения природного газа (СПГ). Способ получения сжиженного природного газа в условиях газораспределительной станции включает предварительную очистку газа, подогрев газа, расширение газа в турбодетандере, сжижение газа в рамках цикла сжижения природного газа с внедренным детандером и флэш-циклом, хранение газа в резервуарном парке. Полезную мощность турбодетандера используют для выработки электрической энергии. После расширения в турбодетандере поток газа разделяют на технологический, предназначенный для сжижения, который направляют в цикл сжижения природного газа с внедренным детандером и флэш-циклом, и продукционный, предназначенный для подачи потребителю, который после дополнительного подогрева одорируют и направляют на выход из ГРС. Сброс паровой фазы из резервуарного парка сжиженного природного газа осуществляют в следующий за флэш-циклом конденсатосборник. Техническим результатом изобретения является обеспечение наиболее полного использования избыточной энергии магистрального потока. 1 ил.

Изобретение относится к газовой промышленности, конкретно к технологиям сжижения природного газа (СПГ).

Известен способ сжижения природного газа (патент РФ №2247908, опубл. 10.03.2005 г.), согласно которому газ с входа газораспределительной станции (ГРС) разделяют на два потока, один из которых подают в расширительную турбину детандер-компрессорного агрегата, а второй - в газовый компрессор этого же агрегата. Охлажденный газ с выхода турбины направляют в межтрубное пространство одного из двух переключающихся теплообменников-вымораживателей, а затем на выход ГРС. Сжатый газ с выхода газового компрессора также разделяют на две части, одну из которых направляют сначала в один из двух переключающихся теплообменников-вымораживателей, а затем в рекуперативный теплообменник. После теплообменника газ разделяют на два потока, каждый из которых дросселируют, и один подают в конденсатосборник, а другой смешивают с газом низкого давления, выходящим из конденсатосборника. Вторую часть потока сжатого газа с выхода газового компрессора направляют в вихревую трубу, генерирующую горячий газ низкого давления для отогрева выведенного из работы предварительного теплообменника-вымораживателя и холодный, подаваемый на дополнительное охлаждение потока сжатого газа, проходящего через работающий предварительный теплообменник-вымораживатель.

Недостатки данного способа заключаются в подключении внедряемого оборудования параллельно самой станции, что приводит к неполному извлечению избыточной энергии магистрального потока газа. Также в рамках данного способа применяется такое сложное в изготовлении оборудование, обладающее низкими показателями надежности, как детандер-компрессорный агрегат и вихревая труба. Отсутствие системы предварительной очистки и осушки газа создает опасность выпадения конденсата в турбине детандер-компрессорного агрегата.

Известен способ сжижения природного газа (патент РФ №2306500, опубл. 20.09.2007 г.), который предполагает, что газовый поток с входа газораспределительной станции разделяется на три потока, один из которых подается в основной теплообменник верхнего температурного уровня, второй - параллельно ему в байпасный трубопровод с регулирующим вентилем, третий поток подается на вход вспомогательного теплообменника. Далее первый и второй потоки смешиваются, а затем снова разделяются на две части, большая часть направляется на вход расширительной турбины детандер-компрессорного агрегата, а меньшая часть - на вход теплообменника нижнего температурного уровня. Охлажденный газ низкого давления с выхода детандера последовательно направляется в основной теплообменник нижнего температурного уровня, основной теплообменник верхнего температурного уровня, а затем на вход компрессора - детандер компрессорного агрегата, где он сжимается до давления, соответствующего давлению газа на выходе с газораспределительной станции, и направляется в ее выходную магистраль. Охлажденный газ высокого давления после основного теплообменника нижнего температурного уровня смешивается с потоком газа после вспомогательного теплообменника, дросселируется, несжижившаяся часть отводится и подается в вспомогательный теплообменник и далее на выход газораспределительной станции.

Недостатки данного способа заключаются в неполном извлечении избыточной энергии магистрального потока газа, за счет подключения внедряемого оборудования параллельно самой станции. Низкие показатели надежности оборудования детандер-компрессорного агрегата снижают данный показатель для всего способа. Предлагаемая система очистки газа не позволяет избежать образования отложений и выпадения жидкой фазы компонентов газовой смеси в турбодетандерном агрегате.

Известен способ сжижения природного газа (патент РФ №2541360, опубл. 10.02.2015 г.), согласно которому входящий поток газа очищают от примесей и компримируют до разделения его на технологический и продукционный потоки. Технологический поток пропускают через детандер, оборудованный газовой турбиной, вращающий момент которой используют для компримирования входящего потока газа до разделения его на технологический и продукционный потоки. Технологический поток очищают от примеси тяжелых углеводородов путем их конденсации в сопловом аппарате детандера, который выполняют из теплопроводящего материала. Жидкую фазу переохлаждают перед скачиванием в емкость потребителя.

Недостатки данного способа заключаются в подключении внедряемого оборудования параллельно газораспределительной станции, что приводит к неполному извлечению избыточной энергии магистрального потока газа. За счет применения вращательного момента на валу турбодетандера для непосредственного приведения в действие компрессора создается ситуация, при которой наблюдается взаимная зависимость работы данного оборудования. Конденсация тяжелых углеводородов в сопловом узле детандера обладает недостаточной эффективностью для полного исключения попадания конденсата на лопатки рабочего колеса турбины, что приводит к снижению надежности оборудования.

Известен способ сжижения природного газа (патент РФ №2534832, опубл. 10.12.2014 г.), который заключается в отводе потока газа из магистрального трубопровода высокого давления, расширении его в многоступенчатой турбине с получением в ней механической энергии, теплообмене в теплообменнике и раздаче полученного газа низкого давления потребителю, при этом газ из магистрального трубопровода высокого давления направляют на вход тракта горячего теплоносителя теплообменного устройства и охлаждают, а на выходе из тракта его направляют в многоступенчатую турбину, где охлажденный поток газа расширяют до давления меньше заданного давления подачи потребителю в трубопроводе низкого давления, при котором подаваемый поток сжатого природного газа меняет свои параметры и свое агрегатное состояние, переходя из однофазного на входе в многоступенчатую турбину в двухфазный поток на выходе из нее, при этом из последнего отделяют в сепараторе жидкую фазу и направляют для раздачи в трубопровод сжиженного газа, а оставшуюся после отделения часть потока направляют на вход тракта холодного теплоносителя теплообменного устройства для подогрева при теплообмене с подаваемым потоком сжатого природного газа из магистрального трубопровода высокого давления и далее сжимают эту часть в дожимающем компрессоре до давления, равного давлению в трубопроводе низкого давления, одновременно нагревая ее до положительных температур, а затем направляют для раздачи в трубопровод низкого давления, причем на сжатие этой части природного газа в компрессоре используют механическую энергию расширения, полученную в многоступенчатой турбине, при этом отделение сжиженной части природного газа осуществляют после каждой ступени турбины.

Основным недостатком данного способа является то, что сжижение природного газа только за счет его расширения в турбине турбодетандера создает условия для образования конденсата в корпусе агрегата, что негативно сказывается на работе оборудования. Использование полезной мощности на валу турбодетандера для компримирования газа до величины необходимой для дальнейшей его поставки по трубопроводу низкого давления потребителю значительно ограничивает возможный диапазон регулирования расходов газа, что неприемлемо для объектов, выполняющих функции редуцирования с целью дальнейшей поставки потребителям, в силу неравномерности потребления газа.

Известен способ получения сжиженного природного газа с внедренным детандером и флэш-циклом, представляющим собой холодильный цикл с использованием испарительного теплообменника, «Integrated methane expander and flash cycle» (Roberts M.J. Briton refrigeration cycles for small-scale LNG / Mark J. Roberts, Fei Chen, Saygi-Arslan // Gas Processing. - 2015. - Vol. 4(1). - P. 27-32), принятый за прототип, согласно которому природный газ подвергается охлаждению в основном теплообменнике, затем сжиженный газ отделяется от паровой фазы в конденсатосборнике, после чего направляется во второй конденсаотосборник через флэш-цикл, где происходит теплообмен с паровой фазой из второго конденсатосборника. Паровая фаза подлежит компримированию и повторному охлаждению в основном теплообменнике. Охлаждение достигается за счет метанового замкнутого контура с интергированным детандером.

Основным недостатком данного способа является отсутствие турбодетандерного оборудования, позволяющего использовать избыточную энергию магистрального потока газа. Помимо этого, данный способ не предусматривает подключения к газораспределительной станции, то делает невозможным его применение в исходном виде.

Техническим результатом является создание высокоэффективного способа получения сжиженного природного газа за счет оптимального применения энергии, полученной при расширении от перепада давлений на входе в газораспределительную станцию и на выходе из нее.

Технический результат достигается тем, что полезную мощность турбодетандерного агрегата используют для выработки электрической энергии, после расширения в турбодетандере поток газа разделяют на технологический, предназначенный для сжижения, который направляют в цикл сжижения природного газа с внедренным детандером и испраительным циклом, и продукционный, предназначенный для подачи потребителю, который после дополнительного подогрева одорируют и направляют на выход из ГРС, сброс паровой фазы из резервуарного парка сжиженного природного газа осуществляют в следующий за флэш-циклом конденсатосборник.

Способ поясняется следующей фигурой:

фиг. 1 - способ получения сжиженного природного газа в условиях газораспределительной станции;

фиг. 2 - графики зависимостей доли извлекаемой при помощи турбодетандерной установки энергии в энергозатратах на производство сжиженного природного газа в условиях ГРС Сокол;

фиг. 3 - график удельные энергозатраты на сжижение природного газа при различных значениях давлений и температур.

Способ осуществляется следующим образом. Газ из магистрального газопровода поступает на вход ГРС, после чего направляется в узел очистки ГРС, где проходит первоначальную очистку от пыли и капельной влаги, затем, при необходимости, газ подогревают в узле подогрева ГРС до температуры 283-285 К.

После чего газ проходит через узел дополнительной очистки и подготовки газа, где предусматривается удаление капельной жидкости из потока газа, чтобы избежать образования гидратов в криогенной секции. Дальнейшая очистка природного газа от водяных паров и диоксида углерода СО2 проводится в аппаратах-осушителях, заполненных адсорбентом. В качестве адсорбента применяются молекулярные сита. Осушенный и очищенный природный газ после осушителей проходит через фильтры-пылеуловители для удаления пыли адсорбента. Для удаления паров ртути предусмотрен специализированный мембранный адсорбер.

В случае же, когда турбодетандер простаивает, используется узел редуцирования ГРС.

После очистки поток газа редуцируется в турбодетандерном агрегате с подключенным электрогенератором с 5,2-5,4 МПа до 0,6 МПа, в результате чего на валу турбодетандерного агрегата генерируется полезная мощность, которая затем используется для выработки электрической энергии в подключенном электрогенераторе, после чего поток газа разделяется на технологический и продукционный. Продукционный поток направляется к узлу одоризации газа, проходя через устройство дополнительного подогрева газа, предназначенное для повышения температуры газа до необходимой величины от 273 до 281 К, требуемой нормативно-технической документацией, после чего производится учет газа и поток направляется в газораспределительные сети к потребителям.

Технологический поток газа при низкой температуре, от 195 до 200 К, направляется в основной теплообменник цикла сжижения с внедренным детандером и флэш-циклом, пройдя через который, оказывается в конденсатосборнике при температуре 135-137 К и давлении 0,6 МПа. Охлаждение технологического потока газа в рамках основного теплообменника достигается за счет основного метанового цикла, в котором задействован компрессор основного цикла с электродвигателем, теплообменник основного цикла типа холодильник, и детандер основного цикла с подключенным электрогенератором. Но также эффективность охлаждения потока в основном теплообменнике повышается за счет теплообмена с паровой фазой из конденсатосборников, которая подвергается повторному сжижению в рамках цикла сжижения паровой фазы, в котором задействован компрессор цикла сжижения паровой фазы и теплообменник типа холодильник цикла сжижения паровой фазы. При перетекании СПГ из одного конденсатосборника в другой паровая фаза из первого теплообменника перед попаданием в цикл сжижения паровой фазы подвергается теплообмену с СПГ из последующего конденсатосборника в рамках флэш-цикла, что позволяет значительно сократить затраты энергии в рамках цикла сжижения паровой фазы. Описанные выше процессы происходят в рамках цикла сжижения с внедренным детандером и флэш-циклом.

Из конечного конденсатосборника СПГ самотеком поступает в резервуарный парк СПГ, который состоит из криогенных резервуаров, оснащенных необходимым набором запорной и предохранительной арматуры. Хранение на складе осуществляется при постоянном давлении 0,6 МПа и постоянной температуре 138 К.

Постоянное давление поддерживается за счет постоянного отвода паровой фазы из резервуаров в линию отвода паровой фазы, пройдя которую она смешивается с паровой фазой в конечном конденсатосборнике цикла сжижения с внедренным детандером и флэш-циклом. В случае превышения регламентированного давления в резервуарах предусмотрен сброс паровой фазы в факельную установку, которая также используется при продувке технологического оборудования.

Отпуск готовой продукции СПГ в автоцистерны осуществляется при помощи специальных насосов для криогенных газов.

Способ предполагает редуцирование всего магистрального потока газа в турбодетанде для обеспечения возможности наиболее полного использования избыточной энергии магистрального потока. Такое решение позволяет обеспечить полное покрытие энергозатрат на производство СПГ в малых объемах за счет извлечения избыточной энергии магистрального потока в турбодетандере. Эффективность метода подтверждается графиками, представленными на фиг. 2 - Графики зависимостей доли извлекаемой при помощи турбодетандерной установки энергии в энергозатратах на производство сжиженного природного газа в условиях ГРС Сокол. Помимо высокой энергоэффективности такое решение позволяет обеспечить повышенные показатели надежности станции за счет наличия альтернативного способа редуцирования - прохождения потока через узел редуцирования ГРС.

Разделение потока газа на технологический, предназначенный для сжижения, и продукционный, предназначенный для подачи в сети газораспределения, после прохождения им турбодетандера позволяет обеспечить также значительное охлаждение потока, с 273-281 К (при давлении 5,2-5,4 МПа) до 195-200 К (при давлении 0,6 МПа). Это позволяет существенно снизить энергозатраты на производство СПГ, что находит подтверждение в графиках, приведенных в фиг. 3 - график удельные энергозатраты на сжижение природного газа при различных значениях давлений и температур. Таким образом после прохождения турбодетандерного агрегата энергозатраты на сжижение природного газа снижаются более чем в 4 раза.

В рамках способа редуцирование магистрального потока газа производится с использованием турбодетандерного агрегата, а компримирование в рамках основного цикла - при помощи компрессора, как отдельного устройства, что позволяет повысить надежность способа по сравнению со способами, предусматривающими применение детандер-компрессорного агрегата.

Полезная мощность на валу турбодетандера и детандера цикла сжижения газа с внедренным детандером и флэш-циклом используется для выработки электрической энергии, с последующим ее использованием на покрытие потребности оборудования по сжижению газа в электричестве или для сбыта в сети общего пользования при простое оборудования линий сжижения газа, что позволяет не только обеспечить электроэнергией используемое технологическое оборудование, но и создает условия для взаимной независимости процессов работы турбодетандерного агрегата и линий по производству СПГ.

Пример 1, при среднем значении расхода газа через ГРС Сокол в 22 тыс.м3/час, давлении на входе 5,4 МПа и давлении на выходе станции 0,6 МПа при использовании разработанного способа получения СПГ в условиях ГРС достигается полезная мощность на валу турбодетандера 0,8 МВт, что позволяет покрыть энергозатраты на производство СПГ в объеме 0,5 т/час.

Способ получения сжиженного природного газа в условиях газораспределительной станции, включающий очистку газа от капельной влаги, водяных паров, диоксида углерода, механических примесей и ртути, подогрев газа, расширение газа в турбодетандерном агрегате, сжижение газа в рамках цикла сжижения природного газа с внедренным детандером и флэш-циклом, хранение газа в резервуарном парке, отличающийся тем, что полезную мощность турбодетандерного агрегата используют для выработки электрической энергии, после расширения в турбодетандере поток газа разделяют на технологический, предназначенный для сжижения, который направляют в цикл сжижения природного газа с внедренным детандером и флэш-циклом, и продукционный, предназначенный для подачи потребителю, который после дополнительного подогрева одорируют и направляют на выход из ГРС, сброс паровой фазы из резервуарного парка сжиженного природного газа осуществляют в следующий за флэш-циклом конденсатосборник.
СПОСОБ ПОЛУЧЕНИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА В УСЛОВИЯХ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ
СПОСОБ ПОЛУЧЕНИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА В УСЛОВИЯХ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ
Источник поступления информации: Роспатент

Показаны записи 81-90 из 204.
10.05.2018
№218.016.4538

Состав экологически чистого дизельного топлива (эчдт)

Изобретение раскрывает состав экологически чистого дизельного топлива (ЭЧДТ), включающий исходное дизельное топливо и эфирную добавку, при этом в качестве базового дизельного топлива используют гидроочищенное дизельное топливо, а в качестве эфирной добавки используют продукты этерификации...
Тип: Изобретение
Номер охранного документа: 0002650119
Дата охранного документа: 09.04.2018
10.05.2018
№218.016.4702

Способ получения лигатуры магний-иттрий

Изобретение относится к области металлургии, в частности к получению магниевых лигатур с иттрием, которые могут быть использованы в качестве легирующих и модифицирующих добавок в производстве сплавов на основе магния и алюминия. Способ включает подготовку солей состава, мас.%: фторид иттрия...
Тип: Изобретение
Номер охранного документа: 0002650656
Дата охранного документа: 16.04.2018
10.05.2018
№218.016.4abc

Технологический модуль первичной переработки

Изобретение относится к автономным комплексам по добыче торфяного сырья естественного влагосодержания и предназначенное для первичной переработки экскавированного сырья. Устройство включает клавишный сепаратор, установленный под приемным бункером на едином основании, разделяющий поступающее в...
Тип: Изобретение
Номер охранного документа: 0002651721
Дата охранного документа: 23.04.2018
10.05.2018
№218.016.4cbf

Электроэнергетическая система морской буровой платформы

Электроэнергетическая система морской буровой платформы содержит дизельные двигатели и синхронные генераторы, главный распределительный щит, автономные инверторы напряжения, электроприводы переменного тока бурового насоса, роторного стола и спуско-подъемного механизма, измерительные блоки,...
Тип: Изобретение
Номер охранного документа: 0002652286
Дата охранного документа: 25.04.2018
10.05.2018
№218.016.4f96

Способ получения алюминиево-кремниевых сплавов

Изобретение относится к области металлургии цветных металлов, в частности к электролитическому производству алюминия, и может быть использовано в процессах подготовки алюминиевых сплавов с высоким содержанием кремния (силуминов) марок АК5М2, АК7, АК7пч, АК8М3, АК9, АК12 и других. Способ...
Тип: Изобретение
Номер охранного документа: 0002652905
Дата охранного документа: 03.05.2018
18.05.2018
№218.016.50b1

Способ термической обработки угля

Изобретение относится к области обогащения угля, в частности к получению высококачественного каменноугольного кокса и высококалорийного термообработанного твердого топлива для металлургии, энергетики и других отраслей промышленности. Перед термообработкой угля проводят экстремальное охлаждение...
Тип: Изобретение
Номер охранного документа: 0002653174
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.519c

Способ взрывной подготовки горной массы к селективной выемке

Изобретение относится к горной промышленности и может быть использовано на открытых горных разработках крутопадающих рудных месторождений. Способ взрывной подготовки горной массы к селективной выемке включает бурение скважин, выполнение маркшейдерской съемки блока, опробование скважин...
Тип: Изобретение
Номер охранного документа: 0002653172
Дата охранного документа: 07.05.2018
29.05.2018
№218.016.5351

Энергоэффективный тяговый электропривод автономного транспортного средства

Изобретение относится к электрическим тяговым системам транспортных средств. Энергоэффективный тяговый электропривод автономного транспортного средства содержит первичный дизельный двигатель, синхронный генератор переменного тока, управляемый выпрямитель и автономный инвертор напряжения,...
Тип: Изобретение
Номер охранного документа: 0002653945
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.5479

Способ получения лигатуры алюминий-эрбий

Изобретение относится к области металлургии цветных металлов, в частности к получению лигатур и сплавов алюминия с редкоземельными металлами, и может быть использовано для получения лигатуры алюминий-эрбий. В способе готовят исходную шихту в порошкообразном состоянии при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002654222
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.56d1

Способ обогащения флюоритовых руд

Изобретение относится к области переработки флюоритовых руд и может быть использовано для получения высококачественных флюоритовых концентратов, пригодных для использования, в химической и оптической промышленности по «сухой» схеме, т.е. без использования воды. Способ обогащения флюоритовых руд...
Тип: Изобретение
Номер охранного документа: 0002655060
Дата охранного документа: 23.05.2018
Показаны записи 31-36 из 36.
21.07.2020
№220.018.350c

Система автономного энергосбережения удаленных военных объектов и населенных пунктов с использованием сжиженного природного газа

Изобретение относится к области энергетики, в частности к системам автономного энергоснабжения удаленных военных объектов и населенных пунктов с использованием газификации на основе сжиженного природного газа (СПГ). Система автономного энергоснабжения включает связанные между собой...
Тип: Изобретение
Номер охранного документа: 0002726963
Дата охранного документа: 17.07.2020
24.07.2020
№220.018.365c

Котельная на сжиженном природном газе

Изобретение относится к области теплоэнергетики и предназначено для выработки тепловой энергии на котельных с использованием сжиженного природного газа (СПГ) в качестве экологически чистого топлива. Достигаемый технический результат - повышение эффективности газификации сжиженного природного...
Тип: Изобретение
Номер охранного документа: 0002727542
Дата охранного документа: 22.07.2020
20.04.2023
№223.018.4b51

Энергохолодильная система для режима полной изоляции специального фортификационного сооружения

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой, например для специальных фортификационных сооружений (СФС). Энергохолодильная система содержит автономную электростанцию,...
Тип: Изобретение
Номер охранного документа: 0002766659
Дата охранного документа: 15.03.2022
21.05.2023
№223.018.6b15

Энергохолодильная система для подземного сооружения, функционирующая без связи с наземной окружающей средой

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для энергоснабжения и охлаждения потребителей, расположенных в подземных сооружениях и других объектах, функционирующих без связи с наземной окружающей средой. Из емкости с топливом 11...
Тип: Изобретение
Номер охранного документа: 0002795635
Дата охранного документа: 05.05.2023
24.05.2023
№223.018.6f55

Энергохолодильная система для обеспечения работы подземного сооружения

Изобретение относится к энергетике и может быть использовано при создании энергохолодильных систем для автономного энергообеспечения и термостатирования (охлаждения) оборудования подземных сооружений различного функционального назначения. Энергоснабжение подземного сооружения обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002796032
Дата охранного документа: 16.05.2023
17.06.2023
№223.018.7f43

Энергохолодильная система для специального фортификационного сооружения, функционирующего без связи с атмосферой

Изобретение относится к области теплоэнергетики и может быть использовано в качестве энергохолодильной системы для объектов, функционирующих без связи с атмосферой, например для специальных фортификационных сооружений. Энергохолодильная система снабжена линией подачи воды с циркуляционным...
Тип: Изобретение
Номер охранного документа: 0002766948
Дата охранного документа: 16.03.2022
+ добавить свой РИД