×
28.08.2018
218.016.8044

Результат интеллектуальной деятельности: Конструкционный высокотемпературный материал для поглощения электромагнитного излучения в широком диапазоне длин волн

Вид РИД

Изобретение

Аннотация: Изобретение относится к области высокотемпературных широкополосных конструкционных радиопоглощающих материалов, которое может быть использовано для эффективного снижения уровня отраженного электромагнитного излучения в диапазоне 1-18 ГГц. Высокотемпературный радиопоглощающий композиционный материал с термостойкостью до 1000°С и кратковременно выше, содержащий по крайней мере два слоя с низкими диэлектрическим потерями и по крайней мере один слой с высокими диэлектрическими потерями, в котором слой с высокими диэлектрическими потерями расположен между слоями с низкими диэлектрическими потерями и содержит поглощающие элементы, однородно распределенные в неорганическом связующем. При этом неорганическое связующее включает компоненты, составляющие слои с низкими диэлектрическими потерями, и эти слои армированы волокнами. Компонентами, включенными в состав слоев с низкими диэлектрическими потерями, могут являться AlO и SiO, а поглощающие элементы в слое с высокими диэлектрическими потерями могут иметь призматическую форму и включать в своем составе карбид кремния и элемент Fe. Кроме того, слой с высокими диэлектрическими потерями может дополнительно характеризоваться высокими магнитными потерями. 4 з.п. ф-лы.

Изобретение относится к области высокотемпературных широкополосных радиопоглощающих материалов, в частности к радиопоглощающему композиционному материалу (далее материалу) на основе керамики, который может быть использован при температурах внешней среды до 1000°С в условиях воздействия механических нагрузок и предназначен для эффективного снижения уровня отраженного электромагнитного излучения в СВЧ-диапазоне.

Радиопоглощающие материалы (РПМ) применяются в тех областях, где необходимо подавить отражение электромагнитного излучения (ЭМИ), в частности в СВЧ-диапазоне. Существует особая необходимость в создании радиопоглощающих материалов для широкополосных объемных поглотителей, способных эффективно поглощать ЭМИ в диапазоне 1-18 ГГц и функционировать в диапазоне температур от - 50 до 1000°С, в том числе в окислительной среде. При этом для поглотителей, которые являются частью конструкций, находящихся под воздействием механических нагрузок, в частности вибрационных, важным фактором является достаточно высокий уровень механических характеристик материалов, из которых они сделаны. В настоящее время существует множество радиопоглощающих материалов и покрытий, напыляемых или приклеиваемых на защищаемые объекты или изделия, содержащих, как правило, полимерные материалы, подавляющее большинство из которых предназначено для функционирования при температурах не выше 400°С. РМП на основе керамики являются перспективными для создания высокотемпературных конструкционных поглотителей, способных выдерживать механические нагрузки при функционировании в агрессивных средах.

Степень поглощения ЭМИ, оцениваемая величиной снижения уровня отражения, оптимизируется различными путями, в том числе обеспечением максимального поглощения внутри материала за счет магнитных и диэлектрических потерь. Керамические радиопоглощающие материалы часто содержат добавки, регулирующие и оптимизирующие их свойства поглощения в определенном диапазоне частот. В общем случае радиопоглощающая керамика может содержать добавки веществ, обеспечивающие требуемые диэлектрические и/или магнитные потери [1]. В составе материала могут быть использованы также дополнительные слои, обладающие радиопрозрачными свойствами.

Известен радиопоглощающий материал для однонаправленного излучения в широком диапазоне частот: от 300 МГц до 30 ГТц (заявка Японии JP 2006192875 (А), публ. 27.07.2006, МПК В32В 18/00; В32В 7/02; Е04В 1/92; Н01Р 11/00; H01Q 17/00; Н05К 9/00 [2]). Материал по упомянутому изобретению содержит слой на основе вспененной керамики, включающей Al2O3 или SiC, или ТiO2, а также 10%мас.углерода и имеющей пористость 50-95%. Кроме того, на задней поверхности указанного слоя расположен отражающий слой. Содержание углерода является основным фактором, управляющим диэлектрическими потерями в указанном материале и степенью поглощения ЭМИ. Недостатком указанного материала является использование углерода в качестве компонента, влияющего на радиопоглощающие свойства, при том что углерод является нестойким в высокотемпературной окислительной среде и его электрические свойства находятся в сильной зависимости от температуры. Эти особенности ограничивают возможные применения указанного материала. Кроме того, материал на основе пенокерамики не является конструкционно прочным, что исключает его применение в условиях воздействия механических нагрузок.

Известно техническое решение, принятое в качестве прототипа (патент США US 8031104 (B2), публ. 04.10.2011, МПК H01Q 17/00 [3]), которое относится к поглотителю СВЧ-излучения для высокотемпературных применений (с температурами до 1000°С), и в котором требуемые свойства радиопоглощения достигаются за счет включения в состав поглотителя как минимум одного резистивного слоя и как минимум одного диэлектрического слоя. При этом резистивный слой является электропроводящим с относительно высоким электрическим сопротивлением и поглощает ЭМИ за счет высоких диэлектрических потерь, а диэлектрический слой обладает радиопрозрачными свойствами. Резистивный слой выполнен из так называемой МАХ-фазы и имеет состав, соответствующий формуле Мn+1АХn, где М - один или два элемента из группы Sc, Ti, V, Сг, Zr, Nb, Mo, Hf и Та; A - один или два элемента из группы: Al, Si, Р, S, Ga, Ge, As, Cd, In, Sn, TI, Pb; X=С и/или N, например, Ti3GeC2, Ti3AlC2, Ti3SiC2, Ti4AlN3. Диэлектрический слой выполнен из термостойкой керамики, содержащей Аl2O3 и/или SiO2, например муллит, кордиерит, кварцевое стекло.

Недостатком материала прототипа является использование слоев из монолитной керамики, которая, как известно, обладает недостаточным уровнем трещиностойкости и прочности для применения в условиях действия высоких механических нагрузок и вибраций [4].

Задачей настоящего изобретения является разработка высокотемпературного конструкционного широкополосного радиопоглощающего материала для создания объемного поглотителя электромагнитного излучения, обладающего стойкостью к воздействию температур до 1000°С и высоким уровнем физико-механических характеристик, обеспечивающих возможность использования материала в конструкциях, подверженных воздействию механических нагрузок, в частности вибрации.

Указанная задача решается путем создания высокотемпературного радиопоглощающего композиционного материала с термостойкостью до 1000°С, содержащего по крайней мере два слоя с низкими диэлектрическим потерями и по крайней мере один слой с высокими диэлектрическими потерями, в котором слой с высокими диэлектрическими потерями расположен между слоями с низкими диэлектрическими потерями и содержит поглощающие элементы, однородно распределенные в неорганическом связующем. При этом указанное неорганическое связующее включает компоненты, составляющие слои с низкими диэлектрическими потерями, и эти слои армированы волокнами. Компонентами, включенными в состав слоев с низкими диэлектрическими потерями, являются Al2O3 и SiO2, а поглощающие элементы в слое с высокими диэлектрическими потерями имеют призматическую форму и включают в своем составе карбид кремния и элемент Fe.

В предлагаемом радиопоглощающем композиционном материале технический эффект достигается в первую очередь за счет создания определенной многослойной структуры из слоев с низкими и высокими диэлектрическими потерями, а также за счет использования определенного химического состава указанных слоев (включая поглощающие элементы), обеспечивающего требуемые характеристики радиопоглощения и высокий уровень термостойкости.

Кроме того, технический эффект достигается за счет использования в составе материала армирующих волокон и пластичного неорганического связующего, которые обеспечивают целостность структуры композиционного материала и повышают его стойкость к воздействию ударных и вибрационных нагрузок. Использование указанных армирующих волокон и неорганического связующего обеспечивает также технологичность и простоту процесса при создании объемных поглотителей различных форм и размеров на предварительно подготовленных металлических каркасах.

Призматическая форма поглощающих элементов способствует технологичности при формировании слоя с высокими диэлектрическими потерями, с возможностью однородного распределения в этом слое, и обеспечивает точное управление толщиной слоя с достижением требуемых характеристик радиопоглощения. Кроме того, поглощающие элементы создают дополнительное упрочнение материала.

В одном из вариантов изобретения слой с высокими диэлектрическими потерями изготовлен с использованием состава, обладающего дополнительно магнитными свойствами, такими как высокие магнитные потери, которые сохраняют стабильность при нагреве вплоть до температуры 1000°С и повышают характеристики радиопоглощения материала в целом.

Предлагаемое изобретение является новым, имеет изобретательский уровень, применимо в промышленных масштабах. Изобретение может быть реализовано с использованием известной технологии порошковой металлургии и оборудования, используемого на разных стадиях этой технологии.

Ниже приводится пример реализации изобретения.

Поглощающие элементы изготавливают предварительно методом порошковой металлургии с использованием следующих стадий: получения исходных смесей на основе порошка α-SiC (марка 64С) с добавками до 7 мас. % порошка железа (с содержанием примесей не более 0,08 мас. %), керамического связующего (например, ТУ 1523-002-14377547-2007) и временного термопластичного связующего (до 15 мас. %); формования брусков с размерами 3×3×20 мм методом шликерного литья; сушки и спекания в атмосфере воздуха при температуре до 1250°С. Кремнеземную ткань КТ-11 раскраивают в соответствии с требуемой формой. На одном листе кремнеземной ткани располагают полученные поглощающие элементы в форме брусков в один слой на расстоянии 3-5 мм друг от друга так, чтобы их длинные стороны были ориентированы в одном направлении. Уложенные поглощающие элементы покрывают сверху другим листом кремнеземной ткани. Готовят неорганическое связующее из алюмосиликатного клея НС-1 ТУ 6 00209775. 075-2000. Неорганическим связующим, подготовленным ранее, пропитывают всю слоистую структуру. Проводят отверждение алюмосиликатного клея. Располагают и закрепляют полученный композиционный материал с одной стороны предварительно созданного металлического каркаса, соответствующего пирамидальной форме объемного поглотителя. С другой стороны металлического каркаса располагают и закрепляют еще один слой кремнеземной ткани. Проводят дополнительную пропитку алюмосиликатным клеем всей конструкции и последующее его отверждение.

Полученный материал в виде конструкции объемного поглотителя был испытан в условиях направленного электромагнитного излучения в диапазоне частот 1-18 ГГц. Получены высокие значения снижения уровня отражения электромагнитного излучения: от -15 до -21 дБ в указанной полосе частот.

Список источников

1. Saville P. Review of Radar Absorbing Materials: Technical Memorandum Defence Research and Development Canada - Atlantic TM 2005-003, 2005.

2. JP 2006192875 (A) / Toshiba Ceramics Co; publ. 27.07.2006.

3. US 8031104 (B2) / TOTAL Forsvarets Forskningsinstitutt [SE]; publ. 04.10.2011.

4. Ceramic Materials and Components for Engines / Ed. by Jurgen G. Heinrich and Fritz Aldinger: WILEY-VCH Verlag GmbH, 2001.

Источник поступления информации: Роспатент

Показаны записи 101-110 из 152.
10.11.2015
№216.013.8dbb

Газотурбинный двигатель

Изобретение относится к газотурбинным двигателям авиационного и наземного применения. Газотурбинный двигатель включает компрессор и двухступенчатую турбину, компрессор низкого давления, на выходе которого установлен компрессор. В двухступенчатой турбине внутренняя полость сопловой лопатки...
Тип: Изобретение
Номер охранного документа: 0002567890
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8dbd

Статор компрессора высокого давления

Изобретение относится к статорам компрессоров высокого давления газотурбинных двигателей авиационного и наземного применения. Статор компрессора высокого давления включает в себя внешний и внутренний корпусы, кольцевую обечайку (6), перфорированную отверстиями (7). Корпусы соединены между собой...
Тип: Изобретение
Номер охранного документа: 0002567892
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e3c

Всасывающий клапан аксиально-плунжерного гидронасоса

Изобретение относится к конструктивным элементам аксиально-плунжерных гидронасосов, предназначенных для работы в морской воде и использующих морскую воду в качестве рабочей жидкости. Всасывающий клапан выполнен совместно с плунжером и расположен в торце плунжера. Состоит из запорного элемента,...
Тип: Изобретение
Номер охранного документа: 0002568021
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e5e

Гидроакустическая буксируемая антенна для геофизических работ

Изобретение относится к области гидроакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве геофизической косы для проведения исследований в обеспечении инженерно-геофизических работ на морском дне. Техническим результатом изобретения является снижение диаметра...
Тип: Изобретение
Номер охранного документа: 0002568055
Дата охранного документа: 10.11.2015
10.12.2015
№216.013.9739

Стенд для усталостных испытаний на кручение коленчатых валов двигателей внутреннего сгорания

Изобретение относится к испытательной технике и испытаниям на усталостную прочность при кручении. Стенд содержит сервогидравлическое нагружающее устройство (СНУ), элемент коленчатого вала (1), один конец которого жестко крепится через фланец отбора мощности к вертикальной неподвижной стойке...
Тип: Изобретение
Номер охранного документа: 0002570333
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9904

Упругодемпферная опора газотурбинного двигателя

Изобретение относится к упругодемпферным опорам ротора газотурбинного двигателя авиационного и наземного применения. Упругодемпферная опора газотурбинного двигателя включает рессору, которая имеет упругий элемент с фланцем, передний торец которого соединен с торцом фланца корпуса центрального...
Тип: Изобретение
Номер охранного документа: 0002570792
Дата охранного документа: 10.12.2015
27.12.2015
№216.013.9d39

Способ автоматического пуска среднеоборотного двигателя внутреннего сгорания

Изобретение относится к пуску резервных средне- и малооборотных двигателей внутреннего сгорания. Способ экстренного автоматического пуска поршневого двигателя внутреннего сгорания включает прокачку двигателя смазочным маслом от внешнего насоса через штатные трубопроводы, готовность к пуску...
Тип: Изобретение
Номер охранного документа: 0002571879
Дата охранного документа: 27.12.2015
10.02.2016
№216.014.c4ad

Компенсирующая полужесткая угловая муфта

Изобретение относится к области машиностроения, а более конкретно к муфтам. Компенсирующая полужесткая угловая муфта содержит установленный на фланце коленчатого вала диск, закрепленную на нем мембрану, которая соединена с фланцем ротора генератора кольцом и болтами. Кольцо своим буртом,...
Тип: Изобретение
Номер охранного документа: 0002574502
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c93e

Топливный насос высокого давления для двигателя внутреннего сгорания

Изобретение может быть использовано в системах топливоподачи двигателей внутреннего сгорания (ДВС). Предложен топливный насос с электромагнитным перепускным клапаном, управляющим началом и концом подачи топлива, в котором полости всасывания и отсечки разделены подпружиненным коническим запорным...
Тип: Изобретение
Номер охранного документа: 0002578058
Дата охранного документа: 20.03.2016
10.05.2016
№216.015.3b16

Движительный комплекс судна туннельного типа

Изобретение относится к области судостроения. Движительный комплекс судна туннельного типа включает водометные движители, встроенные в полуконические образования кормовой оконечности подводного корпуса и дополнительно по крайней мере два вертикальных пластинчатых роторных движителя,...
Тип: Изобретение
Номер охранного документа: 0002583328
Дата охранного документа: 10.05.2016
Показаны записи 21-22 из 22.
19.06.2019
№219.017.8449

Способ запуска газотурбинных двигателей многодвигательного летательного аппарата

Способ запуска газотурбинных двигателей многодвигательного летательного аппарата заключается в запуске одного из двигателей летательного аппарата путем подвода к его ротору мощности от пускового устройства и последующем запуске второго двигателя летательного аппарата. Запуск второго двигателя...
Тип: Изобретение
Номер охранного документа: 0002277179
Дата охранного документа: 27.05.2006
12.09.2019
№219.017.ca79

Роторная машина объемного типа

Изобретение относится к области энергетического и транспортного машиностроения и может быть использовано для привода потребителей механической энергии, а также в качестве составной части двигателя внутреннего сгорания, в том числе и газотурбинных двигателей. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002699864
Дата охранного документа: 11.09.2019
+ добавить свой РИД