25.08.2018
218.016.7f1d

Способ повышения надежности гибридных и монолитных интегральных схем

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способу повышения надежности полупроводниковых монолитных и гибридных интегральных схем (ИС) в заданных условиях эксплуатации. Сущность: определяют скорость деградации информативных параметров ИС в результате искусственного старения. Строят функцию плотности вероятности информативных параметров с учетом технологических погрешностей параметров конструкции ИС. Определяют методом имитационного моделирования на основе полученных закономерностей и скорости деградации информативных параметров ИС траектории их изменения во времени. Определяют моменты времени параметрических отказов всех ИС в партии. Статистически обрабатывают моменты времени параметрических отказов всех ИС партии и определяют среднюю наработку на отказ. Корректируют номинальные информативные параметры ИС по критерию максимизации средней наработки на отказ, в течение которого функция плотности вероятности их информативных параметров во времени не выходит за пределы наложенных разработчиком ограничений. Синтезируют новые параметры конструкции ИС, обеспечивающие новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров. Технический результат: повышение времени наработки на отказ гибридных и монолитных ИС. 2 з.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Область техники

Изобретение относится к способу повышения надежности полупроводниковых монолитных и гибридных интегральных схем (ИС) в заданных условиях эксплуатации.

Уровень техники

Из уровня техники известен способ повышения надежности наноэлектронного резонансно-туннельного диода (РТД) на основе многослойных AlGaAs (алюминий, галлий, арсеникум) полупроводниковых гетероструктур путем определения стойкости к радиационным и температурным воздействиям (см. RU 2606174 С1, кл. G01R 31/28, 10.01.2017).

Сущность известного изобретения заключается в последовательном приложении циклов радиационных воздействий на партию РТД, доза которых постепенно накапливается в каждом цикле, и температурных воздействий, время воздействия которых увеличивается с тем, чтобы получить вызванные ими изменения вольт-амперной характеристики (ВАХ) в рабочей области не менее чем на порядок больше погрешности измерения, в определении количества циклов радиационных и температурных воздействий путем установления ВАХ, соответствующей параметрическому отказу для конкретного применения РТД, в построении семейства ВАХ, в определении на основе анализа кинетики ВАХ скорости деградации РТД и в определении стойкости к радиационным и температурным воздействиям РТД на основе скорости деградации РТД. Технический результат - повышение надежности путем определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода.

Недостатком известного способа является ограниченность применения.

Наиболее близким аналогом (прототипом) является способ повышения надежности полупроводниковых монолитных и гибридных интегральных схем путем искусственного старения, в результате которого происходит деградация параметров материалов и структуры ИС и, как следствие, изменение их информативных параметров (см. US 2014/088947, кл. G01R 31/26, 27.03.2014).

В известном способе осуществляют ускоренное стресс-тестирование. Способ осуществляют с помощью встроенного в микросхему микропроцессора, который избирательно чередует работу испытуемой интегральной схемы между тестовым режимом и стрессовым режимом. Микросхема запитывается таким образом, что в режиме стресса испытуемая схема работает при более высоком уровне напряжения, чем функциональная схема. Результаты тестирования интегральной схемы используют для моделирования характеристик деградации и прогнозирования момента времени отказа схемы.

Недостатком прототипа является ограниченность его использования только в условиях эксплуатации.

Раскрытие изобретения

Задача, на решение которой направлено изобретение, заключается в повышении времени наработки на отказ гибридных и монолитных ИС за счет учета технологических разбросов параметров конструкции и закономерностей их деградации под действием внешних и внутренних факторов при эксплуатации и, соответственно, повышении надежности радиоэлектронной аппаратуры на их основе в условиях действия перечисленных факторов.

Поставленная задача решается тем, что предложен способ повышения надежности ИС путем искусственного старения, в результате которого происходит деградация параметров материалов и структуры ИС и, как следствие, изменение их информативных параметров. При этом определяют скорость деградации информативных параметров ИС, строят функцию плотности вероятности информативных параметров с учетом технологических погрешностей параметров конструкции ИС, определяют методом имитационного моделирования на основе полученных закономерностей и скорости деградации информативных параметров ИС траектории их изменения во времени, определяют моменты времени параметрических отказов всех ИС в партии, статистически обрабатывают моменты времени параметрических отказов всех ИС партии и определяют среднюю наработку на отказ, корректируют номинальные информативные параметры ИС по критерию максимизации средней наработки на отказ, в течение которой функция плотности вероятности их информативных параметров во времени не выходит за пределы наложенных разработчиком ограничений, и синтезируют новые параметры конструкции ИС, обеспечивающие новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров.

Причем искусственное старение ИС ведут циклами: воздействие повышенной температуры около 150°С в течение 1-20 часов под электрической нагрузкой, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 часов под электрической нагрузкой, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 часов под электрической нагрузкой, измерение информативных параметров таким образом, чтобы вызванное их действием изменение информативных параметров было не менее чем на порядок больше погрешности измерений.

Причем искусственное старение ИС ведут циклами: ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров, ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров таким образом, чтобы вызванное их действием изменение информативных параметров было не менее чем на порядок больше погрешности измерений.

Перечень чертежей

На фиг. 1 показаны вольт-амперные характеристики РТД, полученные в результате циклов термических воздействий и циклов ионизирующих излучений гамма-квантами.

На фиг. 2 показан пучок траекторий информативного параметра X(t) во времени.

На фиг. 3 показана схема формирования постепенного отказа ИС.

На фиг. 4 показана функция плотности вероятности информативного параметра ƒ(Y) с учетом технологических погрешностей параметров конструкции ИС.

На фиг. 5 показана функция плотности вероятности информативного параметра устройства ƒ(Y) в начальный момент времени to и после заданной наработки в момент времени t1.

Осуществление изобретения

Способ повышения надежности гибридных и монолитных интегральных схем осуществляется следующим образом.

Для определения кинетики параметров ИС под действием дестабилизирующих факторов эксплуатации проводится искусственное старение, заключающееся в воздействии на ИС повышенной температуры и ионизирующих излучений (ИИ), в результате которых происходит деградация материалов ИС и, как следствие, изменение их электрических характеристик. В результате действия ИИ в гетероструктуру и в контактные области ИС вносятся дефекты, ускоряющие диффузионные процессы в них. Под действием повышенной температуры диффузионные процессы в гетероструктуре и контактных областях также ускоряются, что является причиной дополнительных изменений информативных параметров.

В качестве информативных параметров полупроводниковых приборов, таких как транзисторы, диоды и др., наиболее часто используются их вольт-амперные характеристики (ВАХ), из которых можно получить такие параметры, как дифференциальное сопротивление в рабочей области, крутизна, напряжение отсечки и др. В качестве информативных параметров устройств на основе диодов и транзисторов могут использоваться их показатели назначения, такие как коэффициент усиления для усилителей, потери преобразования и ширина динамического диапазона для смесителей.

Радиационное облучение может производиться с помощью источника γ-квантов 60Со, например, ГИК-17М. Для температурного воздействия может использоваться лабораторная электронагревательная печь, например, СНОЛ 6/11.

Доза ИИ, температура и длительность термического воздействия выбираются такими, чтобы вызванное их действием изменение информативных параметров было не менее чем на порядок больше погрешности измерений. Опытным путем установлено, что искусственное старение ИС оптимально вести циклами, например воздействие повышенной температуры около 150°С в течение 1-20 час под электрической нагрузкой, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 час под электрической нагрузкой, измерение информативных параметров, воздействие повышенной температуры около 150°С в течение 1-20 час под электрической нагрузкой, измерение информативных параметров и/или ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров, ионизирующие излучения дозой порядка 103-106 рад, измерение информативных параметров.

Изменение ВАХ диодов и транзисторов регистрируется измерительным прибором (например, совместное использование микрозондового устройства (МЗУ) «ЛОМО 900072» и источника питания с цифровым управлением «Agilent 3640А DC Power Supply»). Изменение информативных параметров функциональных устройств регистрируется измерительными приборами, соответствующими выбранным информативным параметрам.

Пример изменения информативных параметров, в результате которых получается кинетика информативных параметров, приведен на фиг. 1. На оси абсцисс приведены значения напряжения U в вольтах, на оси ординат приведены значения тока I в амперах.

На фигуре 1 показаны кривые 1 - ВАХ до ионизирующих и температурных воздействий, 2 - ВАХ после 1-го цикла ионизирующих и температурных воздействий, 3 - ВАХ после 2-го цикла ионизирующих и температурных воздействий, 4 - ВАХ после 3-го цикла ионизирующих и температурных воздействий, 5 - ВАХ после 4-го цикла ионизирующих и температурных воздействий, 6 - ВАХ после 5-го цикла ионизирующих и температурных воздействий.

На основе изменения информативных параметров определяется скорость их деградации.

На основе полученных закономерностей и скорости деградации информативных параметров ИС строят траектории их изменения во времени. На фиг. 2 показан пучок траекторий информативного параметра X(t) во времени. Точки выхода функции X(t) за пределы заданных ограничений Хв фиксируются как моменты времени параметрических отказов ti.

Методом имитационного моделирования на основе полученных траекторий изменений во времени определяют моменты времени параметрических отказов ti всех ИС в партии, статистически обрабатывают моменты времени параметрических отказов и определяют среднюю наработку на отказ , где n - количество случайных реализаций функции X(t), tcp - средняя наработка партии ИС на отказ. Общая схема формирования постепенного отказа ИС показана на фиг. 3, где ƒ(t) - функция плотности вероятности наработки на отказ.

Строится функция плотности вероятности информативных параметров ƒ(Y) с учетом технологических погрешностей параметров конструкции ИС (см. фиг. 4).

Методы и алгоритмы для построения функции плотности вероятности информативных параметров с учетом технологических погрешностей параметров конструкции ИС рассматриваются в учебном пособии Технологическая оптимизация микроэлектронных устройств СВЧ: учебное, пособие / А.Г. Гудков, С.А. Мешков, М.А. Синельщикова, Е.А. Скороходов. - М., Изд-во МГТУ им. Н.Э. Баумана, 2014, с. 16-20.

Корректировка номинальных информативных параметров ИС по критерию максимизации средней наработки на отказ, в течение которой функция плотности вероятности их информативных параметров во времени не выходит за пределы наложенных разработчиком ограничений, является задачей оптимизации. На фиг. 5 представлена графическая интерпретация решаемой задачи. На ней показана функция плотности вероятности информативного параметра устройства ƒ(Y) в начальный момент времени t0 и после заданной наработки в момент времени t1. Задача ставится следующим образом. Целевая функция: - вероятность выхода годных ИС, где , - вектор параметров конструкции ИС; - вектор информативных электрических параметров ИС, t - время эксплуатации, - вектор разбросов (технологическая точность) параметров конструкции ИС; - вектор допустимых отклонений (допуски) на информативные параметры ИС.

,

ƒ(Y) - функция плотности вероятности информативных параметров ИС;

YMIN, YMAX - границы поля допуска на информативные параметры ИС,

YNOM - номинал информативного параметра ИС;

YOPT - новые значения номинала информативного параметра ИС;

- вероятность попадания параметра Yi в элементарный интервал ΔYi.

Критерий оптимальности: max .

Управляемые параметры: номиналы информативных параметров Y.

Ограничения: , , , , где Оk, От - ограничения конструкторского и технологического характера. Задача решается методами одномерной условной оптимизации, описанными в книге Норенков И.П. Основы автоматизированного проектирования: Учебник для вузов. 2-е изд., М., Издательство МГТУ им. Н.Э. Баумана, 2002, с. 157-170.

В результате решения задачи оптимизации получают новые значения номиналов Y0PT, которым соответствует max РГ в течение наработки от t0 до t1.

Затем осуществляется синтез параметров конструкции X, обеспечивающих новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров Y0PT. Синтез ведется итерационными методами с использованием методов оптимизации нулевого, первого, второго порядка, которые рассматриваются в книге Норенков И.П. Основы автоматизированного проектирования: Учебник для вузов. 2-е изд., М., Издательство МГТУ им. Н.Э. Баумана, 2002, с. 157-170.

В результате указанного выше синтеза новых параметров конструкции ИС решается поставленная задача, а именно обеспечиваются новые оптимальные по критерию максимальной наработки на отказ номиналы информативных параметров и достигается повышение времени наработки на отказ гибридных и монолитных ИС за счет учета технологических разбросов параметров конструкции и закономерностей их деградации под действием внешних и внутренних факторов при эксплуатации и, соответственно, повышение надежности радиоэлектронной аппаратуры на их основе в условиях действия перечисленных факторов.


Способ повышения надежности гибридных и монолитных интегральных схем
Способ повышения надежности гибридных и монолитных интегральных схем
Способ повышения надежности гибридных и монолитных интегральных схем
Источник поступления информации: Роспатент

Показаны записи 1-10 из 68.
26.08.2017
№217.015.d867

Способ выбора вида пород для плана озеленения

Способ может быть использован в лесном хозяйстве, при озеленении территорий городских поселений, в садово-парковом хозяйстве. Способ характеризуется тем, что осуществляют измерения совокупности показателей, определяющих объем продуцирующей кислород биомассы каждого вида для участков...
Тип: Изобретение
Номер охранного документа: 0002622708
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.d8a6

Способ изготовления древесноволокнистой плиты

Изобретение относится к деревообрабатывающей промышленности, в частности к изготовлению древесноволокнистых плит. Выполняют размол древесной щепы. В древесноволокнистую массу вводят технологические добавки. Выполняют отлив ковра, обезвоживание и горячее прессование. В процессе размола в...
Тип: Изобретение
Номер охранного документа: 0002622706
Дата охранного документа: 19.06.2017
26.08.2017
№217.015.da14

Устройство и способ определения радиуса кривизны крупногабаритных оптических деталей на основе датчика волнового фронта

Заявленное изобретение относится к разработкам в области измерительных оптических систем и может применяться в системах контроля качества и других областях оптической промышленности. Заявленное устройство определения радиуса кривизны крупногабаритной оптической детали на основе датчика...
Тип: Изобретение
Номер охранного документа: 0002623702
Дата охранного документа: 28.06.2017
26.08.2017
№217.015.dc0a

Способ оценки биологической активности состава и концентрации препаратов, рекомендуемых для повышения посевных качеств семян зерновых культур

Изобретение относится к сельскому хозяйству. Одинаковые навески сравниваемых семян обрабатывают препаратами-стимуляторами, помещают в емкости, приводят семена в контакт с водой, выдерживают семена в этих растворах, определяют и сравнивают количество выделившейся при прорастании семян...
Тип: Изобретение
Номер охранного документа: 0002624284
Дата охранного документа: 03.07.2017
26.08.2017
№217.015.e993

Электрогидравлическая форсунка с возможностью формирования закона подачи

Изобретение может быть использовано в аккумуляторных системах топливоподачи с электронным управлением для двигателей внутреннего сгорания (ДВС). Предложена электрогидравлическая форсунка (ЭГФ) с возможностью формирования закона подачи топлива, содержащая корпус 2 с размещенными в нем...
Тип: Изобретение
Номер охранного документа: 0002627741
Дата охранного документа: 11.08.2017
26.08.2017
№217.015.ea8d

Способ визуализации и квантификации эффекта памяти формы древесины и древесных материалов

Изобретение относится к области деревообработки, визуализации и определения показателей эффекта памяти формы древесины и древесных материалов. Способ включает помещение образца древесины в емкость с водой, выполненную с возможностью ее подогрева, при этом образец древесины устанавливают в...
Тип: Изобретение
Номер охранного документа: 0002627852
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.eac4

Сверхчувствительная гидроакустическая антенна на основе волоконно-оптических гидрофонов, использующая многоэлементные приёмники

Изобретение относится к метрологии, в частности к волоконно-оптическим сенсорным системам. Антенна состоит из двух частей: вневодной части и подводной части, включающей в себя последовательно соединенные лазер, волоконно-оптический разветвитель 1×N излучения - на N каналов, делящий энергию...
Тип: Изобретение
Номер охранного документа: 0002627966
Дата охранного документа: 14.08.2017
29.12.2017
№217.015.f13a

Способ активации углеродного материала из вискозных волокон для получения электродов суперконденсаторов

Изобретение относится к области электротехники, а именно к активации углеродного материала из вискозных волокон для изготовления электродов электролитических суперконденсаторов. Сущность изобретения заключается в том, что способ содержит две стадии, на первой из которых осуществляют пропитку...
Тип: Изобретение
Номер охранного документа: 0002638935
Дата охранного документа: 19.12.2017
29.12.2017
№217.015.f856

Устройство для перемешивания концентрата тромбоцитов или тромбоцитосодержащих трансфузионных сред

Изобретение относится к области медицинской техники и может быть использовано на станциях переливания крови, в больницах, клиниках и научно-исследовательских медицинских учреждениях. Устройство для перемешивания концентрата тромбоцитов или тромбоцитосодержащих трансфузионных сред содержит...
Тип: Изобретение
Номер охранного документа: 0002639827
Дата охранного документа: 22.12.2017
29.12.2017
№217.015.f928

Автономное термостатируемое устройство для хранения концентрата тромбоцитов или тромбоцитосодержащих трансфузионных сред

Изобретение относится к области медицинской техники и может быть использовано на станциях переливания крови, в больницах, клиниках и научно-исследовательских медицинских учреждениях. Автономное термостатируемое устройство для хранения концентрата тромбоцитов или тромбоцитосодержащих...
Тип: Изобретение
Номер охранного документа: 0002639918
Дата охранного документа: 25.12.2017
Показаны записи 1-5 из 5.
13.01.2017
№217.015.89f9

Способ определения стойкости полупроводниковых приборов свч к воздействию ионизирующих излучений

Использование: для отбраковки полупроводниковых приборов. Сущность изобретения заключается в подаче на каждый прибор из группы однотипных приборов неизменные напряжения питания, приложении последовательности циклов ионизирующего излучения, доза которого накапливается в каждом цикле с тем, чтобы...
Тип: Изобретение
Номер охранного документа: 0002602416
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.9fc5

Способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода (ртд) на основе многослойных algaas (алюминий, галлий, арсеникум) полупроводниковых гетероструктур

Использование: для определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода. Сущность изобретения заключается в том, что способ определения стойкости к радиационным и температурным воздействиям наноэлектронного резонансно-туннельного диода...
Тип: Изобретение
Номер охранного документа: 0002606174
Дата охранного документа: 10.01.2017
29.12.2017
№217.015.f2c0

Система и способ для камеры сгорания турбины

Изобретение относится к энергетике. Предложена система для сжигания топлива, содержащая турбинную камеру сгорания, которая содержит головную часть с головной камерой. При этом головная часть содержит канал отработанного газа, канал топлива и канал окислителя. Турбинная камера сгорания также...
Тип: Изобретение
Номер охранного документа: 0002637609
Дата охранного документа: 05.12.2017
19.04.2019
№219.017.1d63

Способ повышения надежности и качества функционирования партии гибридных и монолитных интегральных схем

Изобретение относится к повышению надежности и качества функционирования партии полупроводниковых монолитных и гибридных интегральных схем (ИС). Сущность: ИС подвергают искусственному старению, в результате которого происходит деградация параметров материалов и структуры ИС и изменение их...
Тип: Изобретение
Номер охранного документа: 0002684943
Дата охранного документа: 16.04.2019
09.07.2020
№220.018.30b5

Способ и устройство получения продукта, содержащего аморфный диоксид кремния и аморфный углерод

Изобретение относится к переработке углеродосодержащего сырья и может быть использовано для получения продуктов с содержанием аморфного диоксида кремния и аморфного углерода различной степени чистоты. Способ получения продукта, содержащего аморфный диоксид кремния и аморфный углерод, содержащий...
Тип: Изобретение
Номер охранного документа: 0002725935
Дата охранного документа: 07.07.2020

Похожие РИД в системе

+ добавить свой РИД