×
25.08.2018
218.016.7f17

Результат интеллектуальной деятельности: СПОСОБ ГИДРОЛОКАЦИИ В МЕЛКОВОДНЫХ ОБЛАСТЯХ С ОПЕРАТИВНЫМ КОНТРОЛЕМ ИЗМЕНЧИВОСТИ УСЛОВИЙ ОБНАРУЖЕНИЯ ПОДВОДНОЙ ЦЕЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гидролокации, может быть использовано при проведении подводных работ, контроле подводной обстановки, при охране различных объектов со стороны водной среды и обеспечивает достижение постоянной максимально возможной дальности обнаружения подводных целей, а также помехоустойчивости в работе гидролокационной системы. Предложен способ гидролокации в мелководных областях с оперативным контролем изменчивости условий обнаружения подводной цели, заключающийся в продольном волновом зондировании излучателем водной толщи и приеме отраженного от подводной цели зондирующего сигнала, в котором одновременно с обнаружением подводной цели дополнительно осуществляют прием отраженного от рассеивающего объекта зондирующего сигнала в по меньшей мере двух точках, расположенных на разном расстоянии от рассеивающего объекта, определяют степень затухания энергии отраженного от рассеивающего объекта зондирующего сигнала с использованием данных об отношении интенсивностей зондирующего сигнала, принятого в упомянутых по меньшей мере двух точках, и по результатам сравнения полученного значения энергии с пороговым принимают решение о компенсации негативного влияния присутствующих помех, вызванных изменчивостью условий обнаружения подводной цели, при этом рассеивающий объект располагают в зондируемой области. 4 з.п. ф-лы, 2 ил.

Изобретение относится к области гидролокации и может быть использовано при проведении подводных работ, контроле подводной обстановки и при охране различных объектов со стороны водной среды в изменчивых условиях работы гидролокационной системы, характерных, например, для мелководных прибрежных областей. В таких областях, с глубинами менее 5-10 м, при продольном волновом зондировании водной толщи наблюдается ряд факторов, вызывающих потери энергии распространяющихся в воде акустических сигналов. Это расширение фронта волны, пространственное затухание энергии акустических сигналов при распространении как в водной среде так и при многочисленных отражениях и рассеянии сигналов от дна и от волнующейся водной поверхности, а также рефракция звуковых лучей при распространении по неоднородно прогретому водному слою [1] и, кроме того, значительный фон естественных помех от ветра, дождя и волнения. В результате из-за суммарного влияния указанных факторов максимальная дальность обнаружения подводных целей, например, пловцов-нарушителей, в таких условиях может меняться значительно во времени: в зависимости от времени года, дня и ночи до нескольких часов, оказываясь практически не предсказуемой.

Для использовании описанного в патенте РФ №19160, опубл. 10.08.2001, комплексного стенда возникающая на практике необходимость экспериментального определения дальности обнаружения подводных объектов гидроакустическими средствами эвентуального наблюдателя в предпоходном планировании решается заданием известных среднестатистических экспериментальных данных для заданного времени года и района плавания, что возможно благодаря относительно стабильным условиям распространения звука в глубоководных областях акваторий. Однако это недостижимо для мелководных областей с их изменчивым характером условий обнаружения подводных целей.

Известен способ обнаружения вторжения подводного объекта в контролируемую область натурного водоема, подразумевающий прием провзаимодействовавшего с подводной целью акустического сигнала после его отражения от отражателей, расположенных вдоль эллиптической поверхности для формирования диаграммы направленности зондирующих сигналов специальной формы и достижения повышения соотношения сигнал/шум в принимаемом сигнале (патент РФ №2150123, опубл. 27.05.2000). К основным недостаткам данного способа, принятого за прототип, можно отнести очень сложную в технической реализации систему расположения устройств (приемника, излучателя и отражателей) в среде, жестко располагаемых в фокусах эллиптической поверхности области непрерывного акустического пятна, подверженную влиянию переменчивости условий среды (погодные условия, течения, волнение водной поверхности и пр.). В условиях мелководных областей это приведет к постоянной необходимости изменения геометрической системы расположения устройств и, соответственно, к смещению «фокусировки» отраженных сигналов, не поступающих на приемники, и таким образом создающих разряженную зону в области непрерывного акустического пятна, способствующую скрытному пересечению объектом контролируемой области.

Можно предположить, что для получения необходимой информации по распространению звука в условиях мелководных областей достаточно выполнить расчеты потерь, исходя из параметров и свойств мелководной среды, в которой распространяется звук, однако эти расчеты громоздки и сложны, как это следует из различных руководств, и, кроме того, требуют знания исходных параметров среды с учетом их изменений в оперативном режиме, например, знаний вертикального распределения скорости звука в водном слое и характера волнения, а также типа грунта и рельефа дна. При этом неизбежны значительные неточности и ошибки и, главное, теряется оперативность получения результата.

Технической проблемой, решение которой обеспечивается при осуществлении заявленного изобретения, является организация в процессе работы гидролокационной системы получения оперативной информации о влиянии потерь энергии гидроакустических сигналов и их изменчивости, а также фона помех на эффективность обнаружения подводных целей для возможной компенсации нежелательных последствий данных факторов посредством осуществления на практике в оперативном порядке необходимых мероприятий.

Такими мероприятиями могут быть увеличение или уменьшение уровня излучаемого зондирующего сигнала или изменение его частоты, выбор ширины диаграммы направленности излучаемого или принимаемого отраженного зондирующего сигнала и т.д., вплоть до перехода к известным способам гидролокации, обладающим преимуществами по дальности обнаружения целей, например, способу параметрической гидролокации, при котором дальность увеличивается за счет создания узкого сектора низкочастотного излучения зондирующих сигналов, когда снижаются потери энергии звука, или способам вынесенного приема, описанным в патентах РФ №№2358289, 2383899, 2461844, при которых отраженные от объекта зондирующие сигналы регистрируются приемником или приемниками, вынесенными в зону облучения ближе к цели, где уровни регистрируемых сигналов существенно более высокие по сравнению с их приемом на приемник, совмещенный с излучателем гидролокатора.

Техническим результатом заявленного изобретения является достижение постоянной максимально возможной дальности обнаружения подводных целей, а также помехоустойчивости в работе гидролокационной системы за счет оперативной оценки общих потерь энергии гидроакустических сигналов в контролируемой (зондируемой) мелководной области.

Для достижения заявленного технического результата предложен способ гидролокации в мелководных областях с оперативным контролем изменчивости условий обнаружения подводной цели, заключающийся в продольном волновом зондировании излучателем водной толщи и приеме отраженного от подводной цели зондирующего сигнала, в котором одновременно с обнаружением подводной цели дополнительно осуществляют прием отраженного от рассеивающего объекта зондирующего сигнала в по меньшей мере двух точках, расположенных на разном расстоянии от рассеивающего объекта, определяют степень затухания энергии отраженного от рассеивающего объекта зондирующего сигнала с использованием данных об отношении интенсивностей зондирующего сигнала, принятого в упомянутых по меньшей мере двух точках, и по результатам сравнения полученного значения энергии с пороговым принимают решение о компенсации негативного влияния присутствующих помех, вызванных изменчивостью условий обнаружения подводной цели, при этом рассеивающий объект располагают в зондируемой области.

В частных случаях реализации предложенного способа для продольного волнового зондирования используют излучатель зондирующего сигнала, совмещенный с его приемником, а прием отраженного от рассеивающего объекта зондирующего сигнала осуществляют на по меньшей мере два приемника, вынесенных в зондируемую область между излучателем и рассеивающим объектом. Прием отраженного от рассеивающего объекта зондирующего сигнала также могут осуществлять на подвижный приемник. Рассеивающим объектом может быть специально введенный в гидролокационную систему стационарный имитатор подводной цели (желательно наполненный воздухом сферический объект), а также сама подводная цель. В предложенном способе в знаменателе отношения интенсивностей зондирующего сигнала могут использовать интенсивность сигнала в наиболее близкой к рассеивающему объекту точке приема.

Структурная схема частного случая реализации заявленного способа показана на фиг. 1, где 1 - излучатель зондирующих сигналов, совмещенный с приемником; 2 - приемники, вынесенные в зону облучения; 3 - рассеивающий объект, находящийся в зондируемой зоне.

На фиг. 2 представлена осциллограмма регистрации излучаемого и отраженного от рассеивающего объекта зондирующего сигнала, где 4 - излучаемый зондирующий сигнал; 5 - отраженный от рассеивающего объекта зондирующий сигнал на фоне помех. По горизонтальной оси на фиг. 2 отложено отсчитываемое от излучателя расстояние, а по вертикали - уровень принимаемого зондирующего сигнала.

Потеря энергии (степень ее затухания) отраженного от рассеивающего объекта зондирующего сигнала при его прохождении в водном слое расстояния r от рассеивающего объекта к приемнику может быть оценена путем определения коэффициента затухания энергии β в дБ/км данного сигнала. Известно выражение для интенсивности принимаемого сигнала, учитывающее, кроме зависимости интенсивности от пространственного затухания волны, также расширение фронта волны при ее удалении от рассеивающего объекта:

I~r-2 10-0,1βr.

Обозначим приемники 2 (фиг. 1) между рассеивающим объектом и излучателем зондирующих сигналов как П1, П2, …, Пn, тогда расстояние r от рассеивающего объекта до каждого из приемником будет соответственно r1, r2, …rn.

Зондирующий сигнал от излучателя достигает рассеивающего объекта и, отразившись от него, приобретает некоторую интенсивность I. Этот отраженный и рассеянный объектом сигнал должен совершить еще обратный путь к n приемникам (n больше или равно 1), где его интенсивность уменьшается соответственно до I1, I2, …, In в результате расхождения фронта волны, потерь энергии из-за поглощения в воде и многократных отражений от дна и водной поверхности.

Для отношений I2/I1, …In/I1, определяющих снижение уровня отраженного от рассеивающего объекта зондирующего сигнала при прохождении расстояний r1, r2, …rn до одного или нескольких приемников, предложены выражения:

При этом в формировании отношений могут быть использованы любые другие их комбинации из имеющегося набора.

В полученных таким образом уравнениях значения интенсивности зондирующего сигнала I измеряются в точках приема единовременно или с заданной периодичностью, расстояния r1, r2, …rn заданы или легко могут быть измерены. Величина β может быть определена путем решения одного указанного уравнения или, например, путем получения усредненного значения при решении нескольких уравнений.

Возможны различные варианты практического выполнения и использования заявленного способа, например помещение в контролируемую зону излучателя, рассеивающего объекта и совокупности приемников, для проведения относительно длительных наблюдений регистрируемых приемниками отраженных от рассеивающего объекта зондирующих сигналов и их возможной изменчивости, вызываемой различными факторами, например волнением или сезонными изменениями условий распространения звука в водном слое. Другой вариант практической реализации заявленного способа предназначен для проведения оперативных замеров и может содержать ограниченное число приемников, вплоть до одного, местоположение которых между излучателем и рассеивающим объектом определяют в процессе проведения замеров.

Предложенный способ был опробован в реальных условиях озера Бисерово Московской области с глубинами 2-3 м, где наблюдались характерные для мелководных областей негативные факторы и потребовалось проведение необходимых мероприятий по увеличению дальности обнаружения подводных целей. На фиг. 2 представлен результат регистрации отраженного от рассеивающего объекта зондирующего сигнала одним из приемников 2 в эксперименте, вынесенным на 30 м от излучателя 1 по направлению излучения. То есть расстояние от данного приемника 2 до рассеивающего объекта 3 составило 300 м. Расстояние от излучателя 1 до рассеивающего объекта 3 равнялось 330 м. В эксперименте второй приемник был совмещен с излучателем 1.

На фиг. 2 видно, что до излучения зондирующего сигнала регистрируется естественный шум акватории, а затем выделяется излученный зондирующий сигнал 4 и реверберационные помехи как отклик на зондирующий сигнал 4 со стороны водной среды в виде отражений от дна и водной поверхности. Затем на этом фоне на приемник 2 приходит зондирующий сигнал 5, отраженный от рассеивающего объекта 1. Уровень естественного шума акватории до прихода на вынесенный приемник 2 излученного зондирующего сигнала 5 весьма слабый, судя по левой части рисунка, а фоном, на котором обнаруживается полезный сигнал от рассеивающего объекта 1, являются реверберационные помехи в виде многочисленных отражений зондирующего сигнала от дна и водной поверхности. Поэтому отмеченный на фиг. 2 отраженный от рассеивающего объекта зондирующий сигнал 5, хотя и обнаруживается на одном приемнике 2, вынесенном ближе к рассеивающему объекту 1, но оказывается сильно зашумленным. Результатом же предложенного способа является учет поглощения энергии как непосредственно в водной среде, так и в результате многочисленных отражений сигнала от дна и водной поверхности, определяющих снижение уровня отраженных от рассеивающего объекта сигналов при прохождении расстояний от рассеивающей цели до приемников.

Используя же результаты регистрации в по меньшей мере двух точках интенсивности отраженного от рассеивающего объекта зондирующего сигнала 5, получим при подстановке их в одно или несколько упомянутых уравнений искомую величину потерь энергии гидроакустических сигналов в зондируемой мелководной области. Для упомянутого эксперимента оценка значения коэффициента β на частотах в области 100 кГц, проводимая в течение 3 дней, по совокупности полученных в результате проведения измерений оказалась порядка 140 дБ/км. При сравнении данной величины с пороговой потребовалось изменение типа генерируемого зондирующего сигнала и его длительности. Повторное проведение эксперимента с измененными характеристиками зондирующего сигнала показало существенное увеличение его интенсивности в точках приема (почти в два раза), обеспечивающее наибольшую дальность обнаружения для текущих условий эксперимента. Увеличение интенсивности сигнала способствовало более четкому его выделению на уровне регистрируемых помех, что подтверждает общее повышение помехоустойчивости гидролокационной системы.

Источники информации

1. Акустика океана / Под ред. Л.М. Бреховских. М.: Наука, 1974. 695 с.


СПОСОБ ГИДРОЛОКАЦИИ В МЕЛКОВОДНЫХ ОБЛАСТЯХ С ОПЕРАТИВНЫМ КОНТРОЛЕМ ИЗМЕНЧИВОСТИ УСЛОВИЙ ОБНАРУЖЕНИЯ ПОДВОДНОЙ ЦЕЛИ
СПОСОБ ГИДРОЛОКАЦИИ В МЕЛКОВОДНЫХ ОБЛАСТЯХ С ОПЕРАТИВНЫМ КОНТРОЛЕМ ИЗМЕНЧИВОСТИ УСЛОВИЙ ОБНАРУЖЕНИЯ ПОДВОДНОЙ ЦЕЛИ
Источник поступления информации: Роспатент

Показаны записи 521-530 из 681.
06.12.2019
№219.017.e9cb

Исполнительное коммутирующее устройство

Изобретение относится к области приборостроения и электротехники, а именно к исполнительному коммутирующему устройству, и может быть использовано в системах автоматики взрывоопасных технических объектов, которые могут подвергаться аварийным воздействиям. Исполнительное коммутирующее устройство...
Тип: Изобретение
Номер охранного документа: 0002707879
Дата охранного документа: 02.12.2019
12.12.2019
№219.017.ebf5

Система управления радиографической установкой на базе ускорителя бетатронного типа

Использование: для использования в радиографических комплексах. Сущность изобретения заключается в том, что система управления радиографической установкой на базе ускорителя бетатронного типа включает в себя, по меньшей мере, пять контуров управления высоковольтным генератором, подключенных...
Тип: Изобретение
Номер охранного документа: 0002708543
Дата охранного документа: 09.12.2019
12.12.2019
№219.017.ec56

Способ настройки магнитооптической системы протонографического комплекса

Использование: для настройки магнитооптической системы протонографического комплекса. Сущность изобретения заключается в том, что осуществляют пропускание пучка протонов через объектную плоскость магнитооптической системы, включающей магнитные линзы и коллиматор, с последующим получением с...
Тип: Изобретение
Номер охранного документа: 0002708541
Дата охранного документа: 09.12.2019
13.12.2019
№219.017.ecbd

Многофункциональный пиковый детектор

Изобретение относится к измерительной технике и может быть использовано для детектирования одиночных коротких импульсов на фоне синфазных помех и электромагнитных наводок и преобразования выделенной амплитуды в медленно меняющееся напряжение или во временной интервал. Техническими результатами...
Тип: Изобретение
Номер охранного документа: 0002708687
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed1f

Способ определения систематических составляющих смещений нулей трехосного лазерного гироскопа

Изобретение относится к области гироскопического приборостроения и предназначено для определения величин систематических (постоянных) составляющих смещений нулей трехосного лазерного гироскопа (ТЛГ) при проведении калибровок (паспортизации) бесплатформенных инерциальных навигационных систем,...
Тип: Изобретение
Номер охранного документа: 0002708689
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed72

Жидкостный статический калориметр

Изобретение относится к области радиотехники и может быть использовано в различных устройствах радиоизмерительной техники и аппаратуры средств связи для измерения СВЧ мощности. Жидкостный статический калориметр содержит поглощающую нагрузку, помещенную в заполненный жидкостью корпус. Жидкость...
Тип: Изобретение
Номер охранного документа: 0002708698
Дата охранного документа: 11.12.2019
13.12.2019
№219.017.ed86

Способ получения покрытия, поглощающего лазерное излучение, и состав для его нанесения

Изобретение может быть использовано при лазерной обработке материалов, в том числе керамических, в частности при формировании отверстий и резке. Очистку поверхности проводят кипячением в хромовой смеси. На очищенную поверхность наносят поглощающий лазерное излучение состав в виде суспензии,...
Тип: Изобретение
Номер охранного документа: 0002708720
Дата охранного документа: 11.12.2019
22.12.2019
№219.017.f126

Частотный датчик линейных ускорений

Изобретение относится к области измерительной техники, а именно к измерительным элементам линейного ускорения. Сущность изобретения заключается в том, что основание частотного датчика линейных ускорений снабжено системой пружин плоскопараллельного подвеса, образованной пазами, выполненными в...
Тип: Изобретение
Номер охранного документа: 0002709706
Дата охранного документа: 19.12.2019
25.12.2019
№219.017.f223

Проходной электрический соединитель

Изобретение относится к проходному электрическому соединителю и может быть использовано в электрических соединителях и гермовводах в энергетических установках, работающих в условиях вакуума или в агрессивных средах, в условиях повышенных температур, обеспечивая при этом требуемую герметичность....
Тип: Изобретение
Номер охранного документа: 0002710028
Дата охранного документа: 24.12.2019
13.01.2020
№220.017.f4c4

Противопожарная защита

Использование: изобретение относится к области создания теплозащитных конструкций для защиты от длительного воздействия пожара пожаро- и взрывоопасных грузов (изделий), упаковок, металлических шкафов, сейфов с материальными ценностями, важными документами, деньгами и других подобных объектов...
Тип: Изобретение
Номер охранного документа: 0002710693
Дата охранного документа: 09.01.2020
Показаны записи 1-8 из 8.
27.07.2013
№216.012.5ab7

Пассивный метод и система обнаружения движущихся в воде объектов

Использование: для организации в условиях мелководья рубежной системы охраны подводных сооружений или сооружений на берегу со стороны водной среды от подводных пловцов-нарушителей или от других движущихся в воде объектов. Сущность: с помощью системы обнаружения регистрируются колебания давления...
Тип: Изобретение
Номер охранного документа: 0002488844
Дата охранного документа: 27.07.2013
10.11.2013
№216.012.7f42

Приемник низкочастотных колебаний давления в водной среде

Изобретение относится к измерительной технике. Сущность: приемник содержит основной и дополнительный пьезоэлементы, корпус, выполненный из теплопроводящего материала, например из металла. Основной пьезоэлемент прикреплен снаружи корпуса и воспринимает колебания давления водной среды, а также...
Тип: Изобретение
Номер охранного документа: 0002498251
Дата охранного документа: 10.11.2013
20.04.2015
№216.013.4424

Способ и система компенсации маскирующего влияния реверберационных помех на обнаружение подводных целей при гидролокации

Изобретение относится к области гидролокации и предназначено для компенсации маскирующего влияния реверберационных помех на обнаружение подводных целей при гидролокации в условиях значительных помех, характерных для мелководных акваторий. Для компенсации маскирующего влияния реверберационных...
Тип: Изобретение
Номер охранного документа: 0002548942
Дата охранного документа: 20.04.2015
10.03.2016
№216.014.c9d3

Способ и система автоматически управляемой активной охраны объектов со стороны водной среды

Изобретение относится к области гидролокации и предназначено для обнаружения подводных целей в областях, удаленных на значительные расстояния от места наблюдения. Предложенный способ автоматически управляемой активной охраны объектов со стороны водной среды с увеличенной дальностью обнаружения...
Тип: Изобретение
Номер охранного документа: 0002577089
Дата охранного документа: 10.03.2016
10.04.2016
№216.015.30d2

Способ регистрации локальных колебаний давления при пассивной локации движущихся в воде целей с компенсацией помех от поверхностного волнения

Изобретение относится к пассивному обнаружению движущихся в воде целей в условиях прибрежных морских областей и озер для осуществления охраны береговых сооружений и пляжей со стороны водной среды или охраны подводных сооружений, таких как проложенные под водой кабели, коллекторы, трубопроводы,...
Тип: Изобретение
Номер охранного документа: 0002580877
Дата охранного документа: 10.04.2016
09.05.2019
№219.017.4ce5

Метод и система обнаружения целей при гидролокации

Изобретение относится к области гидролокации и предназначено для обнаружения подводных целей в прибрежных морских областях, а также в речных руслах, каналах, озерах. Метод обнаружения целей в водной среде и определения их местоположения включает волновое зондирование и прием отраженных от целей...
Тип: Изобретение
Номер охранного документа: 0002383899
Дата охранного документа: 10.03.2010
09.05.2019
№219.017.4d29

Способ и система обнаружения объектов при гидролокации

Изобретение относится к области гидролокации и предназначено для обнаружения объектов в воде в условиях мелководья. Способ обнаружения объектов при гидролокации заключается в том, что прием отраженных от объекта зондирующих сигналов при гидролокации ведут как на совмещенный с излучателем...
Тип: Изобретение
Номер охранного документа: 0002358289
Дата охранного документа: 10.06.2009
18.05.2019
№219.017.5a94

Система многоразового оповещения о волнах цунами в глубоком океане

Изобретение относится к области геофизики и может быть использовано при организации мер безопасности объектов прибрежного базирования, располагаемых в сейсмически активных районах океана. Система многоразового оповещения о волнах цунами выполнена в виде блоков, осуществляющих регистрацию...
Тип: Изобретение
Номер охранного документа: 0002435178
Дата охранного документа: 27.11.2011
+ добавить свой РИД