25.08.2018
218.016.7ee4

ВОЛОКОННО-ОПТИЧЕСКИЙ ДАТЧИК ДАВЛЕНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002664684
Дата охранного документа
21.08.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Использование: для создания волоконно-оптические средства измерения давления. Сущность изобретения заключается в том, что волоконно-оптический датчик давления содержит каркас, волоконно-оптический световод, расположенный коллинеарно оси каркаса, и приемник излучения, каркас представляет собой светодиод, состоящий из соединенных между собой слоя с p-проводимостью, слоя с n-проводимостью и расположенного между ними светоизлучающего p-n переходного слоя, на внешнюю сторону слоя с p-проводимостью и/или внешнюю сторону слоя с n-проводимостью каркаса нанесены пьезоэлектрические слои с направлением поляризации, обеспечивающим возникновение электрического напряжения в каркасе под действием давления, на внешние стороны пьезоэлектрических слоев, или пьезоэлектрического слоя и слоя с p-проводимостью, или пьезоэлектрического слоя и слоя с n-проводимостью нанесены непрерывные вдоль оси датчика управляющие электроды, при этом волоконно-оптический световод расположен внутри или вблизи светоизлучающего p-n переходного слоя с возможностью передачи выходящего из указанного слоя светового потока приемнику излучения. Технический результат - обеспечение возможности увеличения рабочей поверхности волокна, определения функции распределения неоднородного по всей длине волокна давления, локация зон повышенного давления. 1 з.п. ф-лы, 7 ил.
Реферат Свернуть Развернуть

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения давления, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в медико-биологических исследованиях, гидроакустике, аэродинамике, системах охраны при дистанционном мониторинге давления.

Известен волоконно-оптический торцевой датчик давления (патент RU №2522791, опубл. 20.07.2014), состоящий из записанной на оптическом световоде волоконно-оптической решетки Брэгга (ВБР), мембраны, корпуса, при этом мембрана жестко прикреплена к световоду и имеет возможность движения по осевой линии относительно корпуса, оптический световод жестко прикреплен к торцу корпуса по его осевой линии.

Недостатком известного устройства является его возможность измерения давления лишь вблизи мембраны.

Известен волоконно-оптический датчик давления (патент RU №2270428, опубл. 20.02.2006 г.), состоящий из чувствительного элемента, источника света, световодов, регистрирующей аппаратуры; датчик снабжен направляющей линзой, анализатором, приемной линзой, чувствительный элемент снабжен пластиной из оптически активного материала с отверстием, в качестве источника света используют источник поляризованного света.

Недостатком известного устройства является его возможность измерения давления лишь вблизи торцевого сечения оптоволокна.

Известен волоконно-оптический датчик давления (патент РФ №92004980, опубл. 1995.07.09), в корпусе которого закреплена мембрана с жестким центром и утолщенной периферийной частью и два волоконно-оптических преобразователя, выполненных в виде световодов с источником света и фотоприемниками. Торцы световодов установлены соответственно напротив центральной и периферийной части мембраны. Между отражающими поверхностями мембраны и торцами световодов выполнена светозащитная перегородка, имеющая конфигурацию, аналогичную конфигурации периферийной части мембраны.

Недостатком известного устройства является его возможность измерения давления лишь вблизи мембраны.

Наиболее близкой конструкцией того же назначения к заявленному изобретению по совокупности признаков является волоконно-оптический датчик давления (заявка на изобретение №2003118756, опубл. 23.06.2003), состоящий из корпуса, подводящих и отводящих оптических волокон, относительно общего торца которых с зазором установлена жестко закрепленная кварцевая мембрана, приемник излучения. Процесс измерения давления осуществляется путем регистрации приемником изменения интенсивности светового потока на выходе световода в зависимости от прогиба мембраны под действием давления. Данная конструкция принята за прототип.

Признаки прототипа, совпадающие с существенными признаками заявляемого изобретения, - каркас, волоконно-оптический световод, расположенный коллинеарно оси каркаса и приемник излучения.

Недостатком известного устройства, принятого за прототип, является его возможность измерения давления лишь вблизи мембраны.

Задачей изобретения является повышение эффективности работы волоконно-оптического датчика давления для протяженных участков контроля.

Технический результат изобретения заключается в увеличении рабочей поверхности волокна, определении функции распределения неоднородного по всей длине волокна давления, локации зон повышенного давления.

Указанный технический результат достигается тем, что в известном волоконно-оптическом датчике давления, содержащем каркас, волоконно-оптический световод, расположенный коллинеарно оси каркаса и приемник излучения, согласно изобретению каркас представляет собой светодиод, состоящий из соединенных между собой слоя с p-проводимостью, слоя с n-проводимостью и расположенного между ними светоизлучающего p-n переходного слоя, на внешнюю сторону слоя с p-проводимостью и/или внешнюю сторону слоя с n-проводимостью каркаса нанесены пьезоэлектрические слои с направлением поляризации, обеспечивающим возникновение электрического напряжения в каркасе под действием давления, на внешние стороны пьезоэлектрических слоев, или пьезоэлектрического слоя и слоя с p-проводимостью, или пьезоэлектрического слоя и слоя с n-проводимостью нанесены непрерывные вдоль оси датчика управляющие электроды, при этом волоконно-оптический световод расположен внутри или вблизи светоизлучающего p-n переходного слоя с возможностью передачи выходящего из указанного слоя светового потока приемнику излучения.

В предпочтительном варианте пьезоэлектрический слой имеет направление поляризации, ортогональное плоскостям слоев.

Признаки заявляемого технического решения, отличительные от прототипа, - каркас представляет собой светодиод, состоящий из соединенных между собой слоя с p-проводимостью, слоя с n-проводимостью и расположенного между ними светоизлучающего p-n переходного слоя; на внешнюю сторону слоя с p-проводимостью и/или внешнюю сторону слоя с n-проводимостью каркаса нанесены пьезоэлектрические слои с направлением поляризации, обеспечивающим возникновение электрического напряжения в каркасе под действием давления; на внешние стороны пьезоэлектрических слоев, или пьезоэлектрического слоя и слоя с p-проводимостью, или пьезоэлектрического слоя и слоя с n-проводимостью нанесены непрерывные вдоль оси датчика управляющие электроды; волоконно-оптический световод расположен внутри или вблизи светоизлучающего p-n переходного слоя с возможностью передачи выходящего из указанного слоя светового потока приемнику излучения;

пьезоэлектрический слой имеет направление поляризации, ортогональное плоскостям слоев.

Отличительные признаки в совокупности с известными позволяют увеличить рабочую поверхность волокна, определить функции распределения неоднородного по всей длине волокна давления и зоны повышенного давления. Благодаря этому повышается эффективность работы волоконно-оптического датчика давления для протяженных участков контроля.

Волоконно-оптический датчик давления иллюстрируется чертежами, представленными на фиг. 1-7.

На фиг. 1 изображено поперечное сечение волоконно-оптического датчика давления σ с двумя пьезоэлектрическими слоями.

На фиг. 2 изображено поперечное сечение волоконно-оптического датчика давления, в котором для упрощения конструкции один пьезоэлектрический слой и световод размещен на периферии светоизлучающего p-n переходного слоя.

На фиг. 3 изображена заданная функция и производная интенсивности свечения светодиода от значений приложенного напряжения

На фиг. 4 изображен график диагностируемой функции σ(z) распределения давления по длине датчика.

На фиг. 5 изображен измеряемый импульс интенсивности свечения света I1(t)=ΔI1(t) на выходе из оптоволокна на 1-м шаге сканирования.

На фиг. 6 изображены измеряемые I10(t), I20 (t) интенсивности свечения света на выходе из оптоволокна на 10-м и 20-м шагах сканирования.

На фиг. 7 изображены рассчитанные результирующие импульсы ΔI10(t), ΔI20(t) интенсивности свечения света на выходе из оптоволокна на 10-м и 20-м шагах сканирования.

Волоконно-оптический датчик давления (фиг. 1) содержит волоконно-оптический световод 1, каркас, представляющий собой светодиод, состоящий из соединенных между собой слоя с p-проводимостью 2, слоя с n-проводимостью 3 и расположенного между ними светоизлучающего p-n переходного слоя 4, один (фиг. 2) или два пьезоэлектрических слоя 5 с направлением поляризации, обеспечивающим возникновение электрического напряжения в светодиоде, под действием давления σ, непрерывные по длине датчика управляющие электроды 6, 7.

Пьезоэлектрические слои 5 нанесены на внешнюю сторону слоя с p-проводимостью 2 и/или внешнюю сторону слоя с n-проводимостью 3 каркаса. В предпочтительном варианте пьезоэлектрический слой 5 имеет направление поляризации, ортогональное плоскостям слоев.

Непрерывные по длине датчика управляющие электроды 6, 7 нанесены на внешние стороны или пьезоэлектрических слоев 5 (если их два) или пьезоэлектрического слоя 5 (если он один и контактирует со слоем с p-проводимостью 2) и слоя с n-проводимостью 3 (фиг. 2), или пьезоэлектрического слоя 5 (если он контактирует со слоем с n-проводимостью 3) и слоя с p-проводимостью 2.

Световод 1 расположен внутри или вблизи светоизлучающего p-n переходного слоя 4 с возможностью передачи выходящего из слоя 4 светового потока приемнику излучения (на чертеже не показан). В качестве приемника светового потока может быть использован фотодиод.

Датчик может быть выполнен составным, включающем от двух до шести датчиков заявляемой конструкции с различными пространственными поляризациями пьезоэлектрических слоев для различных датчиков. Указанные датчики для фиксации взаимного расположения скреплены между собой защитной полимерной цилиндрической оболочкой (на чертеже не показана). Выполнение датчика составным позволяет учесть анизотропию давления.

Устройство работает следующим образом.

Действие давления σ (фиг. 1, 2) на датчик приводит к деформациям (сжатию) пьезоэлектрических слоев 5 и появлению в них электрического поля, которое действует на светодиод и вызывает (при достижении электрического напряжения на светодиоде некоторого порогового значения) его свечение. Варьированием значением управляющего напряжение Uупр на электродах 6, 7 можно изменять электрическое напряжение и светоотдачу светодиода.

В результате, величина интенсивности света I, исходящего из светодиода и проникающего в световод 1, зависит от величины давления σ и управляющего напряжение Uупр. По световоду 1 световой поток приходит в приемник излучения, в котором по анализу интенсивности света I делается вывод о величине давления σ и его локации по длине датчика.

Информативные а2 и управляющие а1 коэффициенты датчика позволяют выразить электрическое напряжение на светодиоде U=a1Uупр+а2σ через действующее на датчик искомое давление σ и заданное значение управляющего напряжения Uупр на электродах датчика. Коэффициенты а2, а1 находятся экспериментально или в результате численного 3D моделирования решения связанной краевой задачи электроупругости для представительного фрагмента датчика, в частности, в программной системе конечно-элементного анализа ANSYS.

Управляющее напряжение Uупр на электродах датчика может быть, в частности, варьируемой однородной по длине датчика величиной, или в виде бегущей волны электронапряжения с варьируемой амплитудой, или в виде бегущего по электроду локационного электрического видеоимпульса прямоугольной формы, отличного от нуля лишь на локальном участке и с пошаговым изменением величины импульса на каждом цикле прохождения импульсом всей длины датчика.

Подтверждение заявленных технических результатов: увеличение рабочей поверхности волоконного датчика давления, определение функций распределения ƒ(ζ) для неоднородного по всей длине l волоконного датчика давления σ и ƒ1•(ζ) для локации зон повышенного давления σ1• на локальном участке I1⊃l получено в результате проведенных численных экспериментов на основе разработанных алгоритмов и математической модели локации неоднородностей давления по длине оптоволоконного датчика с использованием локационного сканирующего электрического видеоимпульса с пошаговым изменением величины импульса U1 на каждом цикле прохождения исследуемого локального участка l1. Свойства светодиода заданы «S-образной» кривой зависимости интенсивности свечения от приложенного напряжения с характерными точками заданных пороговых напряжений: Umin для начала свечения и Umax для начала насыщенного свечения светодиода (фиг. 3).

Разработаны два алгоритма сканирования неоднородностей давления σ по длине волоконно-оптического датчика давления. Первый алгоритм сканирования позволяет найти функции распределения действующего давления σ по выбранному локальному участку и/или по всей длине датчика по результатам замеряемой на торцевом сечении датчика интенсивности света из оптоволокна с учетом нелинейной зависимости интенсивности света от действующего на светодиод напряжения ; задача сведена к решению интегрального уравнения Фредгольма 1-го рода с разностным ядром, зависящим от рассчитываемых параметров датчика и от производной заданной функции свечения светодиода (фиг. 3). Для частного случая, когда зависимость - ступенчатая функция получено аналитическое решение для функции плотности вероятностей давления на произвольном локальном участке датчика; здесь ядро выражается через

дельта-функцию и интегральное уравнение Фредгольма сводится к алгебраическому.

Второй алгоритм сканирования позволяет непосредственно определить функцию неоднородного давления σ(z) по длине z датчика бегущей волной Uупр(z, t) управляющего напряжения: сначала экспериментально определяют пороговое значение амплитуды Uа(0) волны управляющего напряжения начала свечения на выходе из оптоволокна датчика и, далее, рассматривают последовательность шагов Uа(i) по увеличению амплитуды на малую величину ΔUa, Малое приращение ΔUа амплитуды волны при переходе от (i-1)-го к последующему i-му шагу сканирования инициирует появление «функции импульсов свечения» ΔIi(t) - свечение (дополнительно к уже светящимся участкам по длине датчика) новых участков светодиода датчика на участках z(i) действия узловых значений давления σ•(i). По виду функции импульсов свечения» ΔIi(t) и значению амплитуды Ua(i) на i-м шаге сканирования рассчитываются искомые узловые значения давления σ•(i) и локации соответствующих участков z(i). Таким образом, результирующие функции импульсов свечения ΔIi(t) носят экспериментально-расчетный характер, так как на каждом i-м шаге функции «полного свечения» Ii(t) определяется экспериментально, а вычеты Ii'(i)(t) рассчитываются по найденным на предыдущих шагах i' сканирования значениям давления σ•(i') и их локаций z(i'). Получены результаты (фиг. 4) численного моделирования процесса нахождения давления σ(z) бегущей волной для различных шагов сканирования (фиг. 5, 6, 7). На фиг. 5, 6, 7 изображены графики результатов численного моделирования «измеряемых» Ii(t), рассчитанных вычетов Ii'(i)(t) и результирующих импульсов ΔIi(t) интенсивностей свечения на выходе из оптоволокна на различных шагах сканирования.

Численные экспериментальные испытания показали, что по сравнению с известным устройством, достигается увеличение рабочей поверхности волокна, появляется возможность определения датчиком функции распределения неоднородного по всей длине волокна давления, нахождения локаций зон повышенного давления. Анизотропия давления диагностируется с использованием составного датчика, включающим в себя от двух до шести датчиков заявляемой конструкции (фиг. 1, фиг. 2) с различными пространственными поляризациями пьезоэлектрических слоев для различных датчиков и скрепленных между собой защитной полимерной цилиндрической оболочкой, на которую с внешней стороны действует измеряемое давление. Благодаря этому повышается эффективность работы волоконно-оптического датчика давления для протяженных участков контроля.

Источник поступления информации: Роспатент

Показаны записи 1-10 из 122.
27.08.2016
№216.015.4d2f

Устройство для экструдирования композиции из полимера и графита

Изобретение относится к устройствам для изготовления изделий методом экструдирования. Устройство для экструдирования композиции из полимера и графита содержит полую обойму цилиндрической формы, в которую вставлена цилиндрической формы полая матрица с пуансоном цилиндрической формы в ней. Обойма...
Тип: Изобретение
Номер охранного документа: 0002595679
Дата охранного документа: 27.08.2016
20.08.2016
№216.015.4d64

Технологическая жидкость для глушения скважин на основе спиртов

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при глушении нефтедобывающих скважин перед проведением капитального ремонта, освоением, перфорацией. Технологическая жидкость для глушения скважин на основе спиртов, содержащая флотореагент оксаль Т-92,...
Тип: Изобретение
Номер охранного документа: 0002595019
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4f31

Способ плазменной обработки металлов

Изобретение относится к способу плазменной обработки металлов, такой как сварка, резка и наплавка. Для питания рабочей сжатой дуги на плазмообразующее сопло-анод подают положительный потенциал относительно обрабатываемого материала. Для питания второй рабочей сжатой дуги на электрод-анод...
Тип: Изобретение
Номер охранного документа: 0002595185
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.55b8

Способ изготовления тонкостенных изделий из композиционного материала на основе углерод-керамической матрицы с градиентными по толщине свойствами

Изобретение предназначено для использования при изготовлении изделий, работающих в окислительных газовых потоках, в абразивосодержащих газовых и жидкостных потоках, а также в качестве пар трения. Способ изготовления тонкостенных изделий из композиционного материала на основе...
Тип: Изобретение
Номер охранного документа: 0002593508
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.595f

Способ подготовки бумажной массы для производства картона

Изобретение относится к производству картона из макулатуры и может быть использовано в картонно-бумажной промышленности. Способ подготовки бумажной массы для производства картона включает обработку исходного сырья с получением бумажной массы заданной концентрации и введение в нее наполнителей в...
Тип: Изобретение
Номер охранного документа: 0002588206
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.59d9

Ультравысокотемпературный керамический материал и способ его получения

Изобретение относится к области производства керамических материалов, в частности к технологии получения композиционных материалов на основе тугоплавких соединений для высокотемпературного применения в аэрокосмической технике. Технический результат заключается в получении...
Тип: Изобретение
Номер охранного документа: 0002588079
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5e46

Резонансная ячейка для гашения акустических волн

Изобретение относится к области шумоподавления, а именно к ячейкам звукопоглощающей конструкции резонансного типа. Устройство содержит резонансную ячейку для гашения акустических волн, состоящую из камеры и входа, выполненных в форме усеченных круговых конусов. Меньшие основания камеры и входа...
Тип: Изобретение
Номер охранного документа: 0002590216
Дата охранного документа: 10.07.2016
12.01.2017
№217.015.5e8f

Система управления шахтной энергетической установкой

Изобретение относится к горной промышленности и может быть использовано для управления режимом работы шахтной главной вентиляторной установки (ГВУ) подземного горнодобывающего предприятия с одновременной выработкой электроэнергии. Технический результат заключается в повышении производительности...
Тип: Изобретение
Номер охранного документа: 0002590920
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6a81

Жидкость-песконоситель для реализации щелевой гидропескоструйной перфорации

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - снижение фильтратоотдачи, снижение пластической и условной вязкостей. Жидкость-песконоситель для реализации щелевой гидропескоструйной перфорации содержит, мас. %: ксантановую камедь 0,2-0,25; кальцинированную...
Тип: Изобретение
Номер охранного документа: 0002593154
Дата охранного документа: 27.07.2016
13.01.2017
№217.015.749c

Способ отбора пробы для последующего анализа твердой составляющей сварочного аэрозоля

Изобретение относится к отбору проб твердой составляющей сварочного аэрозоля (ТССА), образующейся при дуговой сварке, для последующего анализа и может быть использовано для улавливания и отбора проб ТССА при проведении различных сварочных процессов. Способ включает улавливание твердой...
Тип: Изобретение
Номер охранного документа: 0002597763
Дата охранного документа: 20.09.2016
Показаны записи 1-10 из 18.
12.01.2017
№217.015.5e46

Резонансная ячейка для гашения акустических волн

Изобретение относится к области шумоподавления, а именно к ячейкам звукопоглощающей конструкции резонансного типа. Устройство содержит резонансную ячейку для гашения акустических волн, состоящую из камеры и входа, выполненных в форме усеченных круговых конусов. Меньшие основания камеры и входа...
Тип: Изобретение
Номер охранного документа: 0002590216
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.8b17

Система гашения спектра акустических шумов

Предложена система гашения спектра акустических шумов. Она включает последовательно расположенные на стенке канала акустический излучатель, резонансную ячейку Гельмгольца с резонансной частотой, равной частоте акустического излучателя, и датчик акустического давления у выхода из канала,...
Тип: Изобретение
Номер охранного документа: 0002604174
Дата охранного документа: 10.12.2016
19.01.2018
№218.016.03f6

Звукопоглощающая сотовая панель

Изобретение относится к многослойным звукопоглощающим панелям с сотовым заполнителем резонансного типа, гасящим звуковые колебания, создаваемые газовыми потоками и их нагнетателями, и предназначено для использования в области авиакосмической техники, транспортной техники, радиотехники,...
Тип: Изобретение
Номер охранного документа: 0002630488
Дата охранного документа: 11.09.2017
19.01.2018
№218.016.045f

Волоконно-оптический датчик давления

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения давления. Волоконно-оптический датчик давления содержит оптическое волокно, приемник излучения. Вокруг оптического волокна нанесены последовательно электролюминесцентный и с радиальной...
Тип: Изобретение
Номер охранного документа: 0002630537
Дата охранного документа: 11.09.2017
20.01.2018
№218.016.1925

Пьезоактюатор изгибного типа

Изобретение относится к пьезоактюаторам изгибного типа и предназначено для использования в электронике, управляемой оптике, микромеханике, медицине, машиностроении. Пьезоактюатор изгибного типа представляет собой многослойный пакет, состоящий из элементарных слоев, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002636255
Дата охранного документа: 21.11.2017
17.02.2018
№218.016.2d89

Волоконно-оптический датчик объемного напряженного состояния

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения неоднородного сложного объемного динамического напряженного состояния, и может быть использовано для диагностики напряженного состояния и дефектоскопии композитов, в...
Тип: Изобретение
Номер охранного документа: 0002643692
Дата охранного документа: 05.02.2018
21.10.2018
№218.016.94cb

Датчик вибраций

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения вибраций, давления и/или объемного напряженного состояния. Датчик вибраций содержит пьезоэлектрический пластинчатый элемент, электроды, нанесенные на боковые поверхности...
Тип: Изобретение
Номер охранного документа: 0002670220
Дата охранного документа: 19.10.2018
05.04.2019
№219.016.fd45

Датчик вибраций

Изобретение относится к области измерительной техники, в частности к датчикам измерения вибрационных деформаций на поверхности конструкции, и может быть использовано для диагностики вибрационного напряженно-деформированного состояния и дефектоскопии конструкций в аэрокосмической, нефтегазовой и...
Тип: Изобретение
Номер охранного документа: 0002684001
Дата охранного документа: 03.04.2019
09.05.2019
№219.017.4a46

Звукопоглощающая сотовая панель

Изобретение относится к многослойным звукопоглощающим панелям с сотовым заполнителем резонансного типа, гасящим звуковые колебания, создаваемые газовыми потоками и их нагнетателями. Звукопоглощающая сотовая панель содержит внутренний перфорированный и наружный несущий слои обшивки и сотовый...
Тип: Изобретение
Номер охранного документа: 0002686915
Дата охранного документа: 06.05.2019
04.06.2019
№219.017.72ba

Датчик вибраций

Изобретение относится к области измерительной техники, в частности к волоконно-оптическим средствам измерения объемного напряженного состояния, и может быть использовано для диагностики давления, вибраций и дефектоскопии композитов в медико-биологических исследованиях, гидроакустике,...
Тип: Изобретение
Номер охранного документа: 0002690416
Дата охранного документа: 03.06.2019

Похожие РИД в системе