×
25.08.2018
218.016.7ec8

Результат интеллектуальной деятельности: Способ балансировки магниторезистивного датчика

Вид РИД

Изобретение

Аннотация: Изобретение относится к датчикам для измерения угла поворота, основанным на анизотропном магниторезистивном эффекте в тонких магнитных пленках, и может быть использовано в системах управления подвижными объектами. Технический результат – балансировка углового магниторезистивного датчика. Способ балансировки углового магниторезистивного датчика содержит этапы, на которых осуществляют подключение дискретного ряда одинаковых подгоночных сопротивлений последовательно с плечами моста Уинстона и балансировку моста Уинстона путем увеличения сопротивлений плеч моста Уинстона последовательным лазерным перерезанием перемычек соответствующих подгоночных сопротивлений, сначала на включенный мост Уинстона подают магнитное поле величиной не менее поля насыщения магниторезистивного материала датчика, затем замеряют значения выходного напряжения моста Уинстона при двух взаимно перпендикулярных направлениях магнитного поля, при которых выходное напряжение имеет максимальное и минимальное значения, и добиваются равенства этих значений по абсолютной величине, увеличивая сопротивления плеч моста Уинстона. 3 ил., 1 табл.

Изобретение относится к измерительной технике, а именно к датчикам для измерения угла поворота, основанным на анизотропном магниторезистивном эффекте (АМР-эффекте) в тонких магнитных пленках, и может быть использовано в системах управления подвижными объектами.

В качестве чувствительного элемента датчика используется мост Уинстона, одной из характеристик которого, отрицательно влияющей на точность измерения угла поворота, является разбаланс (смещение) моста.

Известны AMP датчики магнитного поля, описанные в ряде патентов фирмы Honeywell (Muchael 3, Caruso Н. and Tamara Bratland, Honeywell SSES, Carl H. Smith and Robert Schneider, Nonvolatile Electronics, Jnc), http://www sensorsmag.com, которым присуще наличие технологического разбаланса мостовой схемы, содержащей тонкопленочные резисторы.

Технологический разбаланс является следствием того, что процессы вакуумного напыления, фотолитографии и травления пленок не могут обеспечить одинаковую толщину и размер магниторезистивных полосок, что приводит к неравенству сопротивлений плеч моста.

Для устранения разбаланса моста предлагаются разные способы, основанные на использовании схемных решений с введением дополнительных тонкопленочных элементов или электронных компонентов в схеме обработки сигнала (катушек смещения, микропроцессора, электронной обратной связи).

Использование этих способов позволяет устранить разбаланс моста, но имеет ограничение по его величине, усложняет процесс изготовления датчика и отбирает заметную часть питания, что снижает его чувствительность.

Известны технические решения, описанные в патентах РФ №2186440, кл. H01L 43/08 от 16 февраля 2001 г. и №2216822 кл. H01L 43/08 от 9 апреля 2002 г., в которых вместо катушки индуктивности, для той же цели используются управляющие проводники, но эти решения имеют те же недостатки, что и предыдущие.

Более простой способ предложен в патенте РФ №2347302 кл. H01L 43/08 от 11.09.2007 г., взятый нами за прототип.

В этом способе балансировку разомкнутого моста Уинстона осуществляют подключением дискретного ряда одинаковых подгоночных сопротивлений последовательно с плечом моста Уинстона и поочередным лазерным перерезанием перемычек между сопротивлениями, каждый раз увеличивая сопротивление плеча на одну и ту же величину (шаг подгонки) до окончательной балансировки моста.

В приведенном примере показано с какой точностью может быть выполнено заданное сопротивление плеча при шаге подгонки 1 Ом для получения моста в 1000 Ом с равными сопротивлениями плеч.

Этот способ не может быть реализован для замкнутого моста Уинстона, вследствие того, что сопротивления плеч невозможно замерить.

В этом случае разбаланс оценивают по величине напряжения в диагонали моста при отсутствии воздействующего магнитного поля (у сбалансированного моста выходное напряжение - 0 мВ).

Для мостов Уинстона компасного применения с нечетной вольт-эрстедной характеристикой (ВЭХ) и имеющей гистерезис, используют способ, описанный в ChipNews # 3(96), 2005, стр 61-62, заключающийся в том, что магниторезистивные полоски намагничивают в одну сторону и получают смещение моста Uset, а затем в другую - получают смещение Ureset. Искомый разбаланс находится как: (Uset-Ureset)/2, и для балансировки необходимо выполнение условия Uset=Ureset. Балансировка такого моста с помощью подгоночных сопротивлений не вызывает затруднений.

Основным недостатком всех перечисленных способов является невозможность их применения для балансировки углового магниторезистивного датчика.

Особенностью угловых датчиков является то, что они работают в состоянии насыщения при полях до 10 мТл и сбалансированность моста для работы в области малых полей не обеспечивает сбалансированности моста в рабочем состоянии датчика вследствие большой величины размагничивающих полей. Так Р. Суху в книге «Магнитные тонкие пленки», Издательство «Мир», Москва, 1967 стр 394, приводит пример для размагничивающих полей по длинной и короткой стороне прямоугольного образца с соотношением сторон 2:1. Размагничивающее поле по короткой стороне оказалось в два раза больше, чем по длинной. У применяемых на практике магниторезистивных полосок эта разница еще больше, что естественно приводит к разнице сопротивлений плеч, т.е. разбалансу моста и, соответственно, снижению характеристик датчика.

Техническим результатом предлагаемого решения является способ балансировки углового магниторезистивного датчика.

Указанный технический результат достигается тем, что в способе балансировки магниторезистивного датчика, включающем подключение дискретного ряда одинаковых подгоночных сопротивлений последовательно с плечами моста Уинстона и балансировку моста Уинстона путем увеличения сопротивлений плеч моста Уинстона последовательным лазерным перерезанием перемычек соответствующих подгоночных сопротивлений, сначала на включенный мост Уинстона подают магнитное поле величиной не менее поля насыщения магниторезистивного материала датчика, затем замеряют значения выходного напряжения моста Уинстона при двух взаимно перпендикулярных направлениях магнитного поля, при которых выходное напряжение имеет максимальное и минимальное значения и добиваются равенства этих значений по абсолютной величине, увеличивая сопротивления плеч моста Уинстона.

Пример реализации способа

На фиг. 1 представлена топология датчика, состоящего из 2-х мостов Уинстона, имеющих общий центр симметрии (условное название «Ромашка»).

На фиг. 2 представлена зависимость выходного напряжения датчика от величины прикладываемого магнитного поля.

На фиг. 3а представлена зависимость выходного напряжения моста Уинстона от угла поворота до балансировки.

На фиг. 3б представлена зависимость выходного напряжения моста Уинстона от угла поворота после балансировки.

На фиг. 1:

1 - контактная площадка 1-го моста Уинстона (условное обозначение «мост 0°», у него два плеча параллельны, а два плеча перпендикулярны оси легкого намагничивания);

2 - контактная площадка 2-го моста Уинстона (условное обозначение «мост 45°», который повернут на 45° относительно первого моста);

3 - контактная площадка «моста 0°»;

4 -контактная площадка «моста 45°»;

5 - контактная площадка «моста 45°»;

6 - контактная площадка «моста 0°»;

7 - контактная площадка «моста 45°»;

8 - контактная площадка «моста 0°»;

9 - магниторезистивные полоски;

10 - сопротивление грубой подгонки;

11 - сопротивление тонкой подгонки.

Стрелкой обозначено направление оси легкого намагничивания (ОЛН), которое формировалось во время напыления пленки в вакууме при приложении вдоль поверхности подложки магнитного поля величиной 16 мТл.

Балансировку датчика проводят следующим образом. Сначала на тестовом образце снимают зависимость выходного напряжения моста Уинстона от величины прикладываемого перпендикулярно ОЛН магнитного поля. Для этого использовали соленоид на 2000 витков, который при токе 0,77 А позволяет получать однородное магнитное поле по оси соленоида величиной 12,5 мТл.

Из фиг. 2 видно, что 5 мТл достаточно для полного намагничивания образца.

Для балансировки «моста 0°» подложку устанавливают на контактное приспособление с четырьмя зондами. Зонды, по которым подается питание, устанавливают на контактные площадки 1 и 6, а зонды с которых снимается выходное напряжение, и которые подключены к вольтметру - на контактные площадки 3 и 8.

На соленоид подают от источника питания со стабилизацией по току ток величиной 0,31А, что соответствует магнитному полю величиной 5 мТл.

Из информации фирмы Honeywell об угловых датчиках НМС 1501/ НМС 1512 известно, что «мост 0°» имеет косинусную зависимость, а «мост 45°» имеет синусную зависимость выходного напряжения от угла поворота. Поэтому, для «моста 0°» замеряют два значения выходного напряжения - одно при поле направленном параллельно ОЛН (0°), а второе при поле, направленном перпендикулярно ОЛН (90°). В этих двух положениях будут наблюдаться максимальное и минимальное значения выходного напряжения.

Максимальное и минимальное значения амплитуды выходного напряжения выбраны из соображений возможности их измерения с наименьшей погрешностью. Для сбалансированного моста обе амплитуды равны по модулю.

В случае разбаланса осуществляют грубую подгонку, перерезая перемычки соответствующих подгоночных сопротивлений «10» по направлению, указанному знаком .

Если этого окажется недостаточным, то удаляют часть материала с сопротивления тонкой подгонки «11». Погрешность подгонки во многом определяется инструментом, чем меньше диаметр луча лазера, тем точнее она может быть проведена. В данном случае грубая подгонка давала 8 мВ добавки при перерезании одной перемычки и менее 1 мВ при тонкой подгонке.

Аналогичным способом балансируется и «мост 45°», у которого зависимость выходного напряжения от угла поворота синусная и его минимальное и максимальное значение замеряются при углах 45° и 135° относительно ОЛН.

В таблице 1 представлены результаты балансировки двухмостовых датчиков после грубой подгонки.

Из таблицы видно, что в случае грубой подгонки погрешность составляла от ±1 мВ до ±5 мВ.

В случае тонкой подгонки удалось достичь погрешности менее ±1 мВ, типично ±0,5 мВ.

Искомый угол определяется по формуле:

По угловой характеристике, представленной на фиг. 3a, наглядно видно, что значения «α» для разбалансированного моста не будут соответствовать табличным.

Таким образом, можно констатировать, что предложен оригинальный способ, который существенно отличается от известных и позволяет балансировать угловой тонкопленочный магниторезистивный датчик с погрешностью, определяемой возможностью инструмента удалять минимальное количество материала с сопротивления точной подгонки.

Способ балансировки углового магниторезистивного датчика, включающий подключение дискретного ряда одинаковых подгоночных сопротивлений последовательно с плечами моста Уинстона и балансировку моста Уинстона путем увеличения сопротивлений плеч моста Уинстона последовательным лазерным перерезанием перемычек соответствующих подгоночных сопротивлений, отличающийся тем, что для балансировки углового магниторезистивного датчика сначала на включенный мост Уинстона подают магнитное поле величиной не менее поля насыщения магниторезистивного материала датчика, затем замеряют значения выходного напряжения моста Уинстона при двух взаимно перпендикулярных направлениях магнитного поля, при которых выходное напряжение имеет максимальное и минимальное значения, и добиваются равенства этих значений по абсолютной величине, увеличивая сопротивления плеч моста Уинстона.
Способ балансировки магниторезистивного датчика
Способ балансировки магниторезистивного датчика
Способ балансировки магниторезистивного датчика
Способ балансировки магниторезистивного датчика
Источник поступления информации: Роспатент

Показаны записи 61-70 из 556.
27.12.2013
№216.012.9259

Способ зондовой диагностики плазмы и устройство для его осуществления

Заявленная группа изобретений относятся к области электрофизики, в частности к технике диагностики плазмы, и может быть использована для измерения электронной концентрации и температуры нестационарной плазмы в широком диапазоне исследуемых параметров. Заявленный способ включает установку зонда...
Тип: Изобретение
Номер охранного документа: 0002503158
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.95bf

Способ изготовления таблетки ядерного керамического топлива

Изобретение относится к ядерной технике, в частности к технологии изготовления оксидного ядерного топлива для тепловыделяющих элементов, и может быть использовано для изготовления таблетированного ядерного топлива на основе диоксида урана для АЭС. Таблетку ядерного топлива из диоксида урана с...
Тип: Изобретение
Номер охранного документа: 0002504029
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.98fb

Способ определения стойкости электронных компонентов и блоков радиоэлектронной аппаратуры к воздействию ионизирующих излучений

Изобретение относится к области испытаний сложно-функциональной аппаратуры. Сущность изобретения заключается в том, что используют трехпараметрическое распределение Вейбулла или доверительный интервал, внутренние границы которого (U - нижняя и V - верхняя) получают на основе обработки...
Тип: Изобретение
Номер охранного документа: 0002504862
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9919

Генератор

Изобретение относится к области электронной техники и может быть использовано для генерации электрических сигналов, стабилизированных электромеханическими резонаторами, в частности в пьезорезонансных датчиках. Достигаемый технический результат - исключение постоянной составляющей...
Тип: Изобретение
Номер охранного документа: 0002504892
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.9941

Ленточный транспортер зарядов для электростатических ускорителей

Изобретение относится к высоковольтной ускорительной технике и, в частности, к ленточным транспортерам зарядов электростатических ускорителей. В качестве многослойной тканевой основы транспортировочной ленты используют полиэфирно-хлопковую ткань, слои которой соединяют между собой клеем с...
Тип: Изобретение
Номер охранного документа: 0002504932
Дата охранного документа: 20.01.2014
10.02.2014
№216.012.9fba

Пиковый детектор

Изобретение относится к импульсной технике и может быть использовано в устройствах автоматики и силовой техники для детектирования, а также для определения канала с экстремальным напряжением и его полярности. Техническим результатом заявленного изобретения выступает расширение функциональных...
Тип: Изобретение
Номер охранного документа: 0002506598
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9fdd

Устройство хранения данных (варианты)

Изобретение относится к вычислительной технике, в частности к средствам защиты от несанкционированного доступа к информации. Технический результат заключается в повышении надежности устройства хранения данных и обеспечении более высокой степени безопасности хранения информации. Устройство...
Тип: Изобретение
Номер охранного документа: 0002506633
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.a021

Способ обнаружения несанкционированных отводов сигнала с одномодовых оптических волокон

Изобретение относится к способам контроля волоконно-оптических линий передачи на основе одномодовых оптических волокон и может быть использовано в качестве способа отделения локальных дефектов, образованных несанкционированными отводами, от локальных дефектов, вызванных неразъемными оптическими...
Тип: Изобретение
Номер охранного документа: 0002506701
Дата охранного документа: 10.02.2014
20.02.2014
№216.012.a31d

Взрывозащитная камера

Изобретение относится к области техники взрывных работ. Взрывозащитная камера содержит наружный и съемный внутренний контуры, каждый из которых выполнен разъемным и образован цилиндрической частью и плоскими днищами. Цилиндрические части обоих контуров установлены коаксиально и с зазором друг...
Тип: Изобретение
Номер охранного документа: 0002507472
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3ae

Ядерная энергетическая установка космического аппарата

Изобретение относится к источникам электроснабжения космического аппарата. Пары балок, стыкующихся крайними балками с космическим аппаратом, размещены по трем продольным плоскостям вокруг космического аппарата. При этом одна из пары балок стыкуется космическим аппаратом в плоскости, обращенной...
Тип: Изобретение
Номер охранного документа: 0002507617
Дата охранного документа: 20.02.2014
Показаны записи 1-8 из 8.
27.01.2013
№216.012.2137

Способ изготовления многоуровневых тонкопленочных микросхем

Изобретение относится к области изготовления микросхем и может быть использовано для изготовления многоуровневых тонкопленочных гибридных интегральных схем и анизотропных магниторезистивных преобразователей. Технический результат - упрощение технологии изготовления микросхем и повышение их...
Тип: Изобретение
Номер охранного документа: 0002474004
Дата охранного документа: 27.01.2013
20.12.2014
№216.013.131e

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и магнитометрии. Способ изготовления магниторезистивного датчика заключается в формировании на изолирующей подложке моста Уинстона путем вакуумного напыления магниторезистивной структуры с последующим формированием магниторезистивных полосок методом...
Тип: Изобретение
Номер охранного документа: 0002536317
Дата охранного документа: 20.12.2014
25.08.2017
№217.015.c0b2

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и магнитометрии и может быть использовано при изготовлении датчиков для определения положения движущихся объектов, магнитометров, электронных компасов для систем навигации и т.д. Технический результат: повышение разрешающей способности за счет...
Тип: Изобретение
Номер охранного документа: 0002617454
Дата охранного документа: 25.04.2017
20.01.2018
№218.016.148a

Устройство для нанесения покрытий на подложки в вакууме

Изобретение относится к технологии нанесения нанопленок в вакууме и может быть использовано в производстве изделий микроэлектроники. Устройство содержит вакуумную камеру, магнетрон с кольцевой зоной эрозии мишени и связанные кинематически с реверсивным электроприводом вакуумный ввод с...
Тип: Изобретение
Номер охранного документа: 0002634833
Дата охранного документа: 03.11.2017
05.07.2018
№218.016.6b97

Способ изготовления магниторезистивного датчика

Изобретение относится к области автоматики и может быть использовано при изготовлении тахометров, датчиков перемещения, приборов для бесконтактного измерения электрического тока, магнитометров, электронных компасов и т.п. Способ изготовления магниторезистивного датчика включает формирование на...
Тип: Изобретение
Номер охранного документа: 0002659877
Дата охранного документа: 04.07.2018
11.03.2019
№219.016.d8c3

Способ получения многослойных магнитных пленок

Изобретение относится к области вакуумного напыления тонких пленок и может быть использовано в системах магнитной записи, датчиках, основанных на магниторезистивном эффекте. Проводят послойное напыление магнитного сплава Fe-Ni и SiO в вакууме при приложении в плоскости осаждения внешнего...
Тип: Изобретение
Номер охранного документа: 0002315820
Дата охранного документа: 27.01.2008
17.04.2019
№219.017.1648

Абсолютный датчик угла поворота

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения положения вала электродвигателя. Технический результат - повышение радиационной стойкости упрощение схемы обработки сигнала. Сущность изобретения заключается в том, что абсолютный датчик угла...
Тип: Изобретение
Номер охранного документа: 0002436037
Дата охранного документа: 10.12.2011
17.04.2019
№219.017.164c

Способ изготовления магниторезистивного датчика

Изобретение относится к области магнитометрии и может быть использовано при изготовлении датчиков перемещений, устройств измерения электрического тока и магнитных полей, при изготовлении датчиков угла поворота, устройств с гальванической развязкой, магнитометров, электронных компасов и т.п....
Тип: Изобретение
Номер охранного документа: 0002463688
Дата охранного документа: 10.10.2012
+ добавить свой РИД