×
25.08.2018
218.016.7eba

Результат интеллектуальной деятельности: Азотный лазер, возбуждаемый продольным электрическим разрядом

Вид РИД

Изобретение

№ охранного документа
0002664780
Дата охранного документа
22.08.2018
Аннотация: Изобретение относится к лазерной технике. Азотный лазер, возбуждаемый продольным электрическим разрядом, содержит цилиндрическую секционированную разрядную трубку с азотом, включающую электроды для зажигания продольного электрического разряда, зарядный и разрядный контуры для импульсного питания разряда и резонатор для формирования лазерного пучка. При этом электроды разрядной трубки выполнены в виде цилиндров с острийной кромкой в разрядной трубке с внутренним диаметром 11-17 мм. Технический результат заключается в повышении энергии и длительности импульса излучения. 1 з.п. ф-лы, 2 ил.

Изобретение относится к квантовой электронике и может быть использовано в устройствах импульсных газовых лазеров с продольным электрическим разрядом.

Известны азотные лазеры с продольным электрическим разрядом [1-3]. Лазеры содержат цилиндрическую разрядную трубку с азотом, включающую стержневые электроды, зарядный и разрядный контуры для импульсного питания разряда, резонатор для формирования лазерного пучка.

В данных лазерах используются разрядные трубки из стекла или керамики и состоят из одной или нескольких секций. Эффективное возбуждение лазера достигается при длине разрядных трубок от 15 до 40 см, при внутренних диаметрах трубок 3-6 мм. Разрядные (обострительные) емкости, подключенные к секциям разрядной трубки, импульсно заряжаются от накопительной емкости при срабатывании коммутатора. При их зарядке может обеспечиваться ультрафиолетовая (УФ) предыонизация за счет дополнительных искровых промежутков [2]. Формирование разряда в трубке и формирование активной среды происходит при разряде обострительных емкостей на секции разрядной трубки. Давление азота в разрядной трубке составляет единицы-десятки миллиметров ртутного столба. Генерация лазера возникает на фронте импульса тока при быстром спаде напряжения на электродах. Плотность разрядного тока достигает ~ 0.5-1.5 кА/см2. Удельные пиковые мощности накачки 0,03-0,15 МВт/см3 достигаются за счет высоких зарядных напряжений 30-50 кВ. Получены импульсы излучения на длине волны ~ 337,1 нм с энергией 0,03 [2] - 0,2 [1] мДж. Длительность импульсов излучения на уровне половины интенсивности составляют от 2,5 [2] до 10 [3] нс.

Наиболее близким аналогом, взятым нами за прототип, является азотный лазер, описанный в работе [4], в котором получена максимальная энергия генерации 0.3 мДж. Лазер содержит цилиндрическую стеклянную разрядную трубку с азотом, состоящую из 4-х секций. Длина трубки в одной секции составляет 4,5 см, внутренний диаметр трубки - 4 мм. На краях секции находятся два стержневых электрода из тантала, расположенных поперек оси трубки на расстоянии 4 мм друг от друга. Общая длина разрядной трубки - 26 см. Общий объем разрядной области - 3,3 см3. На концах разрядная трубка закрывается кварцевыми окнами, расположенными под углом Брюстера. Для возбуждения продольного разряда используются обострительные керамические конденсаторы емкостью 0.15 нФ на каждую секцию, которые располагаются коаксиально разрядной трубки. Их импульсная зарядка происходит при коммутации ударной (зарядной) емкости 850 нФ. Причем, зарядка происходит через искровые промежутки, образованные стержневыми электродами. Данные искры обеспечивают автоматическую УФ-предыонизацию газа в разрядном промежутке. В качестве оптического резонатора лазера используется одно плоское алюминиевое зеркало. В оптимальных условиях при зарядном напряжении 20 кВ данный лазер обеспечивает лазерный импульс с длительностью излучения t0.5=5 нс и энергией 0,3 мДж.

Недостатком технического решения, реализованного в прототипе, является ограничение (невозможность дальнейшего повышения) энергии лазерного излучения (Е>0.3 мДж) и длительности импульса излучения (t0.5>5 нс) за счет повышения мощности (энергии) возбуждения. Основной причиной этого в данной конструкции является нарушение однородности объемного разряда с ростом мощности возбуждения, т.е. в разряде развиваются неустойчивости, которые контрагируются и энергия лазерного излучения уменьшается.

Задачей изобретения является повышение энергии импульса излучения и увеличение его длительности.

Указанная задача при осуществлении изобретения достигается тем, что в известном лазере, возбуждаемым продольным электрическим разрядом, содержащем цилиндрическую секционированную разрядную трубку с азотом, включающую электроды для зажигания продольного электрического разряда, зарядный и разрядный контуры для импульсного питания разряда, резонатор для формирования лазерного пучка, согласно изобретению, электроды разрядной трубки выполнены в виде цилиндров с острийной кромкой в разрядной трубке с внутренним диаметром (11-17) мм.

Кроме того, что удельная мощность накачки разряда (Р) и удельная энергия накачки (Е) составляют: Р=(1.2-1.5) МВт/см3, Е=(50-60) мДж/см3.

Механизм реализации зажигания объемного разряда с более высокой мощностью возбуждения и, как следствие, получение более высокой энергии импульса излучения и большей его длительности, заключается в следующем. Использование разрядных электродов в виде цилиндров с острийной кромкой приводит к искажению электрического поля и увеличению, таким образом, его напряженности на резко-неоднородной внутренней поверхности электродов. В результате на цилиндрическом катоде и около острийных анодов возникает коронный разряд, обеспечивающий интенсивную ионизацию газа начальными электронами. Кроме того, близкое расположение диэлектрической поверхности стеклянной трубки и острийных электродов позволяет формировать скользящий разряд по поверхности разрядной трубки, тем самым повышая начальную концентрацию электронов по всей длине разрядной трубки. В катодной и анодной областях начинается быстрое прорастание объемной стадии разряда, который перекрывает весь разрядный промежуток и обеспечивает эффективное возбуждение азотного лазера.

На Фиг. 1 представлена конструкция лазера и электрическая схема возбуждения. Лазер имеет разрядную трубку 1, состоящую их 2-х секций длиной 200 мм каждая и внутренним диаметром 11.5 мм. Секции образуются общим катодом 2 и своим анодом 3. Катод 2 и анод 3 выполнены в виде цилиндрических металлических трубок с внутренним диаметром, равным внутреннему диаметра разрядной трубки 1. Торцы секций разрядной трубки установлены соосно с анодами на расстоянии 2-3 мм друг от друга. Керамические конденсаторы, образующие разрядные емкости секций С3, располагаются коаксиально разрядной трубки для исключения влияния на распределение плотности разрядного тока по ее сечению. Оптический резонатор лазера образуется плоским или вогнутым алюминиевым зеркалом 4 и кварцевым окном 5, которые установлены на торцевых узлах крепления секций разрядной трубки.

Для накачки лазера используется генератор, выполненный по схеме LC-инвертор с использованием накопительных емкостей С1=11.2 нФ и С2=5.6 нФ, собранных из конденсаторов марки TDK UHV-6A, 2700 pF & 30 kV и двух разрядных емкостей С3=1.9 нФ, собранных из конденсаторов марки КВИ-3 20 кВ×470 пФ и подключенных к двум секциям трубки. Генератор подключается к электрической цепи лазерной камеры через высоковольтный коаксиальный кабель с индуктивностью L1 ~ 600 нГн. Индуктивность L0 составляет 100 мкГн и используется для зарядки конденсатора С2. В качестве ключа Р, используется тиратрон марки ТПИ 10к/20.

На Фиг. 2 приведены типичные осциллограммы тока и напряжения на емкости С3, а также временная форма импульса излучения. Зарядное напряжение составляло 24 кВ. Для эффективного использования энергии, вводимой в активную среду, длительность импульсов возбуждения была выбрана (оптимизирована) нами примерно равной 40 нс. Для данных параметров разрядной трубки и системы накачки были реализованы оптимальные плотности импульса тока 2.75±0.25 кА/см2, удельная мощность 1.2-1.5 МВт/см3 и удельная энергия 50-60 мДж/см3 разряда, позволяющие получать наибольшую энергию генерации азотного лазера.

При давлении технического азота (99,6%) Р=7.5 мм рт.ст. полная длительность импульса генерируемого излучения соответствовала длительности импульса накачки. При зарядном напряжении U0=24 кВ энергия в импульсе излучения достигала 1.4±0.1 мДж при длительности на уровне половины интенсивности до 16±2 нс. Максимальная пиковая мощность выходного пучка составляла 80 кВт. Генерация излучения развивалась в основном около внутренней стенки разрядной трубки в кольце шириной ~ 2,5 мм, площадь сечение лазерного пучка составляло 0.6 см2. Плотность выходного излучения, снимаемая с активной среды лазера, была 0.06 мДж/см3. Полный КПД лазера (относительно энергии запасенной в накопительной емкости С1+С2) имел величину 0.03%. Внутренний КПД (относительно энергии запасенной в разрядной емкости С3) был 0.11%.

При замене в разрядной трубке азота на атмосферный воздух (78% N2, 21% О2) с давлением 6 мм рт.ст. и при зарядном напряжении U0=24 кВ энергия в импульсе излучения равнялась 0,6 мДж при длительности импульса t0.5=12 нс. Без системы прокачки газовой среды в импульсно-периодическом режиме работы лазера до 10 Гц, сохранялась устойчивая повторяемость разрядных и генерационных характеристик лазера.

Масштабирование двухсекционной конструкции лазера позволяло повысить энергию излучения до 2 мДж, при этом внутренний диаметр трубки длиной 200 мм увеличивали до величины 17 мм. Генератор состоял из емкостей С1=17 нФ, С2=8.4 нФ, С3=5 нФ.

Таким образом, предлагаемое устройство N2 лазера, возбуждаемого продольным разрядом, позволяет увеличивать по сравнению с прототипом энергию генерации более чем в 5 раз, а длительность импульса лазерного излучения в 3 раза. Данный эффект обусловлен использованием цилиндрических острийных электродов и увеличением диаметра разрядной трубки. Использование данного изобретения позволит создавать эффективные N2 лазеры с более высокой энергией лазерного пучка в более простой конструкции (без искровой предыонизации), что позволит расширить области его применения.

Источники информации

1. Е.Х. Бакшт, А.Н. Панченко, В.Ф. Тарасенко. Азотный лазер с накачкой продольным разрядом от индуктивного и емкостного накопителей энергии // Квантовая электроника, Т. 25, №12, С. 1087-1090, 1998.

2. А.И. Фёдоров. Азотный лазер с продольным разрядом и УФ-предыонизацией // Оптика атмосферы и океана. 1996. Т. 9. №2, С. 163-165.

3. А.И. Горлов, В.В. Кюн, B.C. Скоз, Ю.М. Токунов. Исследование импульсно-периодического азотного лазера с продольным возбуждением // Квантовая электроника. 1989. Т. 16. №9. С. 1781-1784.

4. Н. Furuhashi, Т. Goto. Longitudinal discharge N2 laser with automatic preionization using an LC inversion circuit // Rev. Sci. Instrum. 1988. V. 59. N 12. P 2552-2556.


Азотный лазер, возбуждаемый продольным электрическим разрядом
Азотный лазер, возбуждаемый продольным электрическим разрядом
Азотный лазер, возбуждаемый продольным электрическим разрядом
Источник поступления информации: Роспатент

Показаны записи 1-4 из 4.
10.01.2015
№216.013.1b2e

Вакуумный диод

Изобретение относится к области электронной техники. Вакуумный диод для получения сильноточных электронных пучков большого сечения для возбуждения мощных газовых лазеров, решения задач радиационной технологии, плазмохимии, защиты окружающей среды. Для получения пучка применены взрывоэмиссионные...
Тип: Изобретение
Номер охранного документа: 0002538386
Дата охранного документа: 10.01.2015
10.02.2016
№216.014.cddc

Способ создания активной среды krf лазера

Способ создания активной среды KrF лазера включает в себя зажигание объемного разряда в лазерной смеси после подачи импульсного напряжения на разрядный промежуток, включение искровой предыонизации, создающей предварительную ионизацию газа в разрядном промежутке, и пробой разрядного промежутка....
Тип: Изобретение
Номер охранного документа: 0002575142
Дата охранного документа: 10.02.2016
18.05.2019
№219.017.5803

Способ двухканального ультразвукового контроля сварных соединений с технологическим непроваром соединяемых деталей

Использование: для ультразвукового контроля сварных соединений. Сущность заключается в том, что одновременно сканируют прямым и наклонным ультразвуковыми преобразователями поперек сварного соединения с шагом меньше диаметра ультразвукового пучка и регистрируют время распространения эхо-сигналов...
Тип: Изобретение
Номер охранного документа: 0002339031
Дата охранного документа: 20.11.2008
12.04.2023
№223.018.4303

Способ накачки в газоразрядных импульсных лазерах

Изобретение относится к квантовой электронике и может быть использовано при создании электроразрядных эксимерных и других лазеров с удельной мощностью накачки 3-10 МВт/см. Способ основан на зажигании в лазерах диффузного разряда в плотных газовых смесях с электроотрицательными компонентами,...
Тип: Изобретение
Номер охранного документа: 0002793616
Дата охранного документа: 04.04.2023
+ добавить свой РИД