×
25.08.2018
218.016.7eb1

Результат интеллектуальной деятельности: Способ генерации терагерцовых импульсов на основе термоупругого эффекта

Вид РИД

Изобретение

Аннотация: Использование: для генерации терагерцовых импульсов на основе термоупругого эффекта. Сущность изобретения заключается в том, что получают акустические колебания путем воздействия лазерным импульсом на пару металлов, один из которых, подвергаемый воздействию лазерного излучения, представляет собой пленку из металлического сплава, а второй материал является подложкой, служащей для преобразования получаемых ультразвуковых импульсов в электромагнитное излучение, при этом толщину металлической пленки выбирают из условия, что поглощение лазерного излучения полностью происходило в ее приповерхностной зоне, а мощность и длительность лазерного импульса рассчитывают исходя из недопущения испарения облучаемого вещества и образования в нем фазовых переходов. Технический результат: обеспечение возможности стабильной генерации терагерцовых электромагнитных импульсов. 1 з.п. ф-лы, 2 ил., 2 табл.

Предлагаемое изобретение относится к неразрушающим методам исследования твердых материалов и может быть использовано при диагностике структуры различных твердых материалов.

Известен способ возбуждения когерентного электромагнитного излучения в диапазоне частот 1-100 ТГц в кристаллических материалах при воздействии ударной волны или распространяющегося возбуждения в виде солитона. Согласно данному способу терагерцовое электромагнитное излучение генерируется в результате синхронного движения большого чисел атомов при распространении ударной волны через кристалл. Частоты излучения определяются скоростью удара и постоянными решетки кристалла и могут потенциально использоваться для определения атомно-масштабных свойств материала (Статья «Coherent Optical Photons from Shock Waves in Crystals», Evan J. Reed, Marin Soljacic, Richard Gee, and J. D. Joannopoulos, Phys. Rev. Lett. 96, 013904 - Published 11 January 2006.)

Данный способ позволяет создавать мощные импульсы с высокой проникающей способностью и эффективно исследовать практически любые типы твердых материалов. Это техническое решение авторы рассматривают в качестве аналога.

Основными недостатками данного способа являются трудность создания высоких скоростей удара и частичное разрушение поверхностного слоя материала при мощном импульсном воздействии.

Известен также «МЕТОД ГЕНЕРАЦИИ ТГЦ ЧАСТОТЫ ИЗЛУЧЕНИЯ И ВОСПРИЯТИЯ ДЕФОРМАЦИОННЫХ ВОЛН БОЛЬШОЙ АМПЛИТУДЫ В ПЬЕЗОЭЛЕКТРИЧЕСКИХ МАТЕРИАЛАХ» (Патент US 20090173159 А1, Pub. No.: US 2009/0173159 Al, Jul. 9, 2009).

Данный способ включает получение колебания деформации в первом материале, который находится в контакте со вторым пьезоэлектрическим гетерогенным материалом, в котором колебания деформации преобразуются в терагерцовое электромагнитное излучение. При этом получение колебаний деформации в первом материале включает в себя формирование ударной волны, при котором происходит частичное испарение части материала, контактирующего с лазерным излучением. В качестве материала, контактирующего с лазерным излучением, используется алюминий.

Вышеназванный способ позволяет создавать более мощные импульсы с меньшими затратами энергии. Это техническое решение авторы рассматривают в качестве прототипа.

Недостатками указанного технического решения является то, что при образовании ударной волны излучатель претерпевает пластические деформации, что приводит к нарушению его геометрии. Кроме этого, выбор в качестве генераторной среды алюминия приводит к уменьшению частотного диапазона сигналов вследствие его высокой теплопроводности. К тому же в измерительном приборе появляются ударные нагрузки, что ведет к нелинейному искажению сигнала.

Технический результат предлагаемого изобретения состоит в стабильной генерации терагерцовых электромагнитных импульсов на основе линейного термоупругого эффекта при отсутствии фазовых переходов облучаемого вещества и, как следствие, повышении четкости изображения при использовании данных импульсов для диагностики структуры и свойств твердых материалов. Кроме того, технический результат предлагаемого решения состоит в повышении долговечности излучателя за счет отсутствия испарения части облучаемого материала.

Технический результат достигается за счет получения акустических колебаний путем воздействия лазерным импульсом на пару материалов, один из которых, подвергаемый воздействию лазерного излучения, представляет собой пленку из металлического сплава, а второй материал является подложкой, служащей для преобразования получаемых ультразвуковых импульсов в терагерцовое электромагнитное излучение, толщину металлической пленки выбирают таким образом, чтобы поглощение лазерного излучения полностью происходило в ее приповерхностной зоне, а мощность и длительность лазерного импульса рассчитывают, исходя из недопущения испарения облучаемого вещества и образования в нем фазовых переходов.

Кроме того, согласно предлагаемому способу при создании излучателя терагерцового излучения в качестве подложки используют ниобат лития, а в качестве материала, подвергаемого воздействию лазера, используют никель или хром. Причем толщина металлической пленки не превышает 100 нм, а шероховатость поверхности, на которую она наносится, не выше чем λ/30.

Реализация предлагаемого способа показана на Фиг. 1 и Фиг. 2. Излучение 1 от работающего в импульсно-периодическом режиме лазера (на Фиг. 1 и Фиг. 2. не показан) поступает на пленку из металлического сплава 2, покрывающую подложку 3. При воздействии лазерного излучения 1 в пленке 2 происходит расширение нагретой области. Состав пленки, мощность и время воздействия излучения подбираются таким образом, что фазового перехода материала пленки 2 не происходит.

Последующее расширение нагретой области металлической пленки 2 за счет линейного термоупругого эффекта приводит к генерации мощного короткого ультразвукового импульса 4. Данный импульс 4 распространяется в подложку 3, например, из ниобата лития, где за счет пьезоэффекта возникает широкополосный импульс электромагнитной волны 5.

Форма подложки 3 может иметь два варианта, отличающиеся направлением распространения электромагнитного импульса 6. В первом случае (Фиг. 1) сформированный электромагнитный импульс распространяется в том же направлении, что и ультразвуковой импульс 4. Во втором случае (Фиг. 2) электромагнитный импульс 5 отклоняется от направления образования ультразукового импульса 4 на 90°. В обоих случаях граница раздела 7 пленки 2 и подложки 3 имеют одни и те же характеристики, определяемые степенью шероховатости поверхности подложки 3.

Данный тип волн проникает на большую глубину и позволяет исследовать структуры различных типов объектов. В случае, показанном на Фиг. 1, объект исследования 8 помещают между излучателем 9 и приемником 10, представляющим собой специальный терагерцовый спектрометр. В случае, показанном на Фиг. 2, излучатель 9 перемещают по поверхности исследуемого объекта 8.

Глубина проникновения света имеет порядок La-1=10 нм, излучение лазера полностью поглощается на расстоянии 3La=30 нм. Длина диффузии тепла за время лазерного воздействия варьируется от 5 нм для никеля до 20 нм для серебра. Это означает, что за время действия лазерного импульса равномерно прогревается металлическая пленка толщиной не более 20 нм. Пространственная протяженность акустического импульса LA0 τ0 лежит в диапазоне от 8 нм до 15 нм.

Таким образом шероховатость поверхности подложки не должна быть хуже λ/30, где λ - длина волны используемого лазерного излучения, а напыляемая пленка металла не должна превышать 60-100 нм. При энергии в импульсе порядка 100 мкДж и его длительности 1-3 пс с учетом того, что коэффициент отражения от поверхности металла может достигать 90%, поверхностная плотность поглощенной энергии имеет порядок w0=0,5 Дж/м2 при ширине оптического пучка, а=2 мм.

В этом случае реализуется термоупругий режим воздействия, при котором поглощение оптического пучка происходит в приповерхностной зоне материала и отсутствуют фазовые переходы вещества. Исходя из этого толщина подложки будет оптимальной в диапазоне от 1-го до 3-х мм и ее точное значение может быть установлено опытным путем.

Основные параметры металлов, которые могут быть использованы в качестве оптико-акустических генераторов приведены в таблице 1. Где λ - коэффициент теплопроводности, χ=λ/(ρ0СР) - коэффициент диффузии тепла, Tm - температура плавления.

Известно, что амплитуда напряженности электрического поля определяется выражением E0=dp00, где Е0 - пьезомодуль, а e0 - электрическая постоянная. Для ниобата лития d=6⋅10-12Кл ~ /H - а ε0=8,85⋅10-12Кл/м⋅В. Оценочные значения р0, Е0 и приращение температуры ΔТ при поглощении лазерного импульса в металлической пленке приведены в таблице 2.

Из приведенных данных видно, что использование алюминия в качестве генераторной среды неэффективно, поскольку температура его плавления существенно ниже, а коэффициент теплопроводности выше, чем у никеля или хрома. Использование пары никель / ниобат лития или хром / ниобат лития при соблюдении геометрических размеров элементов излучателя и качества поверхности подложки на границе раздела подложки и покрывающей ее металлической пленки позволяет получить электромагнитный импульс в частотном диапазоном от 0,1 ТГц до 2,5 ТГц и напряженностью электрического поля порядка 107 В/м без фазового перехода части металлической пленки и ее испарения.

Таким образом все признаки, характеризующие предлагаемый способ, необходимы и достаточны для его осуществления и достижения заявляемого технического результата.


Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Способ генерации терагерцовых импульсов на основе термоупругого эффекта
Источник поступления информации: Роспатент

Показаны записи 221-230 из 322.
01.09.2018
№218.016.8204

Антифрикционная полимерная композиция на основе фторопласта

Изобретение относится к области полимерного материаловедения, а именно к антифрикционным полимерным материалам триботехнического назначения, которые могут быть использованы для изготовления узлов трения, работающих в экстремальных условиях среды. Антифрикционная композиция включает, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002665429
Дата охранного документа: 29.08.2018
05.09.2018
№218.016.82fb

Катализатор и способ получения диметилкарбоната с его использованием

Изобретение относится к катализаторам и каталитическим системам для синтеза диметилкарбоната (ДМК), а также к способу получения ДМК. Описан катализатор на основе SnO, нанесенного на оксид алюминия, который содержит промотирующие добавки в виде галогенидов металлов (CuCl; ZnCl и KF). Катализатор...
Тип: Изобретение
Номер охранного документа: 0002665681
Дата охранного документа: 04.09.2018
14.09.2018
№218.016.87ea

Диэлектрический метаматериал с тороидным откликом

Изобретение относится к метаматериалам для получения сильной локализации электромагнитных полей в небольшой, по сравнению с длиной волны, областью. Изобретение может использоваться для прототипирования оптических устройств различного рода и диапазонов частот, в качестве элементов сенсоров, в...
Тип: Изобретение
Номер охранного документа: 0002666965
Дата охранного документа: 13.09.2018
25.09.2018
№218.016.8b5f

Способ акустико-эмиссионной диагностики ответственных деталей тележек грузовых вагонов при эксплуатации

Изобретение относится к способам диагностики состояния ответственных деталей подвижного состава железнодорожного транспорта. Согласно изобретению диагностику деталей проводят при движении грузового состава в режиме реального времени, при этом датчики акустической эмиссии (АЭ) устанавливают на...
Тип: Изобретение
Номер охранного документа: 0002667808
Дата охранного документа: 24.09.2018
03.10.2018
№218.016.8cc9

Способ получения катализатора окислительного дегидрирования этана

Изобретение относится к технологии приготовления наночастиц катализатора окислительного дегидрирования углеводородов в условиях СВЧ активации (нагрева) реакционной массы, и в частности Mo-V-Te-Nb-O катализатора окислительного дегидрирования этана (ОДЭ). Описан способ получения катализатора для...
Тип: Изобретение
Номер охранного документа: 0002668215
Дата охранного документа: 27.09.2018
03.10.2018
№218.016.8cd9

Катализатор и способ алкилирования бифенила олефинами c-c

Изобретение относится к области органического синтеза и, в частности, к катализаторам и реакциям алкилирования бифенила олефинами С-С. Предложены катализаторы алкилирования бифенила олефинами С-С, в которых в качестве носителя используют фторированный AlO или SiO, а в качестве модификатора...
Тип: Изобретение
Номер охранного документа: 0002668218
Дата охранного документа: 27.09.2018
03.10.2018
№218.016.8ddf

Способ получения кристаллов магнетита

Изобретение относится к технологии получения кристаллов магнетита (FeO), которые могут найти применение в качестве контрастных агентов, средств доставки лекарств, при магнитной гипертермии. Способ получения кристаллов магнетита включает смешение октадецена с олеатом железа (III) или...
Тип: Изобретение
Номер охранного документа: 0002668440
Дата охранного документа: 01.10.2018
04.10.2018
№218.016.8f36

Способ определения склонности к преждевременному разрушению твердых сплавов, используемых в качестве упрочняющих наплавок рабочих органов сельскохозяйственных машин

Изобретение относится к сельскохозяйственному машиностроению и может быть использовано для оценки склонности к преждевременному разрушению (трещиностойкости) деталей упрочненных деталей рабочих органов почвообрабатывающих машин. Способ включает определение сопротивляемости сплавов разрушению по...
Тип: Изобретение
Номер охранного документа: 0002668691
Дата охранного документа: 02.10.2018
11.10.2018
№218.016.8fcd

Коррозионно-стойкий материал с повышенным содержанием бора

Изобретение относится к области металлургии, а именно к коррозионно-стойким нейтроно-поглощающим сплавам на основе железа, используемым для изготовления стеллажей уплотненного хранения топлива. Сплав содержит углерод, марганец, кремний, хром, бор, титан, цирконий и железо при следующем...
Тип: Изобретение
Номер охранного документа: 0002669261
Дата охранного документа: 09.10.2018
26.10.2018
№218.016.9689

Способ подготовки микропроводов со стеклянной оболочкой для электрического соединения

Изобретение относится к области гальванотехники и может быть использовано в микроэлектронике для изготовления качественных электрических контактов на микропроводах диаметром до 40 мкм со стеклянной оболочкой до 15 мкм, в том числе переменного сечения, использующихся для изготовления ГМИ,...
Тип: Изобретение
Номер охранного документа: 0002670631
Дата охранного документа: 24.10.2018
Показаны записи 41-41 из 41.
17.06.2023
№223.018.81ad

Фармацевтическая композиция пембролизумаба и ее применение

Группа изобретений относится к области фармацевтики и медицины. 1 и 2 объекты представляют собой фармацевтическую композицию пембролизумаба для лечения злокачественного новообразования или инфекционного заболевания, содержащую: 5-50 мг/мл пембролизумаба; 0,087-0,432 мг/мл гистидина; 0,464-0,931...
Тип: Изобретение
Номер охранного документа: 0002791857
Дата охранного документа: 14.03.2023
+ добавить свой РИД