×
22.08.2018
218.016.7e54

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ СВЕДЕНИЯ К МИНИМУМУ ИСТИРАНИЯ ЧАСТИЦ КАТАЛИЗАТОРА

Вид РИД

Изобретение

№ охранного документа
0002664519
Дата охранного документа
20.08.2018
Аннотация: Группа изобретений относится к способу и устройству для его осуществления для сведения к минимуму истирания частиц катализатора дегидрирования алканов или алкилароматических соединений, особенно частиц катализатора дегидрирования пропана, захваченных в увлекающий газ в средстве извлечения катализатора во время отделения таких частиц от увлекающего газа. Cпособ для сведения к минимуму истирания частиц катализатора включает в себя подвергание объединенного потока, имеющего ось направления потока, стадии предварительной обработки, которая предшествует контактированию объединенного потока со средством сепарации при высокой скорости газового потока от 16,8 до 25,9 м/с. Причем стадия предварительной обработки происходит при более низкой скорости потока газа в диапазоне от 7,6 до 15,2 м/с в сочетании с изменением направления от объединенного потока газа, при этом изменение направления составляет по меньшей мере 90° от оси направления потока, и причем сочетание на стадии предварительной обработки изменения скорости и направления вызывает удаление из объединенного потока боле 80% частиц катализатора, так что менее 20% частиц катализатора вступает в контакт со средством высокоскоростной сепарации. При этом способ дает общую скорость истирания катализатора, рассчитанную в соответствии с соотношением r = Ku/√μ, которая по меньшей мере на 15% меньше, чем общая скорость истирания катализатора без стадии предварительной обработки. При этом средство высокоскоростной сепарации содержит дефлектор объединенного потока, представляющий собой диск. Устройство для сведения к минимуму истирания частиц катализатора включает в себя один или более высокоскоростных циклонных сепараторов, выполненных с возможностью приема объединенного потока при скорости газового потока от 16,8 до 25,9 м/с, дефлектор объединенного потока, расположенный над погружными отводами одного или более циклонного сепаратора. Причем дефлектор объединенного потока представляет собой диск и выполнен с возможностью изменения скорости и направления, тем самым удаляя из объединенного потока более 80% частиц катализатора из объединенного потока частиц катализатора и увлекающего газа, так что менее 20% частиц катализатора сталкивается со средством высокоскоростной сепарации. При этом скорость объединенного газового потока после контакта с дефлектором объединенного потока составляет от 7,6 до 15,2 м/с, и направление объединенного газового потока после контакта с дефлектором объединенного потока отклоняется по меньшей мере на 90° от оси объединенного потока до контакта с дефлектором объединенного потока. Техническим результатом является снижение степени истирания катализатора, а также повышение степени извлечения частиц катализатора из объединенного потока. 2 н. и 8 з.п. ф-лы, 1 пр., 2 ил.

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Данное изобретение относится в целом к способу и устройству для его осуществления для сведения к минимуму истирания частиц катализатора дегидрирования алканов или алкилароматических соединений, особенно частиц катализатора дегидрирования пропана (PDH), захваченных в увлекающий газ в средстве извлечения катализатора во время отделения таких частиц от увлекающего газа.

УРОВЕНЬ ТЕХНИКИ

Состоящие из частиц катализаторы, используемые в некоторых реакционных системах с текучей средой и твердой фазой, таких как дегидрирование алканов или алкилароматических соединений, обычно должны быть отделены от продукта реакции и либо рециркулированы в реакционную систему или регенерированы перед рециркуляцией в реакционную систему. В любом случае, твердые частицы катализатора также должны быть отделены от выходящего потока системы регенератора. Наиболее распространенный способ отделения твердых частиц катализатора заключается в поддержании слоя регенератора при скоростях около 0,914 метров в секунду (м/с) (3 фута в секунду (фут/с) и предоставлении возможности разделения частиц для уменьшения количества катализатора, с помощью регулирования уноса в один или более высокоскоростной циклонный сепаратор, чтобы скорость газового потока при попадании в первый циклонный сепаратор могла быть в диапазоне от 16,8 м/с (55,1 фут/с) до 25,9 м/с (85 фут/с). Такие высокие скорости газа приводят к высоким скоростям столкновения твердых частиц катализатора со стенками циклона, что приводит к истиранию частиц катализатора. Хорошо известны регенераторы с кипящем слоем для систем дегидрирования, в которых катализатор дегидрирования и увлекающий газ выходят из кипящего слоя со скоростью примерно 1 м/с.

Катализаторы дегидрирования, как известно, имеют более высокую концентрацию платины на наружных поверхностях частиц, чем в основной массе частиц катализатора из-за миграции компонентов дорогостоящих металлов, таких как Pt, Ga, Pd, Au, Ag при высокой температуре. Таким образом, поскольку частицы катализатора дегидрирования истираются, наиболее активный компонент катализатора может быть потерян в виде тонкодисперсных частиц, при этом остаются частицы катализатора с пониженной активностью. Катализаторы дегидрирования, как правило, очень дороги, в первую очередь из-за Pt компонента, который наиболее страдает при истирании частиц катализатора. Однако, частицы катализатора в реакционной системе с текучей средой и твердой фазой также содержат и другие дорогостоящие компоненты, такие как носитель из оксида алюминия-диоксида кремния. Таким образом, сведение к минимуму истирания катализатора, в частности, частиц катализатора PDH, будет выгодно с точки зрения рентабельности таких реакционных систем с текучей средой и твердой фазой, и в частности для процессов PDH.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Изобретение предлагает усовершенствованный способ и устройство для его осуществления для сведения к минимуму истирания частиц катализатора дегидрирования алканов или алкилароматических соединений, особенно частиц катализатора дегидрирования пропана (PDH), захваченных в увлекающий газ в средстве извлечения катализатора во время отделения таких частиц от увлекающего газа, путем предварительной обработки объединенного потока частиц катализатора и увлекающего газа с помощью средств низкоскоростной сепарации газа/твердой фазы перед контактированием со средствами высокоскоростной сепарации.

В одном варианте осуществления изобретение предлагает усовершенствованный способ для сведения к минимуму истирания частиц катализатора, увлеченных объединенным потоком таких частиц и увлекающего газа в средстве извлечения катализатора во время отделения таких частиц от увлекающего газа, при этом способ включает в себя приведение объединенного потока в контакт со средством высокоскоростной сепарации при скорости газового потока от 16,8 м/с до 25,9 м/с, и, тем самым, удаление из указанного объединенного потока по меньшей мере 99,8% частиц катализатора, где усовершенствование включает в себя: подвергание объединенного потока, имеющего ось направления потока, стадии предварительной обработки, которая предшествует контактированию объединенного потока со средством сепарации при высокой скорости газового потока от 16,8 м/с до 25,9 м/с, стадию предварительной обработки происходящую при более низкой скорости потока газа в диапазоне от 7,6 м/с до 15,2 м/с в сочетании с изменением направления от направления объединенного потока газа, при этом изменение направления составляет по меньшей мере 90 градусов (°) от оси направления потока, при этом сочетание на стадии предварительной обработки изменения скорости и направления вызывает удаление из объединенного потока боле 80% частиц катализатора, так что менее 20% частиц катализатора вступает в контакт со средством высокоскоростной сепарации, причем усовершенствованный способ дает общую скорость истирания катализатора, рассчитанную в соответствии с соотношением r = Ku2/√μ, где r является скоростью истирания (масса катализатора, истертого за час, по отношению к массе катализатора, подвергнутого столкновению за час), K - константа скорости истирания для определенного катализатора, u является скоростью столкновения (м/с), и μ представляет собой загрузочное отношение твердых частиц к газу (массы катализатора к массе газа), которая по меньшей мере на 15% меньше, чем общая скорость истирания катализатора без стадии предварительной обработки.

В альтернативном варианте осуществления изобретение также предлагает усовершенствованное устройство для сведения к минимуму истирания частиц катализатора, увлеченных объединенным потоком таких частиц и увлекающего газа, в средстве извлечения катализатора во время отделения таких частиц от увлекающего газа, при этом усовершенствованное устройство включает в себя один или более высокоскоростной циклонный сепаратор, выполненный с возможностью приема объединенного потока при скорости газового потока от 16,8 м/с до 25,9 м/с, и, в связи с этим, удаления из указанного объединенного потока по меньшей мере 99,8% частиц катализатора, где усовершенствование включает в себя: дефлектор объединенного потока, расположенный над погружными отводами одного или более циклонного сепаратора, и где дефлектор объединенного потока может изменять скорость и направление, тем самым удаляя из объединенного потока более 80% частиц катализатора из объединенного потока частиц катализатора и увлекающего газа, так что менее 20% частиц катализатора попадает в средство высокоскоростной сепарации, где скорость объединенного газового потока после контакта с дефлектором объединенного потока составляет от 7,6 м/с до 15,2 м/с, и направление объединенного газового потока после контакта с дефлектором объединенного потока отклоняется по меньшей мере на 90°С от оси объединенного потока до контакта с дефлектором объединенного потока

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

С целью иллюстрации изобретения на чертежах показан образец, приводимый в качестве примера; следует понимать, однако, что данное изобретение не ограничено показанными точными компоновками и техническими средствами.

На фиг. 1 представлена схема первого варианта осуществления усовершенствованного устройства; и

На фиг. 2 представлена схема второго варианта осуществления усовершенствованного устройства.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Варианты осуществления изобретения предлагают усовершенствованный способ для сведения к минимуму истирания частиц катализатора, увлеченных объединенным потоком таких частиц и увлекающего газа, в средстве извлечения катализатора во время отделения таких частиц от увлекающего газа, при этом способ включает в себя приведение объединенного потока в контакт со средством высокоскоростной сепарации при скорости газового потока от 16,8 м/с до 25,9 м/с, и, тем самым, удаление из указанного объединенного потока по меньшей мере 99,8% частиц катализатора, и усовершенствованное устройство для сведения к минимуму истирания частиц катализатора, увлеченных объединенным потоком таких частиц и увлекающего газа, в средстве извлечения катализатора во время отделения таких частиц от увлекающего газа.

Усовершенствованный способ и устройство дают общую скорость истирания катализатора, вычисленную в соответствии с соотношением, описанным Reppenhagen и Werther в Powder Technology, т. 113, с. 55-69 (2000); а именно: r = Ku2/√μ, где r является скоростью истирания (масса катализатора, истертого за час, по отношению к массе катализатора, подвергнутого столкновению за час), K - константа скорости истирания для определенного катализатора, u является скоростью столкновения (м/с), и μ представляет собой загрузочное отношение твердых частиц к газу (массы катализатора к массе газа), которая по меньшей мере на 15% меньше, чем общая скорость истирания катализатора без стадии предварительной обработки.

Будучи особенно подходящим для применения при отделении катализаторов дегидрирования пропана, усовершенствованный способ также может использоваться при отделении частиц других катализаторов в реакционных системах с текучей средой и твердой фазой, включая, например, катализаторы дегидрирования других алканов, такие как катализаторы дегидрирования этана, катализаторы дегидрирования бутана, катализаторы дегидрирования пентана, катализаторы дегидрирования этилбензола, катализаторы дегидрирования пропилбензола и катализаторы дегидрирования метилэтилбензола. Усовершенствованный способ может применяться при отделении и других частиц катализатора, применяемых в реакционных системах с текучей средой и твердой фазой, таких как катализаторы конверсии метанола в олефины, спиртов в олефины, катализаторы крекинга углеводородов, катализаторы депарафинизации углеводородов и катализаторы гидрокрекинга.

Средства сепарации, применимые в вариантах осуществления способа, включают в себя циклонные сепараторы и другие устройства, использующие центробежную силу или ударное воздействие для осуществления отделения частиц, такие как вихревые сепараторы.

В конкретном варианте осуществления константа скорости истирания определенного катализатора, К, составляет приблизительно 100×10-9 с22.

В одном варианте осуществления, средство высокоскоростной сепарации является двухступенчатой циклонной системой, которая включает в себя первичный циклон, работающий при входной скорости газового потока, находящейся в пределах от 16,8 м/с до 22,9 м/с, и вторичный циклон, работающий при входной скорости газового потока в пределах от 18,3 м/с до 25,9 м/с.

В альтернативном варианте осуществления настоящее изобретение предлагает усовершенствованный способ и усовершенствованное устройство для его осуществления в соответствии с каким-либо из предшествующих вариантов осуществления, за исключением того, что дефлектор объединенного потока является диском. В конкретном варианте осуществления диск имеет диаметр в 1-2 раза больше диаметра стояка. Все индивидуальные значения и поддиапазоны от 1 до 2 включены в настоящий документ и раскрыты в нем; например, диаметр диска может быть в 1,5-2 раза больше диаметра стояка, или в альтернативном варианте диаметр диска может быть в 1-1,5 раза больше диаметра стояка, или, в качестве альтернативы, диаметр диска может быть в 1,25-1,75 раза больше диаметра стояка.

В конкретном варианте осуществления область между крышкой стояка и верхней частью стояка имеет цилиндрическую поверхность, в 1-3 раза превышающую поверхность самого стояка. Все индивидуальные значения и поддиапазоны от 1 до 3 включены в настоящий документ и раскрыты в нем; например, пространство между стояком и диском может быть в 2-3 раза больше поверхности стояка, или в альтернативном варианте пространство между стояком и диском может быть в 1-2 раза больше поверхности стояка, или в качестве альтернативы, пространство между стояком и диском может быть в 1,5-2 раза больше поверхности стояка, или в альтернативном варианте пространство между стояком и диском может быть в 1,75-2,25 раза больше поверхности стояка. Один такой иллюстративный вариант осуществления частично показан на фиг. 1. Усовершенствованное устройство 1 показано в виде двухступенчатой системы циклонных сепараторов, имеющей две пары циклонов 3, каждый из которых имеет погружной отвод 4, проходящий ниже местоположения дефлектора 2 объединенного потока. Как показано на фиг. 1, дефлектор 2 объединенного потока имеет форму диска, помещенного на высоте стояка 5 таким образом, что объединенный газовый поток сталкивается с дефлектором объединенного потока при скорости в пределах от 7,6 м/с до 15,2 м/с.

В другом альтернативном варианте осуществления настоящее изобретение предлагает усовершенствованный способ и усовершенствованное устройство для его осуществления в соответствии с каким-либо из предшествующих вариантов осуществления, за исключением того, что дефлектор объединенного потока содержит пластину, имеющую центр и наружный край и некоторое количество рукавов, выходящих из наружного края, где рукава образуют кривые, отходящие в осевом направлении и вниз от центра. Один такой иллюстративный вариант осуществления показан на фиг. 2. На фиг. 2 усовершенствованное устройство 1 снова показано в виде двухфазной системы циклонного сепаратора, имеющей два циклонных сепаратора 3, причем каждый циклонный сепаратор имеет погружной отвод 4, который проходит ниже дефлектора 2 объединенного потока. Как показано на фиг. 2, дефлектор 2 объединенного потока имеет центр 6, от которого отходят четыре рукава 8. Каждый рукав 8 изогнут наружу и вниз от центра 6. Необязательная боковая панель 10 рукава показана на фиг. 2.

В альтернативном варианте осуществления дефлектор объединенного потока может быть выполнен в виде изогнутой вниз пластины, причем центр пластины является самой высокой точкой дефлектора. В еще одном варианте осуществления дефлектор объединенного потока может быть выполнен в виде полусферы, причем полюс полусферы является самой высокой точкой дефлектора. В другом варианте осуществления дефлектор объединенного потока выполнен в виде конуса с вершиной, которая является самой высокой точкой дефлектора. В другом варианте осуществления дефлектор объединенного потока выполнен в виде усеченного конуса, имеющий верхнюю поверхность с меньшей площадью, чем нижняя поверхность, причем верхняя поверхность является высшей точкой дефлектора. Как видно из вышеизложенного, специалисту будет ясно, что дефлектор объединенного потока может иметь любую подходящую форму, благодаря чему скорость и направление объединенного потока изменяются должным образом.

Усовершенствованный способ и/или усовершенствованное устройство настоящего изобретения могут использоваться вместе с теми системами, в которых скорость потока газа в результате столкновения или сообщения со средством сепарации составляет от 16,8 м/с (55 фут/с) и 25,9 м/с (85 фут/с). Все индивидуальные значения и поддиапазоны от 16,8 м/с до 25,9 м/с включены в настоящий документ и раскрыты в нем. Например, усовершенствования могут применяться в системе, в которой скорость газового потока при столкновении или контакте со средством сепарации составляет от 16,8 м/с до 25,9 м/с, или в альтернативном варианте от 16,8 м/с до 20 м/с, или в альтернативном варианте от 18,5 м/с до 24,5 м/с, или в альтернативном варианте от 22,6 м/с до 25,9 м/с.

Стадия предварительной обработки и/или дефлектор объединенного потока настоящего изобретения приводят к изменению скорости газового потока в объединенном потоке в диапазоне от 7,6 м/с до 15,2 м/с. Все индивидуальные значения и поддиапазоны от 7,6 м/с до 15,2 м/с включены в настоящий документ и раскрыты в нем; например, стадия предварительной обработки может приводить к скорости газового потока от нижнего предела в 7,6; 8,6; 9,6; 10,6; 11,6; 12,6; 13,6 или 14,6 м/с до верхнего предела в 8; 9; 10; 11; 12; 13; 14 или 15,2 м/с. Например, скорость газового потока после стадии предварительной обработки или контакта с дефлектором объединенного потока, может составлять от 7,6 м/с до 15,2 м/с; или в альтернативном варианте от 9,6 м/с до 13,8 м/с, или в альтернативном варианте от 7,8 м/с до 12,5 м/с, или в альтернативном варианте от 13 м/с до 15,2 м/с.

Стадия предварительной обработки и/или дефлектор объединенного потока настоящего изобретения приводят к изменению в оси направления объединенного потока по меньшей мере на 90° от оси направления потока. Все индивидуальные значения и поддиапазоны от по меньшей мере 90° от оси направления потока включены в настоящий документ и раскрыты в нем. Например, отклонение направления объединенного потока от оси направления потока после стадии предварительной обработки или контактирования с дефлектором объединенного потока может составлять по меньшей мере 90°, или в альтернативном варианте по меньшей мере 120°, или в альтернативном варианте по меньшей мере 150°, или в альтернативном варианте по меньшей мере 180°.

Стадия предварительной обработки и/или дефлектор объединенного потока настоящего изобретения вызывает удаление из объединенного потока более 80% частиц катализатора в объединенном потоке. Все индивидуальные значения и поддиапазоны свыше 80% частиц катализатора включены в настоящий документ и раскрыты в нем. Например, стадия предварительной обработки или дефлектор объединенного потока могут удалять из объединенного потока свыше 80% частиц катализатора в объединенном потоке, или в альтернативном варианте стадия предварительной обработки или дефлектор объединенного потока могут удалять из объединенного потока свыше 90% частиц катализатора в объединенном потоке, или в альтернативном варианте стадия предварительной обработки или дефлектор объединенного потока могут удалять из объединенного потока свыше 94% частиц катализатора в объединенном потоке, или в альтернативном варианте стадия предварительной обработки или дефлектор объединенного потока могут удалять из объединенного потока свыше 98% частиц катализатора в объединенном потоке.

Усовершенствованный способ и/или дефлектор объединенного потока по настоящему изобретению дает общую скорость истирания катализатора, рассчитанную в соответствии с соотношением r = Ku2/√μ, где r является скоростью истирания (масса катализатора, истертого за час, по отношению к массе катализатора, подвергнутого столкновению за час), K - константа скорости истирания для определенного катализатора, u является скоростью столкновения (м/с), и μ представляет собой загрузочное отношение твердых частиц к газу (массы катализатора к массе газа), которая по меньшей мере на 15% меньше, чем общая скорость истирания катализатора без стадии предварительной обработки. Все индивидуальные значения и поддиапазоны от по меньшей мере 15% уменьшения в истирании катализатора включены в настоящий документ и раскрыты в нем. Например, уменьшение истирания катализатора может составлять от нижнего предела 15, 17, 19, 21, 23 или 25% по сравнению с общим истиранием катализатора без стадии предварительной обработки и/или контакта с дефлектором объединенного потока.

Константа скорости истирания может быть получена при работе устройства с одновременным измерением скорости истирания при изменении скорости газа и нагрузок по твердой фазе для определения значения К с помощью регрессионного анализа. Reppenhagen и Werther выразили скорость истирания, r, как функцию от u2 и μ, что документально подтверждается в Powder Technology, т. 113, с. 64, таблица 4. Измеренные скорости подвергали регрессионному анализу для вычисления значения К.

В системе регенератора с псевдоожиженным слоем уносящий газ является преимущественно дымовым газом, который образуется в результате сжигания топлива, включая метан, кокс и водород. Поэтому газ преимущественно содержит азот, кислород, углекислый газ и воду. Поток уноса Е задается уравнением E=∫K*i∞ydx, где у(х)dх является массовой долей частиц размером от х до х+dx в слое, и K*i∞ является константой уноса (в кг/м2/с), определяемой соотношением из Geldart et al. (1979), Transactions Of The Institute Of Chemical Engineers, т. 57, с. 269-275, как K*i∞(х) = 14,5U2,5exp[-5,4uT(x)/U], где U является поверхностной скоростью газа в слое (в м/с), и uT(х) представляет собой конечную скорость частицы размером х. Для типичных частиц с плотностью 130 фунт/фут3 (2082 кг/м3) и логнормальным распределением размеров частиц с медианой 75 мкм и геометрическим стандартным отклонением 1,6 под воздействием псевдоожижающего газа с плотностью 0,04 фунт/фут3 (0,64 кг/м3) и вязкостью газа 0,04 сП (0,00004 Па·с) при поверхностной скорости в диапазоне от 1 фут/с до 4 фут/с (0,3-1,2 м/с), поток уноса твердой фазы находится в диапазоне от 54 фунт/фут2/ч до 5600 фунт/фут2/ч (263-27342 кг/м2/ч) (см. фиг. 4), что приводит к массовому отношению катализатора к газу в пределах от 0,37 до 9,73.

Примеры

Следующие примеры иллюстрируют настоящее изобретение, но не предназначены для ограничения объема изобретения. Сравнительные примеры были получены с использованием экспериментально выведенного уравнения, представленного Reppenhagen и Werther вместе с репрезентативной константой скорости истирания, определенной Reppenhagen и Werther, которую можно найти в таблице 4 на с.64, а именно 100×10-9 с22, что попадает в диапазон для других оценивавшихся катализаторов. Фактические скорости потока и параметры процесса рассчитывали на основе общей модели процесса, которая, как известно, работает для процесса регенерации PDH. Эффективность сепарации низкоскоростного средства сепарации была рассчитана с помощью компьютерной гидродинамической модели частиц Barracuda. Скорость уноса для традиционного регенератора рассчитывали на основе экспериментальной работы Geldarts в вышеупомянутой ссылке.

Сравнительный пример 1 был осуществлен в традиционном регенераторе с кипящим слоем с двухступенчатой системой высокоскоростной циклонной сепарации. Катализатор с плотностью частиц 2082 кг/м3 (130 фунт/фут3) и логнормальным распределением размеров частиц с медианой 75 мкм и геометрическим стандартным отклонением 1,6 был псевдоожижен газом с плотностью 0,64 кг/м3 (0,04 фунт/фут3) и вязкостью 0,04 сП (0,00004 Па⋅с) при поверхностной скорости 0,91 м/с (3 фут/с) в слое с диаметром 1,75 м (5,74 фут). С помощью соотношения уноса Geldart et al. (1979) далее получили поток уноса твердой фазы, составляющий 20905 кг/м2/ч (4284 фунт/фут2/ч), или 50285 кг/ч (110859 фунт/ ч), и массовое отношение катализатора к газу, равное 9,92. При 19,8 м/с (65 фут/с) скорости на входе в первичный циклон с константой катализатора 100×10-9 с22, соотношение Reppenhagen и Werther (2000) дает 0,626 кг/ч (1,38 фунт/ч) истертого катализатора. При эффективности сепарации 99,997% 1,51 кг/ч (3,33 фунт/ч) катализатора направляется во вторичные циклоны, которые имеют скорость на входе 22,9 кг/с (75 фут/с), в результате чего образуется 0,00005 кг/ч (0,0001 фунт/ч) истертой пыли. Общая скорость истирания катализатора тогда составляет 0,627 кг/ч (1,383 фунт/ч).

Пример 1 по изобретению моделировали как обработанный в системе, показанной на фиг. 2, с предварительной стадией низкоскоростной сепарации, за которой следовала последующая обработка в двухступенчатой системе высокоскоростной циклонной сепарации, при этом результат будет выглядеть следующим образом. В данном случае 68040 кг/ч (150000 фунт/ч) катализатора и 4556 кг/ч (10044 фунт/ч) газа поступало в дефлектор потока со скоростью 10,7 м/с (35 фут/с) с образованием 0,20 кг/ч (0,44 фунт/ч) истертого катализатора. Согласно компьютерному моделированию гидродинамики частиц (проведенному с помощью программного обеспечения Barracuda от CPFD Software LLC (Альбукерке, Нью-Мексико, США) эффективность улавливания дефлектора потока составляла 96%, в результате чего 2761 кг/ч (6000 фунт/ч) катализатора и 5071 кг/ч (11179 фунт/ч) газа (некоторое количество из кольцевого зазора) поступало в первичный циклонный сепаратор. При скорости на входе 19,8 м/с (65 фут/с) это давало 0,146 кг/ч (0,321 фунт/ч) истертого катализатора. При 99,98% эффективности сепарации в первичных циклонах (эффективность сепарации меньше, чем в предыдущем примере из-за более низкой загрузки циклона) 0,544 кг/ч (1,2 фунт/ч) катализатора входило во вторичные циклоны со скоростью 22,9 кг/с (75 фут/с), образуя 0,0027 кг/с (0,006 фунт/ч) истертого катализатора. Таким образом, общая скорость истирания катализатора составляет 0,349 кг/ч (0,770 фунт/ч); что составляет 55% от скорости в сравнительном примере 1.

Настоящее изобретение может быть осуществлено в других формах без отклонения от его сущности и существенных признаков, и, соответственно, должна делаться ссылка на прилагаемую формулу изобретения, а не на вышеприведенное описание для указания на объем изобретения.


СПОСОБ И УСТРОЙСТВО ДЛЯ СВЕДЕНИЯ К МИНИМУМУ ИСТИРАНИЯ ЧАСТИЦ КАТАЛИЗАТОРА
СПОСОБ И УСТРОЙСТВО ДЛЯ СВЕДЕНИЯ К МИНИМУМУ ИСТИРАНИЯ ЧАСТИЦ КАТАЛИЗАТОРА
СПОСОБ И УСТРОЙСТВО ДЛЯ СВЕДЕНИЯ К МИНИМУМУ ИСТИРАНИЯ ЧАСТИЦ КАТАЛИЗАТОРА
Источник поступления информации: Роспатент

Показаны записи 51-60 из 160.
27.02.2015
№216.013.2de4

Неорганические нанопористые частицы с вододиспергируемым полиуретановым связующим

Изобретение относится к изделию, способу получения изделия и применению изделия. Изделие может использоваться в качестве теплоизоляционного материала, а также для звукоизоляции. Изделие содержит неорганические нанопористые частицы, связанные друг с другом вододиспергируемым полиуретаном, где...
Тип: Изобретение
Номер охранного документа: 0002543216
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e21

Составы с диброммалонамидом и использование их в качестве биоцидов

Изобретение относится к биоцидам. Биоцидный состав для борьбы с микроорганизмами в водной или водосодержащей системе включает в себя: 2,2-диброммалонамид и биоцидное соединение на альдегидной основе, выбранное из группы, состоящей из глутаральдегида, трис(гидроксиметил)нитрометана,...
Тип: Изобретение
Номер охранного документа: 0002543277
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2e81

Галогенированные амидные биоцидные соединения и способы обработки водных систем при от почти нейтральных до высоких величинах ph

Изобретение относится к способу борьбы с микроорганизмами в водной системе. Способ включает обработку водной системы эффективным количеством соединения формулы I, где водная система имеет величину pH 6,9 или выше. В формуле I X представляет собой галоген; R и R представляют собой,...
Тип: Изобретение
Номер охранного документа: 0002543373
Дата охранного документа: 27.02.2015
10.04.2015
№216.013.3d49

Биоцидные композиции и способы их применения

Синергетическая композиция для борьбы с ростом микроорганизмов в водной или водосодержащей системе включает: 2,2-дибром-3-нитрилопропионамид и биоцидное соединение, выбранное из группы, состоящей из 1-(3-хлораллил)-3,5,7-триаза-1-азониаадамантана, трис(гидроксиметил)-нитрометана и...
Тип: Изобретение
Номер охранного документа: 0002547177
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e85

Полиизоциануратная композиция

Изобретение относится к пенополиизоциануратной композиции, которая может найти применение при изготовлении теплоизолирующих материалов и строительных панелей. Пенополиизоциануратная композиция включает полиизоцианатное соединение, первый полиэфирполиол на основе сложного эфира, включающего...
Тип: Изобретение
Номер охранного документа: 0002547493
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.408d

Формованное полимерное изделие, характеризующееся низкой мутностью и высокой прозрачностью

Изобретение описывает формованное изделие, образованное из полимерной композиции, и способы ее изготовления. Описан способ получения формованного изделия. Способ включает выбор полимера на пропиленовой основе и эластомера на олефиновой основе. Полимер характеризуется показателем преломления...
Тип: Изобретение
Номер охранного документа: 0002548013
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.4091

Композиция эксктрузионного покрытия

Изобретение относится к мультимодальной полиэтиленовой смоле, экструзионной композиции, ее содержащей, и изделиям, которые могут быть использованы для изготовления экструзионных покрытий, экструзионных профилей и пленок. Экструзионная композиция содержит мультимодальную полиэтиленовую смолу и...
Тип: Изобретение
Номер охранного документа: 0002548017
Дата охранного документа: 10.04.2015
20.04.2015
№216.013.442e

Композиция дибромомалонамида и её применение в качестве биоцида

Изобретение относится к биоцидам. Биоцидная композиция содержит 2,2-дибромомалонамид и 2,2-дибром-3-нитрилопропионамид при массовом отношении от 31:1 до 1:1 соответственно. Осуществляют контроль микроорганизмов в водных и содержащих воду системах их обработкой указанной композицией. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002548952
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.47ae

Тканый материал с покрытием, мешок, изготовленный из него, упаковочная машина для мешков и способ заполнения мешков

Изобретение относится к многослойным упаковочным материалам и касается тканого материала с покрытием и мешка, изготовленного из этого материала. Содержит ткань из полимерных лент. Ткань покрыта герметизирующим слоем. Часть полимерных лент имеет предел прочности на разрыв меньше чем 45 сН/текс...
Тип: Изобретение
Номер охранного документа: 0002549854
Дата охранного документа: 27.04.2015
10.08.2015
№216.013.6d10

Подающее устройство для пенных и не пенных покрытий

Изобретение относится к подающему устройству для нанесения пенных покрытий или не пенных напыляемых покрытий и способу использования подающего устройства и может быть использовано для изготовления ветрозащитных пленок в строительстве для изоляции сооружений от воздействий внешней среды....
Тип: Изобретение
Номер охранного документа: 0002559478
Дата охранного документа: 10.08.2015
Показаны записи 1-8 из 8.
27.02.2014
№216.012.a647

Способ получения дегидрированных углеводородных соединений

Изобретение относится к способу дегидрирования углеводородов, выбираемых, по меньшей мере, одним из пропана, изобутана и бутана. Способ характеризуется контактированием газового потока, содержащего, по меньшей мере, один из указанных углеводородов, с катализатором дегидрирования, содержащим...
Тип: Изобретение
Номер охранного документа: 0002508282
Дата охранного документа: 27.02.2014
25.08.2017
№217.015.9704

Регенерация катализатора дегидрогенизации пропана

Изобретение относится к способу, который позволяет получить регенерированный катализатор дегидрогенизации алкана. Обработка в регенераторе состоит из следующих последовательных стадий: (a) нагревания дезактивированного катализатора до температуры по меньшей мере 660°С с использованием тепла,...
Тип: Изобретение
Номер охранного документа: 0002608732
Дата охранного документа: 23.01.2017
01.09.2018
№218.016.8261

Способ каталитического дегидрирования

Изобретение относится к улучшенному способу каталитического дегидрирования. Описан способ каталитического дегидрирования, который включает контактирование алканового или алкилароматического исходного сырья с катализатором дегидрирования, содержащим галлий и платину, нанесенные на носитель, при...
Тип: Изобретение
Номер охранного документа: 0002665480
Дата охранного документа: 30.08.2018
22.03.2019
№219.016.ec3b

Регулирование уровня серы дегидрогенизацией пропана

Изобретение относится к регулированию содержания серы, присутствующей как сера или соединение серы в потоке исходного углеводородного материала при осуществлении дегидрогенизации углеводорода (углеводородов) (например, пропана), содержащегося в потоке исходного углеводородного материала, до...
Тип: Изобретение
Номер охранного документа: 0002682670
Дата охранного документа: 20.03.2019
18.10.2019
№219.017.d79e

Устройство для контактирования текучей среды с твердыми компонентами

Настоящее изобретение относится к устройству для контактирования текучей среды с твердыми компонентами. Устройство содержит резервуар, решетчатую конструкцию, содержащую одну или более решетчатых ступеней, каждая из которых содержит множество решетчатых сборочных секций, причем каждая...
Тип: Изобретение
Номер охранного документа: 0002703233
Дата охранного документа: 15.10.2019
15.11.2019
№219.017.e219

Регенератор катализатора и используемый в нем оголовок стояка

Предложен регенератор катализатора для выжигания углеродистых отложений из катализатора, содержащий первую камеру, имеющую впускной патрубок для впуска катализатора, предназначенный для подачи отработанного катализатора с углеродистыми отложениями в первую камеру, распределитель дополнительного...
Тип: Изобретение
Номер охранного документа: 0002706062
Дата охранного документа: 13.11.2019
16.05.2023
№223.018.5e81

Способ осуществления реакции кислородсодержащего регенерированного катализатора перед его применением в реакторе с псевдоожиженным слоем

Предложен способ осуществления реакции потока кислородсодержащего регенерированного катализатора перед его применением в реакторе с псевдоожиженным слоем, включающий: регенерацию потока отработанного катализатора для получения потока регенерированного катализатора, который содержит...
Тип: Изобретение
Номер охранного документа: 0002750216
Дата охранного документа: 24.06.2021
16.05.2023
№223.018.6173

Способ каталитического дегидрирования

Изобретение относится к способу каталитического дегидрирования, включающему: смешивание псевдоожижающего газа, который включает метан, природный газ, этан, водород, азот или любую их комбинацию, с потоком псевдоожиженного катализатора в секции для псевдоожижения рециркулированного катализатора...
Тип: Изобретение
Номер охранного документа: 0002741300
Дата охранного документа: 25.01.2021
+ добавить свой РИД