×
19.08.2018
218.016.7d26

Результат интеллектуальной деятельности: СПОСОБ ОБРАБОТКИ ПОСЛЕДОВАТЕЛЬНОСТИ ИЗОБРАЖЕНИЙ ДЛЯ РАСПОЗНАВАНИЯ ВОЗДУШНЫХ ОБЪЕКТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области цифровой обработки изображений. Технический результат заключается в повышении точности определения класса наблюдаемого воздушного объекта. Способ заключается: в генерации на основе 3D-моделей эталонных бинарных изображений воздушных объектов, в формировании эталонных дескрипторов внешнего контура для этих изображений, в нормировании дескрипторов внешнего контура, в создании базы эталонных дескрипторов внешнего контура, которая в дальнейшем используется при распознавании наблюдаемого воздушного объекта, и в принятии решения, заключающегося в принятии и аналого-цифровом преобразовании сигнала изображения каждого кадра, в обнаружении наблюдаемого объекта в кадре и формировании его бинарного изображения, в формировании дескриптора внешнего контура, в нормировании дескриптора внешнего контура, в определении различия нормированного дескриптора наблюдаемого изображения с нормированными дескрипторами эталонных изображений, в определении эталонного дескриптора с наименьшей мерой отличия, в определении класса наблюдаемого воздушного объекта.

Изобретение относится к области цифровой обработки изображений и может быть использовано в охранных системах, системах мониторинга и контроля воздушного движения, оптикоэлектронных системах сопровождения объектов и др.

Известен способ и устройство для распознавания изображений объектов [Пат. РФ №2361273, опубл. 10.09.2009], в котором для распознавания используется трехмерная векторная модель эталона объекта. Для трехмерных моделей генерируют множество двухмерных изображений объекта под разными ракурсами, которые характеризуются набором параметров аффинных преобразований: углами поворота по осям x, y, z и масштабом. Количество данных изображений зависит от сложности модели: чем сложнее форма объекта, тем большее количество ракурсов необходимо для точного распознавания объектов. Полученные изображения кодируются 25-битным кодом. Для этого разбивают изображение на 25 равных областей. В том случае, если в области присутствует часть изображения объекта, то ее помечают единицей, в противном случае нулем. Из полученных таким образом бинарных комбинаций формируют базу данных, которая используется для распознавания. Наблюдаемое изображение объекта аналогичным образом подвергают кодированию. При этом перед кодированием в каждом из 25 блоков необходимо отделить на изображении объект от фона. Из базы данных выбирают комбинацию, наиболее похожую на кодированное представление наблюдаемого изображения. Для данной комбинации по соответствующему набору параметров для аффинных преобразований воспроизводится двумерное изображение модели объекта. Данное изображение модели и наблюдаемое изображение объекта сравнивается попиксельно посредством нейросети типа персептрон, которая принимает решение о схожести.

Недостаток данного способа заключается в том, что он является чувствительным к формированию бинарных комбинаций. Ошибки в разделении фона и объекта при анализе частей наблюдаемого изображения будут приводить к формированию ошибочных бинарных комбинаций, что, в свою очередь, будет негативно влиять на точность распознавания.

Известен способ Object recognition system and process for identifying people and objects in an image of a scene [пат. США № US 20050089223, опубл. 28.05.2016], заключающийся в том, что распознавание осуществляется за счет сравнения гистограммы наблюдаемого изображения с эталонными гистограммами из базы данных. На первом этапе создают гистограммы, соответствующие изображениям людей и объектов из эталонной базы. На втором этапе наблюдаемое изображение сегментируется для выделения областей, которые, вероятно, соответствуют людям и объектам. Для каждой области вычисляются гистограммы. Затем для них рассчитывается мера сходства с гистограммами из базы данных. При превышении мерой сходства порога принимается решение об отнесении области к одному из классов.

Недостатком данного способа является то, что для одного и того же объекта при разной освещенности будут сформированы разные гистограммы, т.е. результат распознавания объектов зависит от условий наблюдения. Также при использовании гистограмм для распознавания объектов не используется информации о форме объекта. Данный способ распознавания может давать хорошие результаты только при условии статистического различия точек фона и объекта.

Наиболее близким к заявляемому способу является выбранный в качестве прототипа способ компьютерного распознавания объектов [Пат. РФ №2250499, опубл. 20.04.2005].

Изобретение относится к автоматике и вычислительной технике. Его применение в системах искусственного интеллекта позволяет получить технический результат в виде сокращения времени распознавания за счет сокращения области распознавания. Распознавание согласно данному способу заключается в сравнении текущего изображения объекта с шаблоном. Для этого используется подход на основе алгоритма сопоставления, использующего для сравнения нормированную корреляционную функцию. Согласно алгоритму осуществляется попиксельное сравнение двух изображений. В шаблоне и текущем изображении помимо точек, принадлежащих объекту, присутствуют точки, принадлежащие фону. В рассматриваемом способе для уменьшения числа рассматриваемых точек предлагается исключить из рассмотрения точки фона. Для получения изображения объекта выделяют его границы на текущем изображении. После чего осуществляется виртуальный охват опорных точек контура объекта округлой фигурой, все точки которой сближают с точками контура обрабатываемого изображения объекта. Сближение выполняется до тех пор, пока одни точки фигуры не совпадут с точками контура объекта, а другие ее точки не образуют сплошную границу между двумя близлежащими точками контура объекта, замыкая, таким образом, полностью его контур с получением контура объекта, максимально приближенного к реальному.

После получения контура распознаваемого объекта его изображение центрируют, вписывают в прямоугольник, удаляют фон на площади между обработанным контуром изображения и прямоугольником, накладывают шаблоны на область изображения, ограниченную обработанным замкнутым контуром, сравнивают их и распознают.

Можно выделить несколько недостатков прототипа. Во-первых, способ обладает низкой скоростью работы, так как производится полный перебор базы эталонов, представленной изображениями объектов (шаблонами). Во-вторых, для сравнения текущего изображения с шаблонами используется корреляционная обработка с нормированной функцией, которая является вычислительно сложной, что также приводит к низкой скорости работы. В-третьих, предлагаемый в прототипе способ не обеспечивает инвариантность к повороту и изменению масштаба изображения наблюдаемого объекта, что приводит к уменьшению частоты правильного распознавания.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в обеспечении инвариантности распознавания к преобразованиям сдвига, поворота и масштаба, а также в повышении частоты правильного распознавания воздушных объектов.

Технический результат достигается тем, что заявляемый способ распознавания воздушных объектов по их двумерному изображению позволяет определить принадлежность объекта к одному из заданных классов воздушных объектов (самолеты, вертолеты, беспилотные летательные аппараты) на основе описания изображения объекта с помощью дескрипторов внешнего контура.

Способ обработки последовательности изображений для распознавания воздушного объекта состоит из предварительного этапа и этапа принятия решения. На предварительном этапе происходит расчет дескрипторов внешнего контура эталонных изображений, сформированных на основе 3D-моделей вертолетов, самолетов и беспилотных летательных аппаратов. На этапе принятия решения для определения класса объекта выбирается дескриптор эталонного изображения, который в наибольшей степени соответствует дескриптору наблюдаемого изображения. На предварительном этапе выполняются наиболее трудоемкие операции и формируется база эталонных дескрипторов. На этапе принятия решения осуществляется сопоставление дескриптора наблюдаемого объекта со всеми дескрипторами эталонных объектов, т.е. непосредственно определяется класс объекта в режиме реального времени.

Предлагаемый способ обработки последовательности изображений для распознавания воздушных объектов включает в себя выполнение следующих действий.

1. На основе 3D-моделей вертолетов, самолетов и беспилотных летательных аппаратов генерируются эталонные бинарные изображения воздушных объектов, достаточно полно охватывающие все возможные ориентации объектов. Для получения такого набора изображений объект интереса необходимо разместить в центре сферы и сгенерировать его изображения из точек, равномерно распределенных на этой сфере [Алпатов Б.А., Бабаян П.В., Масленников Е.А. Алгоритмы оценивания ориентации объекта по его двумерному изображению в бортовых системах видеослежения // Вестник Рязанского государственного радиотехнического университета. - Рязань, 2013. - №3. - С. 3-8].

2. После генерации эталонного бинарного изображения первой 3D-модели объекта на нем выделяются точки внешнего контура и переводятся в полярную систему координат с началом координат в центре масс бинарного изображения объекта. Далее для точек внешнего контура применяется линейная интерполяция и осуществляется медианная фильтрация окном [1×5], в результате чего формируется дискретный дескриптор. Данное действие выполняется для всех бинарных изображений данной 3D-модели объекта.

3. Далее осуществляется нормирование дескрипторов внешнего контура первой 3D-модели. Введение нормировки дескриптора позволяет получить инвариантность способа распознавания к масштабу объекта (расстоянию от объекта-наблюдателя до исследуемого объекта в момент распознавания).

4. После получения дескриптора внешнего контура для первой 3D-модели действия 2-3 выполняются для всех остальных 3D-моделей объектов. Таким образом, создается база эталонных дескрипторов изображений. В данной базе каждому дескриптору внешнего контура поставлен в соответствие класс воздушного объекта (самолет, вертолет, беспилотный летательный аппарат).

Действия 1-4 относятся к предварительному этапу.

5. Производится прием и аналого-цифровое преобразование сигнала изображения каждого кадра наблюдаемой последовательности. Результат аналого-цифрового преобразования изображения каждого кадра имеет вид матрицы чисел , , , где I и J - размеры оцифрованного изображения в элементах разрешения (пикселях), n=1, 2, 3, … - номер кадра. Каждый элемент матрицы является результатом квантования яркости соответствующей точки наблюдаемой сцены.

6. Выполняется обнаружение воздушного объекта алгоритмом на основе пространственной фильтрации, известным из [Пат. РФ №2419150, опубл. 20.05.2011]. Данный алгоритм определяет местоположение объекта в кадре и формирует бинарное изображение воздушного объекта.

7. Далее на полученном бинарном изображении воздушного объекта выделяются точки внешнего контура и переводятся в полярную систему координат с началом координат в центре масс бинарного изображения объекта. Далее для точек внешнего контура применяется линейная интерполяция и осуществляется медианная фильтрация окном [1×5], в результате чего формируется дискретный дескриптор.

8. Далее осуществляется нормирование дескрипторов внешнего контура.

9. Определяется различие нормированного дескриптора наблюдаемого изображения с нормированными дескрипторами эталонных изображений по формуле:

где D0 - дескриптор наблюдаемого изображения, Dj - дескриптор текущего эталонного изображения, ND - размер дескриптора, i - индекс элемента дескриптора, j - индекс эталонного дескриптора, s - величина циклического сдвига дескриптора.

Инвариантность данного дескриптора к повороту изображения достигается циклическим сдвигом дескриптора в процессе сопоставления дескриптора наблюдаемого изображения с дескрипторами эталонных изображений.

10. Формируется вектор, характеризующий степень соответствия наблюдаемого воздушного объекта n-му объекту из базы эталонов:

,

где Ng - количество эталонных бинарных изображений, сформированных для 3D-моделей воздушных объектов.

11. Определяется эталонный дескриптор с наименьшей метрикой из вектора М:

12. Полученное минимальное значение метрики Rk сравнивается с пороговым значением. Если минимальное значение метрики Rk больше порогового значения, то принимается решение о том, что объект не распознан. В противном случае принимается решение, что класс наблюдаемого воздушного объекта соответствует классу эталонного дескриптора с наименьшей метрикой Rk.

Действия 5-12 относятся к этапу принятия решения.

Таким образом, отличия заявляемого способа от прототипа состоят в следующем:

1. Использование 3D-моделей для формирования базы данных воздушных объектов.

2. Формирование эталонного набора бинарных изображений, охватывающего все возможные ориентации объекта с заданной дискретностью за счет размещения его 3D-модели в центре сферы.

3. Описание изображений воздушных объектов при помощи дескрипторов внешнего контура, инвариантных к изменению масштаба, сдвигу, а также к повороту объекта вокруг оптической оси системы наблюдения.

Способ обработки последовательности изображении для распознавания воздушных объектов, включающий предварительный этап, заключающийся в генерации на основе 3D-моделей эталонных бинарных изображений воздушных объектов, в формировании эталонных дескрипторов внешнего контура для этих изображений, в нормировании дескрипторов внешнего контура, в создании базы эталонных дескрипторов внешнего контура, которая в дальнейшем используется при распознавании наблюдаемого воздушного объекта, и этап принятия решения, заключающийся в принятии и аналого-цифровом преобразовании сигнала изображения каждого кадра, в обнаружении наблюдаемого объекта в кадре и формировании его бинарного изображения, в формировании дескриптора внешнего контура, в нормировании дескриптора внешнего контура, в определении различия нормированного дескриптора наблюдаемого изображения с нормированными дескрипторами эталонных изображений, в определении эталонного дескриптора с наименьшей мерой отличия, в принятии решения о классе наблюдаемого воздушного объекта.
Источник поступления информации: Роспатент

Показаны записи 11-20 из 88.
26.08.2017
№217.015.ee51

Вычислитель для режектирования помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Техническим результатом является повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002628904
Дата охранного документа: 22.08.2017
19.01.2018
№218.016.00bd

Зонд атомно-силового микроскопа с программируемым спектральным портретом излучающего элемента, легированного квантовыми точками структуры ядро-оболочка

Изобретение относится к измерительной технике и может быть использовано в зондовой сканирующей микроскопии и атомно-силовой микроскопии для диагностирования и исследования наноразмерных структур. Сущность изобретения заключается в том, что кантилевер соединен с электропроводящей зондирующей...
Тип: Изобретение
Номер охранного документа: 0002629713
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.00ce

Вычислитель доплеровской скорости движения объекта

Изобретение относится к вычислительной технике. Технический результат заключается в повышении точности измерения скорости за счет меньшего числа функциональных преобразований и расширении диапазона однозначно измеряемой доплеровской скорости. Вычислитель доплеровской скорости движения объекта...
Тип: Изобретение
Номер охранного документа: 0002629642
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.010c

Фазометр когерентных неэквидистантных импульсов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентных неэквидистантных импульсов на фоне шума и может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской...
Тип: Изобретение
Номер охранного документа: 0002629710
Дата охранного документа: 31.08.2017
19.01.2018
№218.016.01fd

Градиентное защитное покрытие

Изобретение относится к области электротехники, а именно к защитному покрытию электрических контактов, например магнитоуправлемых контактов (герконов), микроэлектромеханических (МЭМС) коммутаторов, слаботочных и сильноточных контактов коммутационных приборов, электромагнитных реле, и может быть...
Тип: Изобретение
Номер охранного документа: 0002629954
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.089c

Способ получения покрытий на основе нанопористого диоксида титана

Изобретение относится к области электрохимии, в частности к технологии получения пористого покрытия, представляющего собой высокоупорядоченный массив нанотрубок диоксида титана, и может быть использовано в устройствах для очистки воды и воздуха от органических соединений, в производстве...
Тип: Изобретение
Номер охранного документа: 0002631780
Дата охранного документа: 26.09.2017
19.01.2018
№218.016.09c0

Способ обнаружения механического воздействия для идентификации пользователя и устройство для его осуществления

Предлагаемое изобретение относится к средствам распознавания с использованием электронных средств. Технический результат – повышение вероятности идентификации. Для этого предложен способ, который основан на сравнении на интервале времени анализа бинарного кода, формируемого из...
Тип: Изобретение
Номер охранного документа: 0002631977
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.125d

Вычислитель для подавления помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634190
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.126c

Вычислитель для режекции помех

Изобретение относится к вычислительной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Технический результат заключается в повышении эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634191
Дата охранного документа: 24.10.2017
20.01.2018
№218.016.13af

Фильтр режектирования помех

Изобретение относится к радиолокационной технике и предназначено для выделения сигналов движущихся целей на фоне пассивных помех при групповой перестройке несущей частоты зондирующих импульсов. Достигаемый технический результат - повышение эффективности выделения сигналов движущихся целей....
Тип: Изобретение
Номер охранного документа: 0002634615
Дата охранного документа: 02.11.2017
Показаны записи 11-16 из 16.
17.02.2018
№218.016.2d88

Способ подключения управляемого шунтирующего реактора ( варианты)

Изобретение относится к области электроэнергетики. Технический результат - упрощение и повышение надежности. Новым является то, что в цепи подмагничивания используют один выпрямитель, который перед подключением к сети питают от независимой сети. В момент переключений ток в цепи подмагничивания...
Тип: Изобретение
Номер охранного документа: 0002643789
Дата охранного документа: 06.02.2018
10.05.2018
№218.016.490c

Способ обработки сигналов для обнаружения и определения толщины прямых линий на изображении

Изобретение относится к области цифровой обработки изображений. Технический результат – обеспечение обнаружения и оценка толщины прямолинейных протяженных объектов на изображении. Способ обработки сигналов включает: вычисление градиентного поля изображения; задание шага изменения по смещению и...
Тип: Изобретение
Номер охранного документа: 0002651176
Дата охранного документа: 18.04.2018
26.01.2019
№219.016.b476

Универсальная установка для проверки лазерного дальномера

Изобретение относится к области контрольно-измерительной техники импульсных лазерных дальномеров. Универсальная установка для проверки лазерного дальномера (ЛД) содержит ослабитель мощности лазерных импульсов проверяемого ЛД, устройство формирования стартового импульса, устройство сопряжения,...
Тип: Изобретение
Номер охранного документа: 0002678259
Дата охранного документа: 24.01.2019
08.03.2019
№219.016.d381

Продольно-изгибный гидроакустический преобразователь

Предложен продольно-изгибный гидроакустический преобразователь с бочкообразной боковой стенкой герметичного корпуса, имеющей максимальные средний диаметр и толщину на середине продольной оси симметрии и минимальные средний диаметр и толщину на торцах, гофрированной вдоль продольной оси...
Тип: Изобретение
Номер охранного документа: 0002681268
Дата охранного документа: 05.03.2019
20.03.2019
№219.016.e8b8

Способ выращивания кристаллов нитридов металлов iii группы

Изобретение относится к изготовлению полупроводниковых приборов путем нанесения полупроводниковых материалов на подложку и может быть использовано в полупроводниковой промышленности. Способ выращивания кристаллов нитридов металлов III группы из газовой фазы включает размещение подложки 12 в...
Тип: Изобретение
Номер охранного документа: 0002405867
Дата охранного документа: 10.12.2010
29.04.2019
№219.017.443b

Способ получения чистого нанодисперсного порошка диоксида титана

Изобретение относится к технологии получения нанодисперсных материалов и может использоваться в химической промышленности, электронике, порошковой металлургии. Способ включает смешивание чистого раствора прекурсора со спиртами, поддерживающими горение, распыление и сжигание смеси в пламени, при...
Тип: Изобретение
Номер охранного документа: 0002470855
Дата охранного документа: 27.12.2012
+ добавить свой РИД