×
17.08.2018
218.016.7c34

Результат интеллектуальной деятельности: СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ СТАЛЬНЫХ ДЕТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к обработке металлов поверхностной пластической деформацией и вакуумному ионно-плазменному азотированию и может быть использовано в машиностроении и других областях промышленности для обработки широкого ассортимента деталей машин и инструмента, изготовленных из сталей. Способ низкотемпературного ионного азотирования стального изделия в плазме тлеющего разряда включает катодное распыление, вакуумный нагрев изделия в плазме тлеющего разряда, состоящей из смеси азотосодержащего и инертного газов. Указанный нагрев изделия в плазме тлеющего разряда проводят при температуре 430С, причем сначала осуществляют поверхностную интенсивную пластическую деформацию посредством ультразвуковой обработки поверхности стального изделия с подачей инструмента S=2 м/мин, рабочей частотой f=22 кГц и частотой вращения детали N=30 об/мин. Обеспечивается осуществление низкотемпературной обработки в тлеющем разряде и повышение прочностных, трибологических характеристик поверхности, контактной долговечности и износостойкости стальных деталей. 4 ил., 1пр.

Способ относится к области обработки металлов поверхностной пластической деформацией и вакуумному ионно-плазменному азотированию и может быть использован в машиностроении и других областях промышленности для обработки широкого ассортимента деталей машин и инструмента, изготовленных из стали.

Известен способ (патент РФ №2362831, кл. С23С 8/38 27.07.2009) азотирования стальных изделий, заключающийся в том, что изделие в качестве катода помещают в емкость с анодом, заполненную азотосодержащей средой, затем на катод и анод подают постоянное напряжение, создавая между изделием и анодом электрическое поле, и осуществляют затем процесс насыщения поверхности изделия азотом, в качестве азотосодержащей среды и одновременно анода используют раствор электролита, при этом процесс азотирования ведут при атмосферном давлении, а к катоду и аноду подводят напряжение в интервале 15-315 В, причем процесс азотирования ведут в два этапа - подготовительный и собственно азотирование, при этом подготовительный этап проводят при плавно изменяемом напряжении в интервале 15-150 В, а процесс собственно азотирования ведут после образования газовой рубашки между изделием и электролитом при напряжении в интервале 150-315 В.

Недостатком аналога являются ограниченные функциональные возможности, обусловленные отсутствием низкотемпературной обработки материала детали.

Известен способ (патент РФ №2418095, кл. С23С 8/36, 29.06.2009) азотирования стальных изделий в тлеющем разряде, включающий проведение вакуумного нагрева изделий в плазме азота повышенной плотности, по которому плазму азота повышенной плотности создают в тороидальной области движения электронов, образованной скрещенными электрическими и магнитными полями, причем под действием магнитного поля, создаваемого двумя цилиндрическими магнитами, один из которых полый, электроны движутся по циклоидальным замкнутым траекториям.

Недостатком аналога являются ограниченные функциональные возможности, обусловленные отсутствием низкотемпературной обработки материала детали.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ (патент РФ №2413784, кл. С23С 8/36, 08.04.2013) азотирования стальных изделий в тлеющем разряде, включающий вакуумный нагрев изделий, являющихся катодом, в плазме азота повышенной плотности, которую формируют в прикатодной области пучком сгенерированных и ускоренных вспомогательным анодом электронов, при этом электроны, вылетающие из электронной пушки, направляют к аноду и к вспомогательному аноду, создавая электронный газовый поток, обеспечивающий столкновение электронов с нейтральными частицами и поддерживание существования плазмы, при этом скоростью движения электронов управляют посредством вспомогательного анода, подключенного к собственному источнику питания.

Недостатком аналога является высокая температура обработки (500-540°С) и взрывоопасность, обусловленная использованием в газовой смеси ацетилена.

Задачей, на решение которой направлено предлагаемое изобретение, является расширение функциональных возможностей, обусловленных повышением прочностных, трибологических характеристик поверхности, контактной долговечности и износостойкости стальных деталей.

Технический результат - осуществление низкотемпературной обработки в тлеющем разряде и повышение прочностных, трибологических характеристик поверхности, контактной долговечности и износостойкости стальных деталей.

Задача решается, а технический результат достигается тем, что в способе низкотемпературного ионного азотирования стального изделия в плазме тлеющего разряда, включающем катодное распыление, вакуумный нагрев изделия в плазме тлеющего разряда, состоящей из смеси азотсодержащего и инертного газов, указанный нагрев изделия в плазме тлеющего разряда проводят при температуре 430°С, причем сначала осуществляют поверхностную интенсивную пластическую деформацию посредством ультразвуковой обработки поверхности стального изделия с подачей инструмента S=2 м/мин, рабочей частотой f=22 кГц и частотой вращения детали N=30 об/мин.

Эффективность процесса ионного азотирования зависит от температуры, а именно, чем она выше, тем меньше длительность процесса азотирования при прочих равных условиях. Однако, при высокотемпературной обработке деталей со сложной конфигурацией возникает коробление детали, снижается качество поверхности из-за интенсивного ее распыления ионами насыщающей среды. Уменьшение температурного воздействия приводит к возрастанию длительности процесса, а в некоторых случаях диффузионное насыщение может вовсе остановиться.

Кроме температуры обработки на процесс диффузионного насыщения существенное влияние оказывает структура материала детали, например размер зерен и плотность дефектов на границах, которые оказывают стимулирующее воздействие на продвижение атомов азота вглубь материала при азотировании. Диффузионное насыщение удается повысить благодаря измельчению структуры материала детали и повышению плотности дефектов.

Измельчение структуры материала детали во всем ее объеме является трудоемким процессом. В этом случае рационально измельчать структуру в поверхностном слое. Для получения ультрамелкозернистого слоя часто используется способ поверхностной пластической деформации.

При поверхностной пластической деформационной обработке создание поверхностного слоя с ультрамелкозернистой структурой осуществляется в результате воздействия внешних сил на поверхность детали, реализуется пластическая деформация зерен. Во время обработки активизируется множество систем скольжения и создается большое количество различно ориентированных дислокаций. Под действием напряжений дислокации движутся и встречаются с перпендикулярно направленными дислокациями, где происходит их закрепление. Так в поверхностном слое формируются равноосные структуры в виде блоков (зерен), которые в зависимости от режимов обработки и применяемого способа поверхностной пластической деформации имеют средний размер D=100 нм…2 мкм. В результате поверхностной пластической деформационной обработки во время низкотемпературного ионного азотирования преимущественно происходит зернограничная диффузия, интенсифицируется процесс диффузионного насыщения.

Толщина измененного слоя Н в зависимости от режимов обработки и используемого метода поверхностной пластической деформации может достигать 0,05…2 мм. При этом измененный поверхностный слой имеет переходную зону между ультрамелкозернистой и крупнозернистой структурами толщиной h, в которой структура материала изменяется плавно от одного вида к другому. Этим обеспечивается хорошая совместимость свойств слоев друг с другом.

Существо изобретения поясняется чертежами. На фиг. 1 изображена принципиальная схема ультразвуковой обработки поверхности вала, здесь S - подача инструмента, м/мин, N - обороты изделия, об/мин, ƒ - частота ультразвуковых колебаний инструмента. На фиг. 2 изображена схема низкотемпературного ионного азотирования вала в тлеющем разряде, здесь 1 - источник питания, 2 - электрод-анод, 3 - подложка, 4 - обрабатываемая деталь, 5 - вакуумная камера. На фиг. 3 изображены кривые распределения микротвердости по глубине поверхностного слоя в поперечном сечении, здесь 6 - после дробеструйной обработки, 7 - после низкотемпературного ионного азотирования.

Пример конкретной реализации способа.

Реализация способа показана на примере обработки детали-вала, изготовленного из стали 30Х3ВА (ТУ 14-1-950-74). Данная деталь работает в условиях высоких температур (до 450°С) и знакопеременных нагрузок, что предопределяет проведение низкотемпературной поверхностной упрочняющей обработки. Перед операцией поверхностной пластической деформации заготовка проходила предварительную термическую обработку - закалку и отпуск по ТУ-14-1-950-74. Создание поверхностного слоя с ультрамелкозернистой структурой материала заключается в следующих действиях: поверхность детали обрабатывают путем ультразвуковой обработки с подачей инструмента S=2 м/мин, рабочей частотой ƒ=22 кГц и частотой вращения детали N=30 об/мин. В результате ультразвуковой обработки формируется ультрамелкозернистый слой материала детали толщиной Н. Распределение микротвердости в поперечном сечении детали после ультразвуковой обработки имеет вид кривой 6. Затем осуществляют низкотемпературное ионное азотирование в следующем порядке. Деталь 4 подключают к отрицательному электроду, герметизируют камеру и откачивают воздух до давления 10 Па. После эвакуации воздуха камеру продувают рабочим газом 5-10 минут при давлении 1000-1330 Па, затем откачивают рабочий газ до давления 20-30 Па, подают на электроды напряжение и возбуждают тлеющий разряд. При напряжении 800-1000 В осуществляют катодное распыление. После 5-10-минутной обработки по режиму катодного распыления напряжение понижают до рабочего, а давление повышают до 150 Па, необходимое для эффективной обработки. В качестве рабочего газа используется газовая смесь азота, аргона и водорода (N2 35% + Аr 35% + Н2 30%). Азотирование в тлеющем разряде производят при давлении газа p=150 Па, токе I=1,2 А и напряжении U=460 В в течение 10 ч и температуре 430°С. Каждые 15 минут осуществляют смену газовой смеси в камере, которая заключается в откачке рабочего газа до давления 75 Па и последующего его повышения до рабочего давления 150 Па. Все процессы проходят за один технологический цикл, в одной камере и в одной атмосфере. После обработки деталь вместе с вакуумной камерой охлаждают под вакуумом до комнатной температуры. По окончании охлаждения в вакуумную камеру напускают атмосферный газ и извлекают обработанную деталь. Распределение микротвердости в поперечном сечении детали после низкотемпературного ионного азотирования имеет вид кривой 7 (фиг. 4).

Заявляемый способ позволяет расширить функциональные возможности ионного азотирования и повысить прочностные, трибологические характеристики поверхности, контактную долговечность и износостойкость стальных деталей при низкотемпературной обработке в тлеющем разряде за счет формирования поверхностного слоя с ультрамелкозернистой структурой материала детали путем дробеструйной обработки.

Способ низкотемпературного ионного азотирования стального изделия в плазме тлеющего разряда, включающий катодное распыление, вакуумный нагрев изделия в плазме тлеющего разряда, состоящей из смеси азотосодержащего и инертного газов, отличающийся тем, что указанный нагрев изделия в плазме тлеющего разряда проводят при температуре 430°С, причем сначала осуществляют поверхностную интенсивную пластическую деформацию посредством ультразвуковой обработки поверхности стального изделия с подачей инструмента S=2 м/мин, рабочей частотой f=22 кГц и частотой вращения детали N=30 об/мин.
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ СТАЛЬНЫХ ДЕТАЛЕЙ
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ СТАЛЬНЫХ ДЕТАЛЕЙ
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ СТАЛЬНЫХ ДЕТАЛЕЙ
СПОСОБ НИЗКОТЕМПЕРАТУРНОГО ИОННОГО АЗОТИРОВАНИЯ СТАЛЬНЫХ ДЕТАЛЕЙ
Источник поступления информации: Роспатент

Показаны записи 101-110 из 146.
15.10.2019
№219.017.d5d3

Установка автоматического предотвращения взрыва газовоздушной смеси

Изобретение относится к установке автоматического предотвращения взрыва газовоздушной смеси. Техническим результатом является локализация газовоздушного облака вблизи колонны и снижение концентрации парогазовоздушной смеси. Установка автоматического предотвращения взрыва газовоздушной смеси...
Тип: Изобретение
Номер охранного документа: 0002702788
Дата охранного документа: 11.10.2019
15.10.2019
№219.017.d5ea

Импульсный регулятор постоянного напряжения

Изобретение относится к области силовой электроники и может быть использовано, например, в источниках питания для многоуровневых автономных инверторов напряжения, электротехнологических установок микродугового оксидирования вентильных металлов и сплавов, электроэрозионной обработки сверхтвердых...
Тип: Изобретение
Номер охранного документа: 0002702762
Дата охранного документа: 11.10.2019
19.11.2019
№219.017.e3b8

Магнитоэлектродегидратор

Изобретение относится к аппаратам для обезвоживания и обессоливания нефти и очистки нефтепродуктов и может быть использовано в нефтяной и нефтеперерабатывающей промышленности. Магнитоэлектродегидратор содержит корпус, источник питания, электроды. Содержит герметично закрепленную с нижней...
Тип: Изобретение
Номер охранного документа: 0002706316
Дата охранного документа: 15.11.2019
24.11.2019
№219.017.e5bc

Способ штамповки заготовок с ультрамелкозернистой структурой из двухфазных титановых сплавов

Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок из титановых двухфазных сплавов. Заготовку подвергают термической обработке для получения дуплексной структуры с объемной долей зерен первичной α-фазы не более 30%. Затем пластически...
Тип: Изобретение
Номер охранного документа: 0002707006
Дата охранного документа: 21.11.2019
24.11.2019
№219.017.e60c

Статор электрической машины с жидкостным охлаждением (варианты)

Изобретение относится к области электромашиностроения, в частности к высокооборотным электрическим машинам. Технический результат - повышение эффективности охлаждения и снижение тепловой заметности электрических машин. Беспазовый статор электрической машины с жидкостным охлаждением содержит...
Тип: Изобретение
Номер охранного документа: 0002706802
Дата охранного документа: 21.11.2019
13.12.2019
№219.017.ed26

Способ формирования перфорационных отверстий на пере полой лопатки турбины из жаропрочного сплава

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий на лопатках из жаропрочных сплавов путем удаления дефектного слоя локальной электрохимической обработкой. Способ включает прожиг отверстий на пере...
Тип: Изобретение
Номер охранного документа: 0002708723
Дата охранного документа: 11.12.2019
18.12.2019
№219.017.ee62

Способ получения алюминиевых композитных проводов, армированных длинномерным волокном

Изобретение относится к области машиностроения и предназначено для изготовления длинномерных композитных изделий на основе керамических, борных или углеродных волокон. В способе получения алюминиевых композитных проводов, армированных длинномерным волокном, в котором волокно с катушек...
Тип: Изобретение
Номер охранного документа: 0002709025
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee6d

Электромеханический преобразователь энергии с зубцовой концентрической обмоткой

Изобретение относится к области электромашиностроения и может быть использовано в автономных системах электроснабжения, а также в авиационной отрасли в качестве стартер-генератора. Технический результат - минимизация колебаний частоты вращения и электромагнитного момента при номинальном режиме...
Тип: Изобретение
Номер охранного документа: 0002709024
Дата охранного документа: 13.12.2019
18.12.2019
№219.017.ee94

Многофазная стержневая волновая обмотка статора асинхронного двигателя

Изобретение относится к области электротехники и может быть использовано при конструировании асинхронных электрических двигателей, питаемых от преобразователей частоты. Технический результат: повышение технологичности и улучшение охлаждения волновой обмотки. Шихтованный магнитопровод статора...
Тип: Изобретение
Номер охранного документа: 0002709095
Дата охранного документа: 16.12.2019
25.12.2019
№219.017.f211

Система электроснабжения летательного аппарата

Изобретение относится к области электромашиностроения и может быть использовано в системе электроснабжения гиперзвуковых и детонационных летательных аппаратов. Система электроснабжения летательного аппарата содержит приводной авиационный двигатель, генератор, выводные концы которого...
Тип: Изобретение
Номер охранного документа: 0002710037
Дата охранного документа: 24.12.2019
Показаны записи 31-34 из 34.
31.07.2020
№220.018.3921

Способ нанесения градиентных жаростойких покрытий y-mo-o плазмы вакуумно-дугового разряда

Изобретение относится к способу нанесения жаростойкого покрытия и может быть использовано для повышения надежности и долговечности широкого ряда деталей машин и инструмента. Осуществляют осаждение из плазмы вакуумно-дугового разряда с двух поочередно используемых однокомпонентных катодов Мо и Y...
Тип: Изобретение
Номер охранного документа: 0002728117
Дата охранного документа: 28.07.2020
12.04.2023
№223.018.424c

Способ обработки поверхности на стальных деталях

Изобретение относится к металлургической промышленности, а именно к комбинированной упрочняющей химико-термической обработке поверхности стальных изделий и инструмента, работающих в условиях локального изнашивания. Способ обработки изношенных локальных участков поверхности стальной детали...
Тип: Изобретение
Номер охранного документа: 0002766388
Дата охранного документа: 15.03.2022
16.05.2023
№223.018.5d93

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к cпособу комбинированной обработки изделия из быстрорежущей стали. Способ включает нагрев изделия до температуры 950С, последующую закалку, обработку холодом при температуре -70-80С и последующее ионное азотирование, отличающийся тем, что ионное азотирование осуществляют...
Тип: Изобретение
Номер охранного документа: 0002757362
Дата охранного документа: 14.10.2021
16.05.2023
№223.018.5d94

Способ комбинированной обработки изделия из быстрорежущей стали

Изобретение относится к cпособу комбинированной обработки изделия из быстрорежущей стали. Способ включает нагрев изделия до температуры 950С, последующую закалку, обработку холодом при температуре -70-80С и последующее ионное азотирование, отличающийся тем, что ионное азотирование осуществляют...
Тип: Изобретение
Номер охранного документа: 0002757362
Дата охранного документа: 14.10.2021
+ добавить свой РИД