×
17.08.2018
218.016.7bb7

Результат интеллектуальной деятельности: Полимерный материал триботехнического назначения

Вид РИД

Изобретение

Аннотация: Изобретение относится к области полимерного материаловедения, а именно к разработке полимерных композитов триботехнического назначения, которые могут быть использованы для изготовления подшипников скольжения и других элементов узлов трения, эксплуатируемых в условиях средних нагрузок и скоростей скольжения. Полимерный материал триботехнического назначения, содержащий политетрафторэтилен и наполнители, в качестве наполнителей содержит модифицированные углеродные волокна, механоактивированный вермикулит, ультрадисперсный политетрафторэтилен. Использование настоящего изобретения, реализуемого на стандартном оборудовании, позволит увеличить износостойкость композиционного материала при сохранении деформационно-прочностных характеристик относительно ненаполненного ПТФЭ и повысить ресурс работы изделий в узлах трения машин и оборудования. 1 табл.

Полимерный материал триботехнического назначения

Изобретение относится к области полимерного материаловедения, а именно, к разработке полимерных композитов триботехнического назначения, которые могут быть использованы для изготовления подшипников скольжения и других элементов узлов трения, эксплуатируемых в условиях средних нагрузок и скоростей скольжения.

Известны композиционные материалы для изготовления подшипников скольжения, торцевых уплотнений и других элементов узлов трения на основе политетрафторэтилена (ПТФЭ) и неорганических наполнителей различной химической природы (см. Истомин Н.П., Семенов А.П. Антифрикционные свойства композиционных материалов на основе фторопластов. – М.: Наука, 1987. – 147 с.).

Известные материалы характеризуются недостаточной износостойкостью и, соответственно, малым ресурсом работы в условиях повышенных нагрузок и скоростей скольжения.

Наиболее близким по технической сущности к заявляемому материалу является антифрикционный полимерный композиционный материал включающий: политетрафторэтилен (86-95 мас. %); дисульфид молибдена (1,0-2,3 мас.%); скрытокристаллический графит (1,5-6,0 мас. %); углеродные нанотрубки (1,0-3,8 мас. %) (см. RU №2525492, МПК C08L 27/18, опубл. 20.08.2014).

Однако, относительно низкие показатели деформационно-прочностных характеристик известного композиционного материала существенно ограничивают области его применения.

Задачей, на решение которой направлено настоящее изобретение, является повышение износостойкости композиционного материала на основе ПТФЭ при сохранении деформационно-прочностных свойств на уровне ненаполненного ПТФЭ.

Технический эффект, получаемый при решении поставленной задачи, выражается в улучшении прочностных свойств полимерного композиционного материала, что позволит использовать изделия на его основе в узлах трения машин и оборудования.

Для решения поставленной задачи полимерный материал триботехнического назначения на основе политетрафторэтилена (ПТФЭ) дополнительно содержит следующие наполнители (в мас.%): модифицированные углеродные волокна (УВ) 6-10; слоистые силикаты – механоактивированный вермикулит 0,5-1,5; ультрадисперсный политетрафторэтилен (УПТФЭ) 0,8-1,2; политетрафторэтилен – остальное.

Сопоставительный анализ признаков заявленного решения с признаками аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

Признаки отличительной части формулы изобретения обеспечивают улучшение износостойкости материала и расширение ассортимента полимерных композиционных материалов триботехнического назначения на основе политетрафторэтилена.

Политетрафторэтилен (фторопласт-4) – промышленный продукт марки ПН, получаемый в соответствии с ГОСТ 10007-80, и характеризуется со средним размером частиц 46-135 мкм, степенью кристалличности до спекания 95-98 %, после спекания 50-70 % и плотностью 2170-2190 кг/м3, температурой плавления 327°С.

В качестве углеродного наполнителя используются модифицированные дискретные углеродные волокна, например, марки «Белум». Диаметр волокон составляет 8-11 мкм, длина варьируется от 50-500 мкм. Технология получения промышленного волокна марки «Белум» разработана в ГНУ ИММС им. В.А. Белого НАН Беларуси.

Используемый вермикулит, например, якутского месторождения, представляет собой крупные пластинчатые кристаллы золотисто-жёлтого или бурого цвета. Химический состав отвечает приблизительной формуле (Mg+2,Fe+2,Fe+3)3[(Al,Si)4O10]·(OH)2·4H2O. При этом наполнитель подвергается предварительной механической активации в течение 7 мин на планетарной мельнице, например, типа «Активатор-2S». Предварительная обработка дисперсного наполнителя в планетарной мельнице ведет к механической активации, повышающей его структурную активность и усреднению дисперсного состава.

Также дополнительным наполнителем служит ультрадисперсный ПТФЭ (УПТФЭ), например, марки «Флуралит», получаемый на базе промышленного ПТФЭ методом термокаталитического разложения, и представляет собой мелкий рассыпчатый порошок белого цвета с содержанием частиц размерами менее 3 мкм – 98%, температурой плавления кристаллов – +286˚С, температурой разложения свыше 380˚С, коэффициентом трения по стали – 0,005.

Получение композиционного материала осуществляли известными способами. Смешивание компонентов полимерного композиционного материала проводился в лопастном смесителе со скоростью вращения лопастей 3000 об/мин до получения однородной массы. Образцы после смешивания и просеивания, монолитизировали по технологии холодного прессования в пресс-форме при давлении 50 МПа с последующим свободным спеканием при температуре 370±5°С (время выдержки 0,3 ч на 10-3 м толщины образца). Полученные изделия охлаждали в печи до 200°С со скоростью 0,03°С/сек с последующим свободным охлаждением до комнатной температуры.

Известно, что модифицированные углеродные волокна обладают высоким адгезионным взаимодействием к ПТФЭ (см. Shelestova V. A., Grakovich P. N., Zhandarov S. F. A fluoropolymer coating on carbon fibers improves their adhesive interaction with PTFE matrix // Composite Interfaces. – 2011. – Т. 18. – №. 5. – С. 419-440). Таким образом, введение дополнительных наполнителей в заявленных пределах позволяет сохранить деформационно-прочностные показатели полимерных композиционных материалов на уровне исходного ПТФЭ, при значительном увеличении износостойкости по сравнению с полимерными композиционными материалами без содержания дополнительных наполнителей (см. табл.).

При этом, улучшение износостойкости при сохранении деформационно-прочностных показателей обусловлено тем, что механоактивированный вермикулит и ультрадисперсный политетрафторэтилен в заявленных пределах обладают дополнительным структурирующим действием на полимерную матрицу с углеродными волокнами.

Пример. 90 г политетрафторэтилена, 8 г углеродного волокна, 1 г вермикулита, 1 г УПТФЭ смешивают в лопастном смесителе до получения однородной массы. Затем композицию помещают в пресс-форму и проводят прессование изделия при удельном давлении 50 МПа. Спекание проводят в электрической печи при температуре 370±5°С. Охлаждение спеченных изделий проводили непосредственно в печи.

Остальные примеры получения композиционного материала заявляемого состава приведены в таблице примеров.

Методики определения свойств композита.

Деформационно-прочностные свойства заявляемого триботехнического материала определены на стандартных образцах по ГОСТ 11262-80. Для этого испытания проводили на универсальной испытательной машине «AUTOGRAF» («Shimadzu AGS-J», Япония) при скорости перемещения подвижных захватов 100 мм/мин.

Массовый износ и коэффициент трения определяли на машине трения UMT-3 (CETR, США) по схеме трения «палец – диск», согласно ГОСТ 11629-75. Исследуемый образец – палец диаметром 10±0,5 мм, высотой 21±1 мм, контртело – стальной диск из стали марки 45 с твердостью 45-50 HRS, шероховатость R=0,06–0,08 мкм. Удельная нагрузка – 2 МПа, линейная скорость скольжения – 0,2 м/с. Время испытания 3 часа.

Результаты испытаний представлены в таблице.

Таким образом, оптимальное суммарное содержание наполнителей составляет 8-12 мас.%, превышение которых может привести к снижению прочностных характеристик вследствие, например, агломерации наполнителей и формирования дефектной структуры.

Использование заявляемого изобретения, реализуемого на стандартном оборудовании, позволит увеличить износостойкость до 1000 раз по сравнению с ненаполненным ПТФЭ при сохранении деформационно-прочностных характеристик относительно ненаполненного ПТФЭ и, как практический результат, повысить ресурс работы изделий в узлах трения машин и оборудования.

Таблица

Характеристики ПКМ, наполненных комплексным наполнителем

№№
п/п
Состав Содержание компонентов, мас.% Относительное удлинение при разрыве εр, % Прочность на разрыв σр, МПа Интенсивность изнашивания I×10-3, г/ч Коэффициент трения f
1. ПТФЭ 100 320 21 120-160 0,22
2. ПТФЭ+
УВ
94
6
290 22 0,50 0,27
3. ПТФЭ+
УВ
92
8
345 21 0,35 0,30
4. ПТФЭ+
УВ
90
10
351 20 0,35 0,39
5. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
92,5
6
0,5
1
334 22 0,26 0,24
6. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
90,5
8
0,5
1
264 20 0,23 0,24
7. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
88,5
10
0,5
1
295 20 0,22 0,25
8. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
92
6
1
1
343 18 0,15 0,27
9. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
90
8
1
1
339 18 0,12 0,27
10. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
98
10
1
1
324 17 0,12 0,29
11. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
91,5
6
1,5
1
298 19 0,14 0,30
12. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
89,5
8
1,5
1
266 18 0,11 0,30
13. ПТФЭ +
УВ+
Вермикулит
+УПТФЭ
87,5
10
1,5
1
244 18 0,13 0,31
14. ПТФЭ
СКГ
MoS2
УНТ
91,7
4,5
1,9
3,7
166* 17* 0,82 0,07

Прим.: *[Кропотин О. В., Машков Ю. К., Кургузова О. А. Создание полимерного антифрикционного нанокомпозита на основе политетрафторэтилена с повышенной износостойкостью // Омский научный вестник. – 2013. – №. 2 (120). – C. 86-90].

ПТФЭ – политетрафторэтилен, УПТФЭ – ультрадисперсный политетрафторэтилен, УВ – углеродное волокно, СКГ – скрытокристаллический графит, УНТ – углеродные нанотрубки, MoS2 - дисульфид молибдена.

Источник поступления информации: Роспатент

Показаны записи 11-13 из 13.
20.05.2023
№223.018.66ec

Штамм каллусной культуры клеток растения змееголовник дланевидный (dracocephalum palmatum steph. ex willd.) под обозначением nefu dpalm-1 в условиях in vitro для получения биомассы клеток

Изобретение относится к области биотехнологии. Изобретение представляет собой штамм NEFU Dpalm-1 каллусных культур змееголовника дланевидного (Steph. ex Willd.), полученный в условиях идентифицированный и депонированный во Всероссийской коллекции культивируемых клеток высших растений (ВККК ВР)...
Тип: Изобретение
Номер охранного документа: 0002759637
Дата охранного документа: 16.11.2021
20.05.2023
№223.018.6705

Штамм каллусной культуры клеток растения полынь якутская (artemisia jacutica drobow) под обозначением nefu-ajac-1 в условиях in vitro для получения биомассы клеток

Изобретение относится к области биотехнологии. Изобретение представляет собой штамм NEFU-Ajac-1 каллусной культуры полыни якутской ( Drobow), полученный в условиях in vitro, идентифицирован и депонирован во Всероссийской коллекции культивируемых клеток высших растений (ВККК ВР) при Учреждении...
Тип: Изобретение
Номер охранного документа: 0002757734
Дата охранного документа: 21.10.2021
20.05.2023
№223.018.6816

Способ формирования электропроводящих слоев и структур различной конфигурации из чешуек восстановленного оксида графена (мультиграфена)

Изобретение относится к способу формирования электропроводящих слоев и структур различной конфигурации. Способ включает получение суспензии оксида графена путем электрохимического расслоения графита в водном растворе электролита, нанесение, сушку и восстановление до графена тонких слоев и...
Тип: Изобретение
Номер охранного документа: 0002794890
Дата охранного документа: 25.04.2023
Показаны записи 11-18 из 18.
27.04.2019
№219.017.3c45

Резиновая смесь на основе бутадиен-стирольного каучука с шунгитом

Изобретение относится к резиновой промышленности и может быть использовано при изготовлении сайлентблоков, пыльников, применяющихся в автомобильной промышленности, при изготовлении резинотехнических изделий общего назначения. Резиновая смесь включает, мас.ч.: бутадиен-стирольный каучук 100,...
Тип: Изобретение
Номер охранного документа: 0002686035
Дата охранного документа: 23.04.2019
29.05.2019
№219.017.625c

Полимерная композиция триботехнического назначения на основе сверхвысокомолекулярного полиэтилена и 2-меркаптобензотиазола

Изобретение относится к полимерному материаловедению, а именно к износостойкой полимерной композиции триботехнического назначения, применяемой для изготовления подшипников скольжения в узлах трения машин, механизмов, для изготовления износостойких футеровок, применяемых для облицовки...
Тип: Изобретение
Номер охранного документа: 0002688134
Дата охранного документа: 20.05.2019
14.07.2019
№219.017.b467

Способ получения износостойкой композиции

Изобретение относится к способу получения композиционных полимерных износостойких материалов на основе политетрафторэтилена и может быть использовано при изготовлении деталей металлополимерных узлов трения машин различных видов техники. Технический результат достигается путем холодного...
Тип: Изобретение
Номер охранного документа: 0002421480
Дата охранного документа: 20.06.2011
05.09.2019
№219.017.c734

Полимерный материал триботехнического назначения на основе политетрафторэтилена, механоактивированных каолина и шпинеля магния

Изобретение относится к получению полимерного материала триботехнического назначения и может быть использовано для изготовления подшипников скольжения и других элементов узлов трения, эксплуатируемых в условиях средних нагрузок и скоростей скольжения. Полимерный материал содержит...
Тип: Изобретение
Номер охранного документа: 0002699109
Дата охранного документа: 03.09.2019
04.11.2019
№219.017.de87

Морозо- и маслостойкая резиновая смесь на основе смесей каучуков и способ ее получения

Изобретение относится к резиновой промышленности и может быть использовано при изготовлении морозостойких и агрессивно-стойких уплотнительных устройств, работоспособных в среде минеральных или синтетических масел, а также при изготовлении различных резинотехнических изделий. Резиновая смесь...
Тип: Изобретение
Номер охранного документа: 0002705069
Дата охранного документа: 01.11.2019
22.11.2019
№219.017.e52e

Композиционный конструкционный материал на основе сверхвысокомолекулярного полиэтилена, оксида цинка, 2-меркаптобензотиазола и серы

Изобретение относится к области полимерного материаловедения и может быть использовано в качестве конструкционного композитного материала на основе сверхвысокомолекулярного полиэтилена (СВМПЭ). Описан композиционный конструкционный материал на основе сверхвысокомолекулярного полиэтилена...
Тип: Изобретение
Номер охранного документа: 0002706658
Дата охранного документа: 19.11.2019
12.04.2023
№223.018.43b4

Способ получения композиционного высокомодульного материала на основе бутадиенового эластомера с гибким армирующим элементом

Настоящее изобретение относится к способу получения композиционного высокомодульного эластомерного материала на основе бутадиенового каучука марки СКД-В, который может использоваться в качестве высокомодульного эластомера для изготовления резинотехнических изделий в машиностроении,...
Тип: Изобретение
Номер охранного документа: 0002793691
Дата охранного документа: 04.04.2023
21.04.2023
№223.018.4f39

Полимерный композиционный материал конструкционного назначения на основе сверхвысокомолекулярного полиэтилена, армированного базальтовой тканью

Изобретение относится к области полимерного материаловедения и может быть использовано для изготовления деталей в узлах трения, машин и других механизмов, которые эксплуатируют в условиях абразивного изнашивания в агрессивных средах. Предложен полимерный композиционный материал на основе...
Тип: Изобретение
Номер охранного документа: 0002792879
Дата охранного документа: 28.03.2023
+ добавить свой РИД