×
09.08.2018
218.016.7a37

Результат интеллектуальной деятельности: Позиционно чувствительный детектор излучений

Вид РИД

Изобретение

№ охранного документа
0002663307
Дата охранного документа
07.08.2018
Аннотация: Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании позиционно чувствительных детекторов. Сущность изобретения заключается в том, что позиционно чувствительный детектор излучений содержит сцинтиллятор, при этом сцинтиллятор выполнен в виде цилиндрических соосных слоев, разделенных цилиндрическими соосными прослойками того же диаметра из вещества с длиной ослабления света сцинтилляционных вспышек значительно больше общей толщины слоев сцинтиллятора и длины детектора, слои сцинтиллятора находятся в оптическом контакте с фотоприемниками и с прослойками, на цилиндрическую поверхность слоев сцинтиллятора и прослоек нанесено светоотражающее покрытие, поперечный размер и толщина любого слоя сцинтиллятора примерно равны или превышают длину ослабления регистрируемого излучения в сцинтилляторе, число слоев сцинтиллятора выбирается из условия, что суммарная толщина всех слоев сцинтиллятора Lопределяется выражением: где σ - заданная величина пространственного разрешения в слоях сцинтиллятора вдоль оси позиционно чувствительного детектора излучения, λ - эффективная длина ослабления света сцинтилляционной вспышки в веществе сцинтиллятора с учетом качества поверхности сцинтиллятора, N - число фотоэлектронов, рождаемых в любом из фотоприемников при λ→∞. Технический результат – повышение пространственного разрешения детектора излучения при длине детектора, сравнимой с длиной ослабления света сцинтилляционной вспышки в сцинтилляторе. 1 ил.

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании позиционно чувствительных детекторов, применяемых, например, в геофизической аппаратуре нейтронного и гамма каротажа, в досмотровой аппаратуре или аппаратуре для обнаружения источников излучений, а также в медицине.

В случае каротажа скважинный прибор обычно содержит от одного до трех детекторов. Максимальное расстояние от детектора до источника излучений составляет не более 90 см. Выбор типа детекторов и их числа зависит от многих факторов: вида используемого излучения, исследуемых характеристик, ядерно-физических свойств окружающей среды (обсадной колонны, скважины, геологической породы), заданной глубинности, диаметра скважины, расстояния от зонда до стенки скважины и является сложной научно-технической задачей, предметом компромисса и далеко не всегда оптимальным с точки зрения обеспечения максимальной чувствительности скважинного прибора в конкретных условиях измерений.

В этом случае проблема числа используемых детекторов и выбора оптимального расстояния до источника может быть решена путем создания протяженного детектора, обладающего осевым пространственным (координатным) разрешением. Применение такого детектора позволяет заменить несколько детекторов одним устройством, уменьшает длину скважинного устройства, упрощает его конструкцию.

Помимо этого, измерение пространственных распределений в общем случае нескольких регистрируемых излучений позволяет повысить точность проводимых измерений, обеспечивает, в частности, более точное определение границ различных геологических формаций, позволяет выбирать длины зондов, исходя из скорости каротажа и ядерно-физических характеристик породы.

При использовании для регистрации излучения сцинтилляционного детектора проблема создания протяженного детектора в основном связана с высокой стоимостью больших (объемом более 100 см3) сцинтиллирующих кристаллов, часто невозможностью их создания из-за возникновения в них внутренних напряжений, приводящих к разрушению кристалла, меньшей однородностью сцинтилляционных свойств, поглощением света в сцинтилляторе. Большим технологическим достижением, например, считается создание кристаллов LaBr3(Ce) диаметром 51 мм и длиной 76 мм (объемом ≈ 155 см3) [Peter R. Menge, G. Gauter, A. Iltis, C. Rozsa, V. Solovyev. Performance of large lanthanum bromide scintillators, NIM A 579 (2007) 6-10].

Пространственное разрешение при использовании протяженного сцинтилляционного детектора может обеспечиваться двумя способами: путем сравнения числа фотонов и/или их времени прихода на фотоприемники, расположенные на противоположных торцах сцинтиллятора.

Скорость распространения оптических фотонов в сцинтилляторе равна скорости света, деленной на коэффициент преломления материала сцинтиллятора, и составляет десятки сантиметров за 1 нс. Поэтому измерение времени прихода требует фотоприемников и электроники с высоким временным разрешением. Значительно проще проводить измерение и сравнение числа фотонов, приходящих на фотоприемники.

Длина сцинтиллятора ограничена собственным поглощением света в сцинтилляторе, приводящим к существенному уменьшению числа фотонов, достигающих фотоприемник при сравнительно большом расстоянии между фотоприемником и местом возникновения сцинтилляции.

Самопоглощение света в сцинтилляторе обусловлено частичным перекрытием спектров испускания и спектров поглощения света в сцинтилляторе. В результате этого коротковолновая часть спектра испускания может вновь поглотиться в сцинтилляторе. При каждом поглощении фотона имеется вероятность нерадиационного (безызлучательного) перехода. Поэтому при многократном поглощении и испускании интенсивность коротковолнового излучения будет падать и тем больше, чем больший путь проходят фотоны в сцинтилляторе.

Вероятность поглощения тем больше, чем меньше Стоксов сдвиг спектров испускания и поглощения, который составляет 0,15 эВ для SrI2:Eu и Ba2CsI5:Eu и 2,07 эВ для CsI:Na. Малая величина Стоксова сдвига и связанное с этим большое самопоглощение является одной из причин редкого применения сцинтиллятора SrI2:Eu, несмотря на большой выход фотонов в сцинтилляционной вспышке.

Спектр излучения сцинтиллятора и коэффицент самопоглощения зависит от материала сцинтиллятора и используемого активатора сцинтилляций. В качестве последнего используются, в частности, Тl и Na в сцинтилляторе NaI:Tl(Na) или Се в сцинтилляторах YAP:Ce и LYSO:Ce. Концентрация активатора обычно составляет несколько процентов и не превышает 10% из-за возрастания коэффициента самопоглощения.

Фактором, определяющим длину сцинтиллятора, является доля фотонов сцинтилляционной вспышки (коэффициент светосбора), достигающая фотоприемник. Коэффициент светосбора зависит от многих факторов:

- места возникновения вспышки,

- отношения длины кристалла к его поперечному сечению,

- неоднородности состава и плотности сцинтиллятора,

- концентрации активатора (при наличии такового),

- температуры сцинтиллятора,

- качества поверхности сцинтиллятора (коэффициента отражения фотонов),

- кристаллической структуры (в случае кристаллического сцинтиллятора),

- наличия и типа отражающего покрытия [Е.Н. Окрушко, В.Ю. Педаш, А.С.Раевский. Применение разных типов отражателей в длинномерных детекторах для улучшения позиционной чувствительности. Uzhhorod University Scientific Herald. Series Physics. Issue 29. 2011],

- качества оптического контакта между сцинтиллятором и фотоприемником,

- степени деградации поверхностного рельефа [А.В. Шкоропатенко, A.M. Кудин, Л.А. Андрюшенко и др. Причины нестабильности спектрометрических характеристик кристаллов CsI:Tl с матированной поверхностью. ФIП ФИП PSE, 2015, т. 13, №2, vol. 13, No. 2; www.pse.scpt.org.ua].

Коэффициент светосбора может изменяться в широких пределах:

- в сцинтилляторе GSO размером 20×20×150 мм на длине 150 мм он составляет примерно 83% [V. Kalinnikov, Е. Velicheva. Research of long GSO and LYSO crystals used in the calorimeter developed for the COMET experiment. Fundamental Materials, 22, No. 1 (2015) 126-134];

- в сцинтилляторе LSO размером 5×5×20 мм на длине 20 мм - менее 50% [Emilie Roncali and Simon R. Cherry. Simulation of light transport in scintillators based on 3D characterization of crystal surfaces. Phys Med Biol. 2013 April 7; 58(7): 2185-2198].

Длина ослабления для фотонов сцинтилляционной вспышки в кристалле LuAP:Ce составляет примерно 1,1 см [М. Balcerzyk et al. Perspectives for high resolution and high light output LuAP:Ce crystals. IEEE Transactions on Nuclear Science Vol.: 52, Iss.:5, 2005].

Пластмассовые сцинтилляторы BC-422 и BC-422Q имеют длину ослабления около 8 см.

Объемная (не связанная с качеством внешней поверхности сцинтиллятора) длина ослабления света в кристалле YAP:Се не превышает 25 см [I. Vilardy et al. Optimization of the effective light attenuation of YAP:Ce and LYSO:Ce crystals for the novel geometrical PET concept. MM A 564 (2206) 506-514].

Длина ослабления света определяет не только допустимую длину сцинтиллятора, но и возможное пространственное разрешение σ. В случае детектора с фотоприемниками на противоположных торцах сцинтиллятора σ определяется выражением (1) [I. Vilardy et al. Optimization of the effective light attenuation of YAP:Ce and LYSO:Ce crystals for the novel geometrical PET concept. NIMA 564 (2206) 506-514]:

где λ - эффективная длина ослабления света с учетом качества внешней поверхности сцинтиллятора, N - число фотоэлектронов, рождаемых в любом их фотоприемников при λ→∞ (при стремлении эффективной длины ослабления света с учетом качества внешней поверхности сцинтиллятора к бесконечности), L - длина сцинтиллятора, z - координата вдоль оси сцинтиллятора, отсчитываемая от одного из его торцов.

Из выражения (1) следует, что наихудшее пространственное разрешение имеет место при z≈L/2. При этом пространственное разрешение составляет:

Из выражения (2) следует, что пространственное разрешение существенно падает при L~λ.

Толщина сцинтиллятора Lc, при которой пространственное разрешение в любой точке на оси сцинтиллятора не превышает заданное значение σ3, в соответствии с выражением (2) составляет:

Применение двух фотоприемников на противоположных торцах сцинтиллятора не только улучшает пространственное разрешение измерений, но и делает его слабо зависящим от места возникновения сцинтилляционной вспышки на всей длине сцинтиллятора.

Известен «Цилиндрический позиционно-чувствительный детектор», содержащий сцинтиллятор с осью, параллельной оси устройства, и фотоприемники, подключенные к амплитудным анализаторам и через них к контроллеру, сцинтиллятор состоит из одного или нескольких вложенных друг в друга наборов волоконных сцинтиллирующих элементов, каждый набор содержит сцинтиллирующие элементы для регистрации гамма квантов, тепловых и/или быстрых нейтронов, располагающиеся чередующимся образом параллельно оси устройства на одном расстоянии от нее, снабжены светоотражающими оболочками и светонепроницаемыми покрытиями, противоположные торцы каждого сцинтиллирующего элемента соединены с двумя фотоприемниками посредством волоконных световодов и оптических соединителей, общее число фотоприемников равно удвоенному числу сцинтиллирующих элементов. Патент RU 2574323, МПК G01V 5/10, 10.02.2016.

Недостатком аналога является сложность конструкции, обусловленная применением нескольких типов волоконных сцинтилляторов, большим количеством сцинтиллирующих волокон, и невозможность измерения спектра гамма излучения.

Известен «Спектрометрический позиционно-чувствительный детектор», содержащий сцинтиллятор с осью, параллельной оси устройства, и фотоприемники, подключенные к амплитудным анализаторам и через них к контроллеру, служащему для определения осевого положения зарегистрированного излучения по отношению амплитуд оптических сигналов, зарегистрированных фотоприемниками, сцинтиллятор состоит из трех вложенных друг в друга наборов сцинтиллирующих элементов, сцинтиллирующие элементы внешнего и среднего наборов выполнены из материала для регистрации тепловых нейтронов, а сцинтиллирующие элементы центрального набора из материала для регистрации гамма излучения и снабжены спектросмещающими волокнами, проходящими на равном удалении от боковых стенок сцинтиллирующих элементов центрального набора, сцинтиллирующие элементы среднего набора находятся внутри материала, замедляющего нейтроны, в виде цилиндра, на поверхности которого расположен экран, поглощающий тепловые нейтроны, во внешнем и внутреннем наборах сцинтиллирующие элементы располагаются параллельно оси устройства на одном расстоянии от нее, сцинтиллирующие элементы и спектросмещающие волокна снабжены светоотражающими оболочками, на светоотражающие оболочки сцинтиллирующих элементов нанесено светонепроницаемое покрытие, противоположные торцы сцинтиллирующих элементов внешнего и среднего наборов, а также противоположные торцы спектросмещающих волокон соединены с фотоприемниками посредством волоконных световодов и оптических соединителей, общее число фотоприемников равно удвоенному числу сцинтиллирующих элементов и спектросмещающих волокон. Патент RU 2574322, МПК G01T 3/20, 10.02.2016.

Недостатком аналога является сложность конструкции, обусловленная применением двух типов волоконных сцинтилляторов, большим количеством сцинтиллирующих и спектросмещающих волокон.

Известен «Метод и аппаратура для нейтронного каротажа, использующая позиционно чувствительный нейтронный детектор», который содержит сцинтиллятор с осью, параллельной оси корпуса прибора, и фотоумножители на противоположных концах сцинтиллятора, каждый фотоумножитель подключен к соответствующему амплитудному анализатору и через него к контроллеру, служащему для определения осевого положения зарегистрированного нейтрона по отношению амплитуд оптических сигналов, зарегистрированных фотоумножителями. Патент СА 2798070, МПК G01V 5/10. 10.11.2011. Данное техническое решение принято в качестве прототипа.

Недостатком прототипа является низкое пространственное разрешение детектора излучения при длине детектора, сравнимой с длиной ослабления света сцинтилляционной вспышки в сцинтилляторе.

Устройство устраняет недостатки аналогов и прототипа.

Техническим результатом изобретения является повышение пространственного разрешения детектора излучения при длине детектора, сравнимой с длиной ослабления света сцинтилляционной вспышки в сцинтилляторе.

Технический результат достигается тем, что в позиционно чувствительном детекторе излучений, содержащем сцинтиллятор с осью, совпадающей с осью устройства, и фотоприемники на противоположных концах сцинтиллятора, каждый фотоприемник подключен к соответствующему амплитудному анализатору и через него к контроллеру, служащему для определения осевой координаты регистрируемой частицы по отношению амплитуд оптических сигналов, зарегистрированных фотоприемниками, согласно изобретению сцинтиллятор выполнен в виде цилиндрических соосных слоев, разделенных цилиндрическими соосными прослойками того же диаметра из вещества с длиной ослабления света сцинтилляционных вспышек значительно больше общей толщины слоев сцинтиллятора и длины детектора, слои сцинтиллятора находятся в оптическом контакте с фотоприемниками и с прослойками, на цилиндрическую поверхность слоев сцинтиллятора и прослоек нанесено светоотражающее покрытие, поперечный размер и толщина любого слоя сцинтиллятора примерно равны или превышают длину ослабления регистрируемого излучения в сцинтилляторе, число слоев сцинтиллятора выбирается из условия, что суммарная толщина всех слоев сцинтиллятора Lc определяется выражением:

где σ3 - заданная величина пространственного разрешения в слоях сцинтиллятора вдоль оси позиционно чувствительного детектора излучения, λ - эффективная длина ослабления света сцинтилляционной вспышки в веществе сцинтиллятора с учетом качества поверхности сцинтиллятора, N - число фотоэлектронов, рождаемых в любом из фотоприемников при λ→∞.

На чертеже схематично показано устройство цилиндрического позиционно чувствительного детектора излучений, где:

1 - слои сцинтиллятора;

2 - прослойки из вещества с длиной ослабления света сцинтилляционных вспышек значительно больше общей толщины слоев 1 и длины детектора;

3 - светоотражающее покрытие;

4 - фотоприемники;

5 - сцинтилляционная вспышка;

11 и 12 - расстояния от места возникновения сцинтилляционной вспышки 5 до одного и другого фотоприемников 4.

Амплитудные анализаторы, подключаемые к фотоприемникам и контроллеру, а также контроллер на чертеже не показаны.

Устройство позиционно чувствительного детектора излучений содержит цилиндрические и соосные слои сцинтиллятора 1, разделенные прослойками 2 вещества с длиной ослабления света сцинтилляционных вспышек 5 значительно больше общей толщины слоев 1 и длины детектора l1+l2.

Слои 1 находятся в оптическом контакте с фотоприемниками 4 и с прослойками 2. Для улучшения светосбора и увеличения доли света, доходящего до фотоприемников 4, на внешнюю (цилиндрическую) поверхность слоев 1 и прослоек 2 нанесено светоотражающее покрытие 3, например слои MgO или TiO2 толщиной, обычно не превышающей 1 мм.

Расстояния 11 и 12 от места возникновения сцинтилляционной вспышки 5 до одного и другого фотоприемников 4 изменяются в пределах от ≈0 см до общей толщины слоев 1 и 2.

Материал, используемый в слоях 1 сцинтиллятора, зависит от вида регистрируемого излучения и от его энергии. Для регистрации нескольких видов излучений могут применяться несколько сцинтилляторов. Дополнительные сцинтилляторы могут использоваться вместо прослоек 2 в случае, когда длина ослабления света сцинтилляционных вспышек 5 в них существенно превышает общую толщину слоев 1 и длину детектора 11+12.

В качестве фотоприемников 4 могут использоваться, например, фотоумножители.

Для обеспечения эффективной регистрации того или иного вида излучения поперечный размер и/или толщина любого слоя 1 сцинтиллятора должна быть не менее длины ослабления регистрируемого излучения в слое сцинтиллятора 1. Поскольку плотность потока регистрируемого излучения падает по мере удаления от источника излучения (на чертеже не показан), то для обеспечения примерно равной статистической погрешности сигнала, поступающего на фотоприемники 4 с каждого из слоев 1 сцинтиллятора, толщина слоя 1 сцинтиллятора должна увеличиваться по мере удаления от источника излучения обратно пропорционально величине плотности потока излучения на слой 1 сцинтиллятора.

Поскольку плотность потока регистрируемого излучения падает по мере удаления от источника излучения, то для обеспечения примерно равной скорости счета сигнала, поступающего на фотоприемники 4 с каждого из слоев 1 сцинтиллятора, толщина слоя 1 сцинтиллятора должна увеличиваться по мере удаления от источника излучения обратно пропорционально величине плотности потока излучения на слой 1 сцинтиллятора.

Число слоев 1 сцинтиллятора выбирается согласно выражению (3), исходя из заранее заданной погрешности определения координаты сцинтилляционной вспышки σ3 с учетом числа фотонов, излучаемых во время сцинтилляционной вспышки 5, длины ослабления света λ сцинтилляционной вспышки в сцинтилляторе, квантовой эффективности фотоприемников 4 и шумов последующей электроники.

Отношение количества фотонов от сцинтилляционной вспышки 5, приходящих на фотоприемники 4, будет примерно пропорционально отношению толщин слоев 1 сцинтиллятора, проходимых фотонами до попадания в фотоприемники 4.

Устройство работает следующим образом.

Регистрируемое излучение попадает в один из слоев 1 сцинтиллятора и вызывает в нем сцинтилляционную вспышку 5. Фотоны сцинтилляционной вспышки 5 распространяются во все стороны, испытывая отражение от светоотражающего покрытия 3 и поглощение в слоях 1 сцинтиллятора, проходя прослойки 2 практически без ослабления. Некоторое ослабление света в прослойках 2 обусловлено потерями при отражении от светоотражающего покрытия 3, но оно невелико и им можно пренебречь по сравнению с ослаблением света в слоях 1. Оставшаяся часть фотонов доходит до фотоприемников 4, где приводит к образованию фотоэлектронов и электрических сигналов, пропорциональных количеству дошедших фотонов. Электрические сигналы поступают далее на входы двух амплитудных анализаторов (на чертеже не показаны). В амплитудных анализаторах сигналы оцифровываются и в цифровом виде поступают в контроллер (на чертеже не показан), в котором вычисляется значение отношения сигналов и по полученному значению отношения определяется осевая координата места возникновения zв (расстояния z1 и z2) сцинтилляционной вспышки 5 в соответствии с выражением [I. Vilardy et al. Optimization of the effective light attenuation of YAP:Ce and LYSO:Ce crystals for the novel geometrical PET concept. NIM A 564 (2206) 506-514]:

Таким образом, заявленный технический результат: повышение пространственного разрешения детектора излучения при длине детектора, сравнимой с длиной ослабления света сцинтилляционной вспышки в сцинтилляторе, достигается за счет того, что сцинтиллятор выполнен в виде цилиндрических соосных слоев 1, разделенных цилиндрическими соосными прослойками 2 того же диаметра из вещества с длиной ослабления света сцинтилляционных вспышек 5 значительно больше общей толщины слоев 1 и длины детектора 11+12, в качестве прослоек 2 могут использоваться сцинтилляторы для регистрации других видов излучений при условии, что длина ослабления света сцинтилляционных вспышек 5 в них существенно превышает общую толщину слоев 1 и длину детектора 11+12, слои 1 сцинтиллятора находятся в оптическом контакте с фотоприемниками 4 и с прослойками 2, на цилиндрическую поверхность слоев 1 сцинтиллятора и прослоек 2 нанесено светоотражающее покрытие 3, поперечный размер и толщина любого слоя 1 сцинтиллятора примерно равны или превышают длину ослабления регистрируемого излучения в слоях 1 сцинтиллятора, причем толщина слоев 1 сцинтиллятора может увеличиваться по мере удаления от источника излучения обратно пропорционально величине плотности потока излучения на слой 1 сцинтиллятора, обеспечивая примерно одинаковую статистику регистрируемого сигнала во всех слоях 1 сцинтиллятора, число слоев 1 сцинтиллятора выбирается из условия, что суммарная толщина всех слоев 1 сцинтиллятора не превышает длины Lc, определяемой в соответствии с выражением:

где σ3 - заданная величина пространственного разрешения в слоях 1 сцинтиллятора вдоль оси позиционно чувствительного детектора излучения, λ - эффективная длина ослабления света сцинтилляционной вспышки 5 в веществе сцинтиллятора с учетом качества поверхности сцинтиллятора, N - число фотоэлектронов, рождаемых в любом из фотоприемников 4 при λ→∞.


Позиционно чувствительный детектор излучений
Позиционно чувствительный детектор излучений
Позиционно чувствительный детектор излучений
Позиционно чувствительный детектор излучений
Источник поступления информации: Роспатент

Показаны записи 91-100 из 191.
10.02.2016
№216.014.c31e

Спектрозональный позиционно-чувствительный детектор гамма-излучения

Изобретение относится к области регистрации ионизирующих излучений и может быть использовано при создании радиационных детекторов, применяемых в геофизической аппаратуре нейтрон-гамма и гамма-гамма каротажа. Сущность изобретения заключается в том, что спектрозональный позиционно-чувствительный...
Тип: Изобретение
Номер охранного документа: 0002574415
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c5f6

Устройство для радиационного измерения плотности

Использование: для бесконтактного измерения плотности вещества с помощью нейтронного и гамма-излучения. Сущность изобретения заключается в том, что устройство для радиационного измерения плотности включает в себя источник излучения, находящийся на оси блока радиационной защиты и имеющий...
Тип: Изобретение
Номер охранного документа: 0002578048
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.c7a7

Способ определения плотности

Использование: для определения плотности путем облучения контролируемого вещества потоком квантов источника электромагнитного излучения. Сущность изобретения заключается в том, что определяют плотность путем облучения контролируемого вещества потоком квантов источника электромагнитного...
Тип: Изобретение
Номер охранного документа: 0002578047
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.c831

Скважинное устройство с двухсторонним расположением измерительных зондов

Использование: для измерения плотности и пористости породы с использованием нейтронного излучения. Сущность изобретения заключается в том, что скважинное устройство с двухсторонним расположением измерительных зондов содержит нейтронный источник, расположенный соосно с корпусом скважинного...
Тип: Изобретение
Номер охранного документа: 0002578050
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2c0f

Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений

Изобретение относится к измерительной технике, а именно к устройствам для регистрации направленного рентгеновского или гамма-излучения. Спектрозональный однокоординатный детектор рентгеновского и гамма-излучений содержит слой сцинтиллятора, непрозрачный вдоль направления распространения...
Тип: Изобретение
Номер охранного документа: 0002579157
Дата охранного документа: 10.04.2016
27.04.2016
№216.015.378d

Импульсный нейтронный способ определения влажности материалов

Использование: для бесконтактного измерения влажности материала с помощью нейтронного излучения. Сущность изобретения заключается в том, что контролируемый материал облучают быстрыми нейтронами с энергией 2,5 МэВ, измеряют поток быстрых нейтронов во время нейтронных импульсов, в промежутках...
Тип: Изобретение
Номер охранного документа: 0002582901
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3901

Способ защиты углов трёхмерных микромеханических структур на кремниевой пластине при глубинном анизотропном травлении

Использование: для изготовления трехмерных микромеханических структур на кремниевой пластине. Сущность изобретения заключается в том, что способ защиты углов трехмерных микромеханических структур на кремниевой пластине с кристаллографической ориентацией (100) при глубинном анизотропном...
Тип: Изобретение
Номер охранного документа: 0002582903
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3902

Способ лазерной пробивки сквозного отверстия в неметаллической пластине

Изобретение относится к способу лазерной пробивки сквозного отверстия в неметаллической пластине и может найти применение изготовления пластин из полупроводниковых, керамических и стеклообразных материалов с отверстиями. Осуществляют облучение поверхности пластин импульсным лазерным...
Тип: Изобретение
Номер охранного документа: 0002582849
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39c4

Управляющая система безопасности атомной электростанции

Изобретение относится к автоматике и вычислительной технике и может быть использовано в системах контроля и управления безопасностью атомных станций (АЭС). Технический результат заключается в повышении надежности системы безопасности. Система включает станции ввода-вывода, станции приоритетного...
Тип: Изобретение
Номер охранного документа: 0002582875
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3a2d

Запаянная нейтронная трубка

Изобретение относится к запаянным нейтронным трубкам и может быть использовано в генераторах нейтронов для проведения неразрушающего элементного анализа вещества и проведения исследований нейтронно-радиационными методами, в том числе для проведения геофизических исследований нефтегазовых...
Тип: Изобретение
Номер охранного документа: 0002583000
Дата охранного документа: 27.04.2016
Показаны записи 41-41 из 41.
22.07.2020
№220.018.3565

Способ одновременного определения плотности и пористости горной породы

Изобретение относится к способам определения геофизических параметров пластов горных пород с использованием аппаратуры импульсного нейтрон-гамма-каротажа. Технический результат – одновременное определение плотности и пористости горной породы. Сущность изобретения заключается в том, что способ...
Тип: Изобретение
Номер охранного документа: 0002727091
Дата охранного документа: 17.07.2020
+ добавить свой РИД