×
09.08.2018
218.016.7922

Результат интеллектуальной деятельности: РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ

Вид РИД

Изобретение

№ охранного документа
0002663215
Дата охранного документа
02.08.2018
Аннотация: Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, дополнительно к этому отраженные волны сдвигают по фазе на π/4, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, вычисляют взаимно-корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют путевую скорость. 4 ил.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны радиоволновые способы измерения путевой скорости, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). В отличие от способов, определяющих скорость по частоте вращения колеса, радиоволновые доплеровские способы измерения позволяют определять истинную путевую скорость, которая не зависит от скольжения, движения при повороте и пробуксовывания. Эта информация об истинной скорости относительно поверхности очень важна для правильной работы антиблокировочной системы и других систем управления транспортного средства. Обычно при реализации способа СВЧ радиоволны излучаются вперед и под углом α по направлению движения транспортного средства. Отраженные от поверхности дороги электромагнитные волны принимаются или этой же антенной или другой приемной антенной. Затем эти волны смешивают в смесителе с частью излучаемых волн и выделяют сигнал разностной частоты. Частота отраженных волн в процессе движения транспортного средства, поступающая на смеситель, будет отличаться от излучаемой частоты СВЧ волн на доплеровскую частоту. Эту частоту, пропорциональную скорости движения, будет иметь сигнал, выделяемый на смесителе:

где λ0=c/ - длина излучаемой электромагнитной волны, c - скорость света в воздухе.

Отсюда скорость можно вычислить из уравнения:

Однако данный классический способ обладает существенным недостатком. Поскольку реальная антенна не излучает одну волну прямолинейно, а имеет некоторую диаграмму направленности с шириной главного лепестка θ, отраженная волна будет выглядеть не одной гармоникой, а суперпозицией волн, падающих и отраженных с разными углами α-θ/2 ≤ αi ≤ α+θ/2 от подстилающей поверхности . Функцию распределения энергии отраженной волны от угла α можно выразить через уравнение радиолокации:

В этой формуле α - угол наклона относительно горизонтальной поверхности, θc - угол направления центра диаграммы направленности антенны (ДНА), А(α) - функция распределения ДНА, R(α)=Н/sin(α) - расстояние от фазового центра антенны до точки отражения, Н - высота расположения антенны над поверхностью (см. Фиг. 1). K - константа, определяемая системными параметрами, σ(α) - функция эффективной отражающей поверхности дороги. А(α) имеет максимум при условии равенства α=θc и симметрична относително θс. σ(α) имеет тенденцию к увеличению с увеличением угла α, в соответствии с ДНА. Если выполнить подстановку значения α = arccos(/2V) из (1) в Е(α) согласно уравнению (3), получим выражение для спектральной плотности доплеровского сигнала для данной скорости:

Это спектральное распределение качественно показано на Фиг. 1. Следует отметить смещение между максимумом спектральной плотности и собственно доплеровской частотой . Кроме этого сам доплеровский сигнал будет иметь существенную стохастическую составляющую из-за случайного характера распределения отражающих свойств по площади отражающей поверхности, влияния вибрации и смещений угла наклона антенны в результате крена или тонгажа. В результате все эти факторы приводят к трудностям в точном определении доплеровской частоты, а следовательно, к недостаточной точности измерения скорости.

Чтобы уменьшить влияние этих ошибок, применяют способы с использованием излучения и приема электромагнитных волн из двух антенн под разными углами к поверхности (например, патент РФ №2334995 от 27.09.2008, G01S 13/58). Совместная обработка двух доплеровских сигналов позволяет лишь частично снизить влияние ошибки от наличия спектрального распределения Δ. Однако практически кратное увеличение составных компонентов устройства, реализующего данный способ, соответственно увеличивает и ошибки, вызванные с паразитным просачиванием излучений между антеннами, циркуляторами и другими элементами устройства. Кроме этого повышается стоимость устройства. Точность можно повысить также за счет использования усредняющих процедур обработки спектра, однако тот факт, что максимум спектральной плотности не соответствует доплеровской частоте, не позволяет эффективно использовать и этот подход.

Наиболее близким по технической сущности является способ измерения путевой скорости (М.И. Финкельштейн. Основы радиолокации. М., Советское радио. 1973, с. 85), принятый за прототип. Электромагнитные колебания фиксированной частоты от генератора СВЧ излучаются под углом α между направлением движения и подстилающей поверхностью. Отраженные волны принимаются антенной и смешиваются с частью излучаемых электромагнитных колебаний. В результате выделяется доплеровский сигнал, а путевая скорость вычисляется по максимуму спектральной плотности доплеровского сигнала.

Недостатком способа являются значительные ошибки в определении путевой скорости, обусловленные измерением доплеровской частоты по максимуму спектральной плотности доплеровского сигнала. Это происходит из-за несоответствия доплеровской частоты этому максимуму и наличием существенных искажений спектра от случайных помех, вызванных неравномерностями дорожного покрытия, вибраций и изменениями угла наклона антенны датчика из-за крена и тонгажа.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат достигается тем, что в способе измерения путевой скорости, заключающемся в том, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, дополнительно к этому отраженные волны сдвигают по фазе на π/4, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, вычисляют взаимно-корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют путевую скорость.

На Фиг. 2 представлена структурная схема устройства, реализующего способ.

На Фиг. 3 изображены временные диаграммы сигналов на выходах первого и второго смесителя.

На Фиг. 4 изображена взаимно-корреляционная функция между сигналами с выходов первого и второго смесителя в нормированном виде.

Устройство расположено на транспортном средстве и содержит генератор СВЧ 1, направленный ответвитель 2, циркулятор 3, антенну 4, фазовращатель 5 на угол π/4, первый смеситель 6, второй смеситель 7, вычислительный блок 8. Антенна ориентирована под углом α между направлением движения и подстилающей поверхностью 9.

Устройство работает следующим образом. От генератора СВЧ сигнал с частотой поступает через основной вывод направленного ответвителя и циркулятор на антенну и излучается в сторону подстилающей поверхности. При этом часть сигнала через вспомогательный вывод направленного ответвителя поступает на первые входы двух смесителей, а на вторые его входы поступает СВЧ сигнал, отраженный от поверхности обратно в антенну и прошедший через циркулятор. Однако, если на первый смеситель он приходит напрямую, то на второй вход - после сдвига по фазе на угол π/4. В результате на выходе первого и второго смесителя образуются доплеровские сигналы, сдвинутые между собой по фазе π/4 (см. кривые S1(t) и S2(t) на фиг. 3). При этом используется временная выборка N=2000 значений, с длительностью каждой выборки - Δt. Функция r12(t3) взаимной корреляции сигналов S1(t) и S2(t) от времени задержки t3 за время Т=NΔt будет выглядеть следующим образом:

В нормированном дискретном виде коэффициента взаимной корреляции r12() от дискретного сдвига функция (5) примет вид:

График этой функции представлен на Фиг. 4. В процессе движения оба доплеровских сигнала будут полностью идентичными, а время задержки между ними будет соответствовать четверти периода доплеровской частоты. Это время можно определить по максимуму коэффициента взаимной корреляции (6) tmax=jmaxΔt, как показано на Фиг. 4. Далее можно определить доплеровскую частоту D=1/4tmax, а затем по формуле (2) вычислить путевую скорость V:

Таким образом, ошибка, связанная с неточным определением доплеровской частоты из-за стохастического и ассимметричного характера спектра доплеровского сигнала при измерении путевой скорости, устраняется, а точность измерения по сравнению с прототипом увеличивается. Благодаря этому способу в отличие от прототипа удается определить направление движения. При движении вперед в рассматриваемом случае максимум коэффициента взаимной корреляции будет при положительном временном сдвиге tmax, а при движении задним ходом - при отрицательном.

Способ измерения путевой скорости, заключающийся в том, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, отличающийся тем, что отраженные волны сдвигают по фазе на π/4, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, вычисляют взаимно-корреляционную функцию между этими сигналами, по временному сдвигу t, соответствующему ее максимуму, определяют доплеровскую частоту, пропорциональную скорости движения ƒ=1/4t, затем, с учетом формулы для путевой скорости V=cƒ/2cos(α)ƒ, где с - скорость света, ƒ - частота излучаемого сигнала, вычисляют уточненную путевую скорость по формуле V=c/Scos(α)ƒt, обеспечивая устранение ошибки, связанной с неточным определением доплеровской частоты.
РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
Источник поступления информации: Роспатент

Показаны записи 191-200 из 276.
09.06.2018
№218.016.5edf

Способ и система выполнения распределенных операций счета и суммирования чисел с применением аналого-цифровых преобразователей уровня оптических сигналов

Изобретение относится к средствам выполнения поиска и обработки информации. Технический результат заключается в повышении скорости распределенных операций счета и суммирования чисел в компьютерных кластерах. Способ выполнения распределенных операций счета и суммирования чисел характеризуется...
Тип: Изобретение
Номер охранного документа: 0002656738
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f03

Способ организации взаимодействия клиента с сервером приложений с использованием сервис-браузера

Изобретение относится к вычислительной технике, в частности к средствам обмена данными между клиентом и сервером. Техническим результатом предложения является повышение скорости обработки информации при функционировании в защищенной среде. Способ организации взаимодействия клиента по крайней...
Тип: Изобретение
Номер охранного документа: 0002656735
Дата охранного документа: 06.06.2018
09.06.2018
№218.016.5f43

Способ и система выполнения распределенного аналого-цифрового суммирования и управления его выполнением

Группа изобретений относится к области вычислительной техники и может быть использована в устройствах, выполняющих операции суммирования сигналов, одновременно генерируемых многими источниками. Техническим результатом является повышение скорости распределенных операций суммирования чисел в...
Тип: Изобретение
Номер охранного документа: 0002656741
Дата охранного документа: 06.06.2018
11.06.2018
№218.016.60eb

Способ внутрипластового горения

Изобретение относится к способу извлечения смеси тяжелых углеводородов из подземного пласта путем внутрипластового горения. Способ внутрипластового горения заключается в том, что в нефтяном пласте выполняют ряд вертикальных нагнетательных скважин, достигающих пластового резервуара, выполняют...
Тип: Изобретение
Номер охранного документа: 0002657036
Дата охранного документа: 08.06.2018
20.06.2018
№218.016.64b1

Способ измерения параметров движения объекта и система для его осуществления

Изобретение относится к области приборостроения инерциальных навигационных систем и может использоваться для определения текущих угловых и линейных ускорений объекта. Способ измерений параметров движения объекта с инерциальной измерительной системой, характеризующийся расположением 9...
Тип: Изобретение
Номер охранного документа: 0002658124
Дата охранного документа: 19.06.2018
04.07.2018
№218.016.6a73

Способ измерения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002659569
Дата охранного документа: 03.07.2018
05.07.2018
№218.016.6b7e

Многопозиционный пневматический модуль линейных перемещений

Изобретение относится к области машиностроения. Техническим результатом является упрощение конструкции. Многопозиционный пневматический модуль линейных перемещений содержит рабочий цилиндр с поршнем, выходной элемент, узел фиксации, фиксатор и углубления, с которыми взаимодействует фиксатор,...
Тип: Изобретение
Номер охранного документа: 0002659851
Дата охранного документа: 04.07.2018
05.07.2018
№218.016.6c1d

Измеритель путевой скорости и угла сноса летательного аппарата

Изобретение относится к измерительной технике, в частности к устройствам измерения путевой скорости и угла сноса летательного аппарата в автономных навигационных системах с использованием электромагнитных волн. Достигаемый технический результат - увеличение точности измерения. Указанный...
Тип: Изобретение
Номер охранного документа: 0002659821
Дата охранного документа: 04.07.2018
08.07.2018
№218.016.6ea2

Система управления движением судна с дублированием каналов курса и резервным управлением по курсу

Система управления движением судна (СУД) с дублированием каналов курса и резервным управлением движения содержит датчик руля, датчик дифференцирования, блок логики, три задатчика угла курса и три датчика угла курса, два сумматора, блок среднего заданного угла курса, блок оценки возмущающего...
Тип: Изобретение
Номер охранного документа: 0002660193
Дата охранного документа: 05.07.2018
18.07.2018
№218.016.7182

Способ определения влагосодержания диэлектрической жидкости

Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение...
Тип: Изобретение
Номер охранного документа: 0002661349
Дата охранного документа: 16.07.2018
Показаны записи 41-41 из 41.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД