×
09.08.2018
218.016.7922

Результат интеллектуальной деятельности: РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ

Вид РИД

Изобретение

№ охранного документа
0002663215
Дата охранного документа
02.08.2018
Аннотация: Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - повышение точности измерения. Указанный результат достигается тем, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, дополнительно к этому отраженные волны сдвигают по фазе на π/4, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, вычисляют взаимно-корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют путевую скорость. 4 ил.

Изобретение относится к измерительной технике, в частности к способам измерения путевой скорости транспортных средств с использованием эффекта Доплера для электромагнитных волн.

В настоящее время известны радиоволновые способы измерения путевой скорости, основанные на эффекте Доплера (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат, 1989. 124-132 с.). В отличие от способов, определяющих скорость по частоте вращения колеса, радиоволновые доплеровские способы измерения позволяют определять истинную путевую скорость, которая не зависит от скольжения, движения при повороте и пробуксовывания. Эта информация об истинной скорости относительно поверхности очень важна для правильной работы антиблокировочной системы и других систем управления транспортного средства. Обычно при реализации способа СВЧ радиоволны излучаются вперед и под углом α по направлению движения транспортного средства. Отраженные от поверхности дороги электромагнитные волны принимаются или этой же антенной или другой приемной антенной. Затем эти волны смешивают в смесителе с частью излучаемых волн и выделяют сигнал разностной частоты. Частота отраженных волн в процессе движения транспортного средства, поступающая на смеситель, будет отличаться от излучаемой частоты СВЧ волн на доплеровскую частоту. Эту частоту, пропорциональную скорости движения, будет иметь сигнал, выделяемый на смесителе:

где λ0=c/ - длина излучаемой электромагнитной волны, c - скорость света в воздухе.

Отсюда скорость можно вычислить из уравнения:

Однако данный классический способ обладает существенным недостатком. Поскольку реальная антенна не излучает одну волну прямолинейно, а имеет некоторую диаграмму направленности с шириной главного лепестка θ, отраженная волна будет выглядеть не одной гармоникой, а суперпозицией волн, падающих и отраженных с разными углами α-θ/2 ≤ αi ≤ α+θ/2 от подстилающей поверхности . Функцию распределения энергии отраженной волны от угла α можно выразить через уравнение радиолокации:

В этой формуле α - угол наклона относительно горизонтальной поверхности, θc - угол направления центра диаграммы направленности антенны (ДНА), А(α) - функция распределения ДНА, R(α)=Н/sin(α) - расстояние от фазового центра антенны до точки отражения, Н - высота расположения антенны над поверхностью (см. Фиг. 1). K - константа, определяемая системными параметрами, σ(α) - функция эффективной отражающей поверхности дороги. А(α) имеет максимум при условии равенства α=θc и симметрична относително θс. σ(α) имеет тенденцию к увеличению с увеличением угла α, в соответствии с ДНА. Если выполнить подстановку значения α = arccos(/2V) из (1) в Е(α) согласно уравнению (3), получим выражение для спектральной плотности доплеровского сигнала для данной скорости:

Это спектральное распределение качественно показано на Фиг. 1. Следует отметить смещение между максимумом спектральной плотности и собственно доплеровской частотой . Кроме этого сам доплеровский сигнал будет иметь существенную стохастическую составляющую из-за случайного характера распределения отражающих свойств по площади отражающей поверхности, влияния вибрации и смещений угла наклона антенны в результате крена или тонгажа. В результате все эти факторы приводят к трудностям в точном определении доплеровской частоты, а следовательно, к недостаточной точности измерения скорости.

Чтобы уменьшить влияние этих ошибок, применяют способы с использованием излучения и приема электромагнитных волн из двух антенн под разными углами к поверхности (например, патент РФ №2334995 от 27.09.2008, G01S 13/58). Совместная обработка двух доплеровских сигналов позволяет лишь частично снизить влияние ошибки от наличия спектрального распределения Δ. Однако практически кратное увеличение составных компонентов устройства, реализующего данный способ, соответственно увеличивает и ошибки, вызванные с паразитным просачиванием излучений между антеннами, циркуляторами и другими элементами устройства. Кроме этого повышается стоимость устройства. Точность можно повысить также за счет использования усредняющих процедур обработки спектра, однако тот факт, что максимум спектральной плотности не соответствует доплеровской частоте, не позволяет эффективно использовать и этот подход.

Наиболее близким по технической сущности является способ измерения путевой скорости (М.И. Финкельштейн. Основы радиолокации. М., Советское радио. 1973, с. 85), принятый за прототип. Электромагнитные колебания фиксированной частоты от генератора СВЧ излучаются под углом α между направлением движения и подстилающей поверхностью. Отраженные волны принимаются антенной и смешиваются с частью излучаемых электромагнитных колебаний. В результате выделяется доплеровский сигнал, а путевая скорость вычисляется по максимуму спектральной плотности доплеровского сигнала.

Недостатком способа являются значительные ошибки в определении путевой скорости, обусловленные измерением доплеровской частоты по максимуму спектральной плотности доплеровского сигнала. Это происходит из-за несоответствия доплеровской частоты этому максимуму и наличием существенных искажений спектра от случайных помех, вызванных неравномерностями дорожного покрытия, вибраций и изменениями угла наклона антенны датчика из-за крена и тонгажа.

Техническим результатом настоящего изобретения является повышение точности измерения.

Технический результат достигается тем, что в способе измерения путевой скорости, заключающемся в том, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, дополнительно к этому отраженные волны сдвигают по фазе на π/4, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, вычисляют взаимно-корреляционную функцию между этими сигналами и по временному сдвигу, соответствующему ее максимуму, определяют путевую скорость.

На Фиг. 2 представлена структурная схема устройства, реализующего способ.

На Фиг. 3 изображены временные диаграммы сигналов на выходах первого и второго смесителя.

На Фиг. 4 изображена взаимно-корреляционная функция между сигналами с выходов первого и второго смесителя в нормированном виде.

Устройство расположено на транспортном средстве и содержит генератор СВЧ 1, направленный ответвитель 2, циркулятор 3, антенну 4, фазовращатель 5 на угол π/4, первый смеситель 6, второй смеситель 7, вычислительный блок 8. Антенна ориентирована под углом α между направлением движения и подстилающей поверхностью 9.

Устройство работает следующим образом. От генератора СВЧ сигнал с частотой поступает через основной вывод направленного ответвителя и циркулятор на антенну и излучается в сторону подстилающей поверхности. При этом часть сигнала через вспомогательный вывод направленного ответвителя поступает на первые входы двух смесителей, а на вторые его входы поступает СВЧ сигнал, отраженный от поверхности обратно в антенну и прошедший через циркулятор. Однако, если на первый смеситель он приходит напрямую, то на второй вход - после сдвига по фазе на угол π/4. В результате на выходе первого и второго смесителя образуются доплеровские сигналы, сдвинутые между собой по фазе π/4 (см. кривые S1(t) и S2(t) на фиг. 3). При этом используется временная выборка N=2000 значений, с длительностью каждой выборки - Δt. Функция r12(t3) взаимной корреляции сигналов S1(t) и S2(t) от времени задержки t3 за время Т=NΔt будет выглядеть следующим образом:

В нормированном дискретном виде коэффициента взаимной корреляции r12() от дискретного сдвига функция (5) примет вид:

График этой функции представлен на Фиг. 4. В процессе движения оба доплеровских сигнала будут полностью идентичными, а время задержки между ними будет соответствовать четверти периода доплеровской частоты. Это время можно определить по максимуму коэффициента взаимной корреляции (6) tmax=jmaxΔt, как показано на Фиг. 4. Далее можно определить доплеровскую частоту D=1/4tmax, а затем по формуле (2) вычислить путевую скорость V:

Таким образом, ошибка, связанная с неточным определением доплеровской частоты из-за стохастического и ассимметричного характера спектра доплеровского сигнала при измерении путевой скорости, устраняется, а точность измерения по сравнению с прототипом увеличивается. Благодаря этому способу в отличие от прототипа удается определить направление движения. При движении вперед в рассматриваемом случае максимум коэффициента взаимной корреляции будет при положительном временном сдвиге tmax, а при движении задним ходом - при отрицательном.

Способ измерения путевой скорости, заключающийся в том, что электромагнитные волны излучают вперед под углом α по направлению движения транспортного средства, принимают отраженные от поверхности дороги электромагнитные волны, затем эти волны смешивают в первом смесителе с частью излучаемых волн и выделяют первый сигнал разностной частоты, отличающийся тем, что отраженные волны сдвигают по фазе на π/4, смешивают их на втором смесителе с частью излучаемых волн и выделяют второй сигнал разностной частоты, вычисляют взаимно-корреляционную функцию между этими сигналами, по временному сдвигу t, соответствующему ее максимуму, определяют доплеровскую частоту, пропорциональную скорости движения ƒ=1/4t, затем, с учетом формулы для путевой скорости V=cƒ/2cos(α)ƒ, где с - скорость света, ƒ - частота излучаемого сигнала, вычисляют уточненную путевую скорость по формуле V=c/Scos(α)ƒt, обеспечивая устранение ошибки, связанной с неточным определением доплеровской частоты.
РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
РАДИОВОЛНОВЫЙ СПОСОБ ИЗМЕРЕНИЯ ПУТЕВОЙ СКОРОСТИ
Источник поступления информации: Роспатент

Показаны записи 161-170 из 276.
20.01.2018
№218.016.1aee

Устройство для распознавания степени научности опубликованных построений

Изобретение относится к вычислительной технике и может быть использовано для распознавания степени научности опубликованных построений (ОП) в случаях необходимости определения ненаучного, протонаучного и научного исследования. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002635882
Дата охранного документа: 16.11.2017
04.04.2018
№218.016.2f8a

Спецпроцессор для задачи выполнимости булевых формул

Изобретение относится к средствам для решения задач о выполнении булевых функций. Технический результат заключается в решения задачи о выполнимости булевых функций, заданных в конъюнктивной нормальной форме, имеющих N переменных и до М=2 дизъюнктов. При этом упрощение структуры спецпроцессора...
Тип: Изобретение
Номер охранного документа: 0002644505
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.2fde

Перистальтический насос на пьезоэлектрических элементах

Изобретение относится к устройствам для перекачивания текучих сред и может быть использовано в промышленности, на транспорте и в быту при перекачивании жидкостей, а также иных несжимаемых и сжимаемых текучих сред. Устройство для перекачивания текучих сред содержит пьезомодули, установленные в...
Тип: Изобретение
Номер охранного документа: 0002644643
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.3263

Устройство для измерения дифференциального тока

Изобретение относится к области измерительной техники и может быть использовано для измерения токов утечки в электропроводке и электрооборудовании. Техническим результатом заявляемого технического решения является упрощение процедуры преобразования сигнала вторичной обмотки дифференциального...
Тип: Изобретение
Номер охранного документа: 0002645434
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3282

Способ измерения количества вещества в металлической емкости

Изобретение может быть использовано для высокоточного определения количества (объема, массы, уровня) веществ в различных емкостях. Также оно может быть также использовано в демонстрационных физических экспериментах для описания возможного, в том числе отличного от общепринятого, характера...
Тип: Изобретение
Номер охранного документа: 0002645435
Дата охранного документа: 21.02.2018
04.04.2018
№218.016.3426

Способ определения количества диэлектрической жидкости в металлической емкости

Изобретение может быть использовано для измерения количества (объема, массы) диэлектрической жидкости в металлической емкости произвольной конфигурации независимо от ее диэлектрической проницаемости. Техническим результатом является расширение функциональных возможностей способа измерения. В...
Тип: Изобретение
Номер охранного документа: 0002645813
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.351d

Устройство преобразования механической энергии движения водной среды в электрическую энергию

Изобретение относится к области энергетики и может быть использовано для преобразования механической энергии движения водной среды в электрическую энергию. Устройство для преобразования энергии движения водной среды 1 в электрическую энергию содержит опору 2, герметизированное гибкое полотнище...
Тип: Изобретение
Номер охранного документа: 0002645842
Дата охранного документа: 28.02.2018
04.04.2018
№218.016.3578

Способ определения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, независимо от электрофизических параметров жидкости. Техническим результатом является повышение точности измерений. В способе определения уровня жидкости в емкости, при котором,...
Тип: Изобретение
Номер охранного документа: 0002645836
Дата охранного документа: 28.02.2018
10.05.2018
№218.016.3976

Устройство для измерения толщины покрытий

Изобретение относится к области контрольно-измерительной техники. Техническим результатом является повышение точности измерения толщины покрытий. Технический результат достигается тем, что в устройство для измерения толщины покрытий, содержащее чувствительный элемент в виде трансформатора с...
Тип: Изобретение
Номер охранного документа: 0002647180
Дата охранного документа: 14.03.2018
10.05.2018
№218.016.3995

Способ измерения положения границы раздела двух сред в емкости

Изобретение может быть использовано для высокоточного определения положения границы раздела двух сред, находящихся в емкости, в частности двух несмешивающихся жидкостей с разной плотностью. Техническим результатом является повышение точности измерений. В емкости со средами размещают вертикально...
Тип: Изобретение
Номер охранного документа: 0002647182
Дата охранного документа: 14.03.2018
Показаны записи 41-41 из 41.
18.10.2019
№219.017.d7e6

Измеритель вектора перемещения транспортного средства

Изобретение относится к измерительной технике, в частности к радиоволновым способам измерения перемещения транспортных средств с использованием эффекта Доплера для электромагнитных волн. Технический результат - увеличение точности измерения достигается тем, что устройство измерения перемещения...
Тип: Изобретение
Номер охранного документа: 0002703281
Дата охранного документа: 16.10.2019
+ добавить свой РИД