×
09.08.2018
218.016.7910

Результат интеллектуальной деятельности: Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях

Вид РИД

Изобретение

Аннотация: Изобретение относится к области испытаний высокоскоростных летательных аппаратов с двигательной установкой на основе воздушно-реактивного двигателя и может быть использовано для определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях. Сущность изобретения состоит в том, что при определении тяги прямоточного воздушно-реактивного двигателя при летных испытаниях предварительно на стенде моделируют работу двигателя в условиях полета при заданных угле атаки, высоте и скорости полета и определяют аэродинамическое сопротивление проточного тракта внутреннего контура двигателя, интегрированного в фюзеляж летательного аппарата, а по результатам измеренных в полете параметров скоростного воздушного потока определяют величину результирующей силы, вызываемой статическим давлением во внутреннем контуре проточного тракта двигателя. Тягу двигателя определяют как разность проекций результирующей силы статического давления и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания. Технический результат заключается в определении величины внутренних сил давления и сопротивления интегрированного с фюзеляжем ПВРД по измеренным в полете параметрам и значениям сопротивления внутреннего контура проточного тракта по результатам стендовых испытаний. 5 ил.

Предлагаемое изобретение относится к области испытаний высокоскоростных летательных аппаратов (ЛА) с двигательной установкой на основе воздушно-реактивного двигателя и может быть использовано для определения тяги прямоточного воздушно-реактивного двигателя (ПВРД) при летных испытаниях.

Значение эффективной тяги представляет собой долю тяги ПВРД, интегрированного (расположенного внутри фюзеляжа) с планером ЛА, то есть равнодействующую сил давления и трения, приложенных к внутренней поверхности проточного тракта ПВРД, непосредственно используемую для движения последнего. Важной задачей является повышение точности и оперативности оценки эффективной тяги ПВРД для различных ЛА, что необходимо для определения летно-технических характеристик на стадии создания ЛА.

Известны способы определения тяги ПВРД, основанные на измерении параметров скоростного воздушного потока, а именно, скорости набегающего потока, статических давлений (полей полных давлений в различных сечениях диффузора, камеры сгорания и сопла) по длине двигателя на внешней обшивке и во внутренних каналах двигателя (В.А. Григорьев, «Испытания авиационных двигателей», М., «Машиностроение», 2009 г., стр. 186-187, 205-206; В.Н. Леонтьев «Испытания авиационных двигателей и их агрегатов», М., «Машиностроение», 1976 г., стр. 62-65).

В известных технических решениях замер параметров осуществляется как в процессе летных испытаний, в которых двигатель используется в качестве маршевой силовой установки, так и в результате стендовых испытаний, условия которых аналогичны летным испытаниям, причем при испытаниях на стенде имитируются условия работы при различных высоте, скорости полета и углах атаки. Кроме того, стендовые испытания проводятся не только с постоянным углом между вектором скорости набегающего потока, но и при быстрых изменениях последнего во время эксперимента, как это может быть во время маневра ЛА.

Недостатком газодинамического способа определения тяги, предлагаемого в известных технических решениях, является низкая точность определения импульса реактивной струи в сечении среза сопла, обусловленная сложностью измерений параметров потока в этом сечении, что в свою очередь определяет недостаточную точность определения тяги двигателя.

Известен способ определения тяги ПВРД, основанный на измерении распределения давлений на поверхности носовой части гиперзвуковой летающей лаборатории и продольного ускорения последней в полете (RU 2242736, 2004 г.). Для баллистического способа определения тяги, предлагаемого в известном техническом решении, необходимо точное определение направления вектора тяги двигателя, что возможно только в случае осесимметричной конфигурации сопла и камеры сгорания. Таким образом, недостатком известного технического решения также является недостаточная точность определения тяги двигателя.

Наиболее близким по совокупности существенных признаков к заявляемому техническому решению является способ определения тяги ПВРД при летных испытаниях, основанный на измерении параметров скоростного воздушного потока, угла атаки, высоты и скорости полета (RU 2579796, 2016 г.).

Известное техническое решение представляет собой аэродинамический способ определения тяги двигателя, при котором также измеряют перегрузку вдоль продольной оси ЛА, а при определении тяги учитывают константы, характеризующие конструкцию и аэродинамику ЛА, а именно: эквивалентную площадь крыла, угол отклонения оси двигателя от продольной оси ЛА, выходной импульс двигателя, ускорение свободного падения и массу ЛА.

Недостатком известного технического решения является низкая точность определения тяги ПВРД, обусловленная необходимостью выполнения кабрирования и пикирования ЛА с постоянной тягой, что сложно реализовать в случае высокоскоростного ЛА с интегрированным проточным трактом ПВРД.

Техническая проблема, решение которой обеспечивается при осуществлении заявляемого изобретения, заключается в повышении точности определения тяги ПВРД при летных испытаниях.

Технический результат, достигаемый при осуществлении предлагаемого изобретения, заключается в определении величины внутренних сил давления и сопротивления интегрированного с фюзеляжем ПВРД, причем определение сил сопротивления и внутреннего давления осуществляют по измеренным в полете параметрам и по результатам стендовых испытаний, что обеспечивает более точное определение тяги ПВРД.

Заявленный технический результат достигается за счет того, что при осуществлении способа определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях, основанном на измерении параметров скоростного воздушного потока, угла атаки, высоты и скорости полета, предварительно на стенде моделируют работу двигателя в условиях полета при заданных угле атаки, высоте и скорости полета и определяют аэродинамическое сопротивление проточного тракта внутреннего контура двигателя, интегрированного в фюзеляж летательного аппарата, по результатам измеренных в полете параметров скоростного воздушного потока определяют величину результирующей силы, вызываемой статическим давлением во внутреннем контуре проточного тракта двигателя, а тягу двигателя определяют как разность проекций результирующей силы статического давления и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания.

Указанные существенные признаки обеспечивают решение поставленной технической проблемы с достижением заявленного технического результата, так как:

- предварительное моделирование на стенде работы двигателя в условиях полета при заданных угле атаки, высоте и скорости полета, определение аэродинамического сопротивления проточного тракта внутреннего контура двигателя, интегрированного в фюзеляж ЛА, обеспечивают определение внутренних сил давления и сопротивления по результатам стендовых испытаний;

- определение по результатам измеренных в полете параметров скоростного воздушного потока величины результирующей силы, вызываемой статическим давлением во внутреннем контуре проточного тракта двигателя и определение тяги двигателя как разности проекций результирующей силы статического давления и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания обеспечивает определение внутренних сил давления и сопротивления по измеренным в полете параметрам.

Настоящий способ поясняется следующим подробным описанием и иллюстрациями, где:

- на фиг. 1 изображена схема стенда для испытаний исследуемого ПВРД;

на фиг. 2 приведена диаграмма результатов регистрации тягоизмерительной системой усилий, создаваемых ПВРД при стендовых испытаниях;

- на фиг. 3 изображен график распределения статического давления по тракту ПВРД на режиме с подачей топлива;

- на фиг. 4 изображена схема распределения действующих сил при обтекании исследуемого ПВРД воздушным потоком в процессе стендовых испытаний;

- на фиг. 5 изображена схема регистрации усилий, развиваемых ПВРД в процессе стендовых испытаний.

Способ осуществляется следующим образом.

Предварительно на стенде моделируют работу исследуемого объекта, представляющего собой натуральный образец или макет интегрированного в фюзеляж гиперзвукового ЛА высокоскоростного ПВРД. Объект 1 при помощи установочного пилона 2 размещают на динамометрической платформе 3, которая через ленты 4 сжатия связана с платформой 5 стенда (см. фиг. 1). Моделирование осуществляется при помощи аэродинамического сопла 6, осуществляющего обдув объекта 1, и кормового диффузора 7, при условии соблюдения идентичных ожидаемым в полете характеристик: угла (αат,) атаки, высоты и скорости полета, числа Маха, расхода топлива. Усилия от работающего двигателя измеряются при помощи датчиков 8 тяги тягоизмерительной системы стенда. В процессе испытаний на стенде определяют аэродинамическое сопротивление (Rдвгор) проточного тракта внутреннего контура двигателя исходя из условия равенства проекции сил (Rрасч) статических давлений по контуру на ось двигателя и проекции равнодействующей силы (Rизм) на ось тракта стенда, измеренной тягоизмерительной системой на режиме работы двигателя в заданных условиях с учетом угла атаки (αат) воздухозаборного устройства двигателя к набегающему потоку воздуха по оси стенда:

Rрасчcos(αат)=Rизм,

где

Pi (х) - среднее значение статического давления на i-том участке по контуру тракта,

Fi(x) - площадь поперечного сечения на i-том участке по контуру тракта,

l - длина проточного тракта,

х - координата по продольной оси двигателя,

Rизм=R++Rдвгорсоs(αат)+Rф,

где:

Rдвгор=Rрасч-(R++Rф)/соs(αат),

R+ - положительная часть усилия;

Rф - сопротивление фюзеляжа.

При этом также измеряются:

- усилия, развиваемые двигателем в процессе стендовых испытаний, измеряемые датчиками 8 тяги тягоизмерительной системы стенда, по результатам регистрации которых, определяется положительная часть усилия (R+) в проекции на ось стенда от работающего двигателя с подачей топлива в камеру сгорания (превышение тяги над сопротивлением) (см. фиг. 2);

- полные давление и температура набегающего потока;

- расход топлива в камере сгорания;

- распределение статического давления по тракту двигателя на режиме с подачей топлива (см. фиг. 3).

Анализ схемы обтекания исследуемого объекта воздушным потоком при испытании на стенде (см. фиг. 4) показывает, что проекция сил давления по внутреннему тракту на ось двигателя может быть представлена в виде уравнения:

Pi3(Fi3-Fi2)-Pi2(Fi1-Fi2)-Pi4(Fi3-Fi4)-Rф-Rдвгор=R+,

ΣPiΔFi=R++Rф+Rдвгор,

где ΔFi(x) - приращение площади поперечного i-го сечения тракта.

Из анализа схемы регистрации усилий, развиваемых двигателем в процессе стендовых испытаний (см. фиг. 5) следует:

Rизм=R++Rф+Rдвгор.

Сравнивая полученные зависимости с учетом угла атаки, получаем:

ΣPiΔFicos(αат)=Rизм.

Левая часть в уравнении может быть определена по измеренному распределению статического давления на внутренние стенки проточного тракта:

С учетом угла атаки при испытании на стенде исследуемого объекта зависимость может быть представлена в виде

Rрасчcos(αат)=R++Rдвгорcos(αат)+Rф.

Сопротивление фюзеляжа при испытаниях на стенде определяется по результатам расчета аэродинамического сопротивления ЛА. В стендовом варианте конструкции фюзеляж имеет простую хорошо обтекаемую форму без крыльев и рулей, что обеспечивает высокую точность вычисления Rф.

С учетом изложенного сопротивление внутреннего тракта двигателя на режиме работы с подачей топлива для заданных условий определяется из соотношения

Rдвгор=Rрасч-(R++Rф)/соs(αат).

Так как сопротивление тракта двигателя не зависит от работы на стенде или в полете для одинаковых условий, эта величина может быть использована для оценки тяги в полете как разность проекции равнодействующей сил давления на ось тракта и сопротивления тракта двигателя на режиме с горением, которое берется из результатов испытаний на стенде с соблюдением указанных выше условий, максимально приближенных к полетным: по числам Маха, высоте, углу атаки и коэффициенту избытка воздуха.

При этом в полете измеряются распределение статических давлений по тракту двигателя, угол атаки, скорость движения аппарата, высота полета, а по распределению давлений вычисляется проекция равнодействующей силы (Rp ли) на ось тракта двигателя для аналогичных условий при летных испытаниях:

Тягу двигателя при летных испытаниях определяют как разность проекций равнодействующей силы на ось тракта двигателя и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания:

Rли=Rр ли - Rдв гор.

Таким образом, определение внутренних сил давления и сопротивления интегрированного с фюзеляжем ПВРД по измеренным в полете параметрам и по результатам стендовых испытаний обеспечивает повышение точности определения тяги ПВРД при летных испытаниях.

Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях, основанный на измерении параметров скоростного воздушного потока, угла атаки, высоты и скорости полета, отличающийся тем, что предварительно на стенде моделируют работу двигателя в условиях полета при заданных угле атаки, высоте и скорости полета и определяют аэродинамическое сопротивление проточного тракта внутреннего контура двигателя, интегрированного в фюзеляж летательного аппарата, по результатам измеренных в полете параметров скоростного воздушного потока определяют величину результирующей силы, вызываемой статическим давлением во внутреннем контуре проточного тракта двигателя, а тягу двигателя определяют как разность проекций результирующей силы статического давления и силы аэродинамического сопротивления проточного тракта на продольную ось камеры сгорания.
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Способ определения тяги прямоточного воздушно-реактивного двигателя при летных испытаниях
Источник поступления информации: Роспатент

Показаны записи 41-50 из 204.
20.09.2015
№216.013.7d2c

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель

Гибридный ракетно-прямоточный воздушно-реактивный аэрокосмический двигатель включает ракетный двигатель на топливе в виде нанопорошка алюминия размером не более 25 нм в жидкой водной фазе и совмещенный с ним прямоточный воздушно-реактивный двигатель на молекулярном водороде, образующимся при...
Тип: Изобретение
Номер охранного документа: 0002563641
Дата охранного документа: 20.09.2015
20.10.2015
№216.013.82f8

Прямоточный воздушно-реактивный двигатель на твердом горючем и способ функционирования двигателя

Изобретение относится к авиационному двигателестроению и предназначено для прямоточных воздушно-реактивных двигателей. Прямоточный воздушно-реактивный двигатель на твердом горючем содержит воздухозаборник, газогенератор с зарядом твердого горючего в отдельном корпусе, камеру дожигания и сопло....
Тип: Изобретение
Номер охранного документа: 0002565131
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8cf2

Зубчатое колесо

Изобретение относится к машиностроению и может быть использовано в высоконагруженных зубчатых передачах. Зубчатое колесо содержит обод с зубчатым венцом, ступицу, несущую диафрагму, жестко связанную с ободом и ступицей, и демпфирующий элемент, выполненный в виде лепесткового пластинчатого...
Тип: Изобретение
Номер охранного документа: 0002567689
Дата охранного документа: 10.11.2015
20.01.2016
№216.013.a339

Способ сжигания топливо-воздушной смеси и прямоточный воздушно-реактивный двигатель со спиновой детонационной волной

Способ сжигания топливовоздушной смеси для создания реактивной тяги в прямоточном воздушно-реактивном двигателе со спиновой детонационной волной заключается в том, что набегающий высокоскоростной поток тормозят до чисел Маха в диапазоне от 3 до 4 в сверхзвуковом двухступенчатом воздухозаборнике...
Тип: Изобретение
Номер охранного документа: 0002573427
Дата охранного документа: 20.01.2016
20.06.2016
№217.015.02ec

Стенд для циклических испытаний газодинамических подшипников

Изобретение относится к испытательной технике и может быть использовано при испытаниях и доводке газовых подшипников высокооборотных турбомашин. Стенд содержит вал, установленный в радиальном подшипнике, закрепленном на станине стенда, установленный на валу испытуемый газодинамический...
Тип: Изобретение
Номер охранного документа: 0002587758
Дата охранного документа: 20.06.2016
10.04.2016
№216.015.2d20

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку

Способ конвертирования турбовального авиационного двигателя в наземную газотурбинную установку. Удаляют лопатки из проточных частей последних ступеней компрессора и первых ступеней турбины. Заменяют сопловой аппарат первой ступени (из оставшихся) конвертированной турбины на сопловой аппарат...
Тип: Изобретение
Номер охранного документа: 0002579526
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3221

Способ функционирования турбореактивного двухконтурного двигателя летательного аппарата с выносными вентиляторными модулями

Изобретение позволяет улучшить согласование взлетного и крейсерского режимов работы двигателя и повысить топливную экономичность двигателей гражданской и транспортной авиации. Указанный технический результат достигается тем, что турбореактивный двухконтурный двигатель летательного аппарата с...
Тип: Изобретение
Номер охранного документа: 0002580608
Дата охранного документа: 10.04.2016
20.05.2016
№216.015.3f8b

Муфта составного ротора газогенератора газотурбинного двигателя

Муфта составного ротора газогенератора газотурбинного двигателя содержит средства для передачи крутящего момента и осевого сцепления двух соосных вращающихся колес в виде перемещающихся элементов, размещенных в кольцевых выемках, выполненных в цапфе центробежного колеса компрессора и цапфе...
Тип: Изобретение
Номер охранного документа: 0002584109
Дата охранного документа: 20.05.2016
12.01.2017
№217.015.5898

Насос-дозатор

Изобретение относится к системам подачи и дозирования рабочего тела с электроприводными насосами, в частности к системам топливоподачи и управления газотурбинных двигателей. Насос-дозатор содержит насос подачи рабочего тела с регулируемым электроприводом, включающим электродвигатель (ЭД), блок...
Тип: Изобретение
Номер охранного документа: 0002588315
Дата охранного документа: 27.06.2016
13.01.2017
№217.015.713e

Способ определения тяги в полете турбореактивного двухконтурного двигателя со смешением потоков

Изобретение относится к области управления турбореактивным двухконтурным двигателем со смешением потоков ТРДД и ТРДД с форсажной камерой сгорания ТРДДФ и позволяет определить с повышенной точностью тягу в полете с учетом реального истечения газа из реактивного сопла. По замерам полетной...
Тип: Изобретение
Номер охранного документа: 0002596413
Дата охранного документа: 10.09.2016
Показаны записи 21-24 из 24.
19.04.2019
№219.017.2e2d

Способ изготовления пластин для теплообменников

Изобретение предназначено для производства плоских заготовок для теплообменников с рельефом заданной формы на одной из сторон пластины. Способ включает продольную горячую прокатку в горизонтальных валках. Возможность получения заготовок для теплообменников заданной формы высокой точности по...
Тип: Изобретение
Номер охранного документа: 0002393932
Дата охранного документа: 10.07.2010
20.05.2019
№219.017.5cca

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя

Устройство газификации твердых углеводородов для прямоточного воздушно-реактивного двигателя содержит твердотопливный газогенератор с выпускным патрубком и воспламенителем и газификатор, имеющий полый корпус с впускной и выпускной полостями, расположенными на противоположных сторонах корпуса,...
Тип: Изобретение
Номер охранного документа: 0002688054
Дата охранного документа: 17.05.2019
19.06.2019
№219.017.896d

Пилон - автовоспламенитель топлива

Изобретение относится к прямоточным воздушно-реактивным двигателям. Пилон содержит переднее и заднее тела аэродинамического профиля. Тела пилона выполнены трубчатыми. Пилон содержит, по меньшей мере, две трубки, расположенные одна за другой с закругленной передней кромкой. Трубки одним концом...
Тип: Изобретение
Номер охранного документа: 0002428576
Дата охранного документа: 10.09.2011
15.05.2023
№223.018.57b1

Установка для газодинамических испытаний

Изобретение относится к испытаниям авиационной и ракетной техники. Установка для газодинамических испытаний содержит испытательную камеру (1) и генератор (7) газового потока. В генераторе (7) газового потока установлен эжектор (25), имеющий канал (26) активной среды первой ступени со...
Тип: Изобретение
Номер охранного документа: 0002767554
Дата охранного документа: 17.03.2022
+ добавить свой РИД