×
28.07.2018
218.016.7650

Результат интеллектуальной деятельности: УСТРОЙСТВО КОЛЛИНЕАРНОГО ПЕРЕНОСА ОСЕЙ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Устройство содержит зеркально-призменную систему и светоделитель 4. Зеркально-призменная система содержит составленную из отдельных элементов призму-крышу 3 с внешними отражающими поверхностями и монопластину 1, которые объединены посредством дополнительной призмы 2. Отражающие поверхности призмы-крыши обращены в сторону светоделителя 4, выполненного на монопластине 1. Все элементы зеркально-призменной системы образуют между собой полый трехгранный прямой угол и последовательно соединены друг с другом по участкам вне зон прохождения оптического излучения. Составная призма-крыша 3 выполнена так, что та ее часть, которая контактирует с дополнительной призмой 2, составляет прямые двугранные углы с каждой из двух ее отражающих поверхностей. Технический результат - улучшение энергетических характеристик и повышение стабильности расположения осей излучения за счет соединения отдельных элементов. 2 з.п. ф-лы, 3 ил.

Изобретение относится к оптическим системам лазерной локации и дальнометрии.

Известно устройство для проверки параллельности оптических осей (RU 2422791 C1, G01M 11/02), которое может быть использовано для выверки параллельности оптических осей сложных многоканальных оптико-электронных систем. Устройство содержит систему призм с входным и выходными зрачками и источник излучения. Все призмы соединены между собой в моноблок, у которого грань первой призмы, выполненная в виде прямого двугранного угла, является входным зрачком, а отражающие грани, по меньшей мере, двух других призм являются выходными зрачками. При этом все призмы соединены между собой, по меньшей мере, одной ромбической призмой с одной отражающей и одной полупрозрачной гранью так, что при их соединении между гранями входного и каждого из выходных зрачков образуется прямой трехгранный угол. Луч, направляемый во входной зрачок призменного моноблока от источника излучения, меняет свое первоначальное направление на 180°. Устройство позволяет проверять параллельность оптических осей для двух и более каналов за счет того, что визирная ось одного из проверяемых каналов передается призменным моноблоком одновременно во все проверяемые каналы.

Недостатками данного устройства являются сложность его конструкции, а также наличие, по крайней мере, одного клеевого соединения (в месте расположения светоделительного слоя), которое приводит к нестабильности параллельности осей входного и выходного пучков при длительном использовании устройства, что снижает его точностные характеристики.

Наиболее близкой по технической сущности является зеркально-призменная система (прототип), входящая в состав углоизмерительного звездного прибора (RU 98801 U1, G01B 11/26). Зеркально-призменная система (моноблок призм) содержит призму БкР-180° (уголковый световозвращатель) и призму, которая дополняет зеркально-призменную систему до плоскопараллельной пластины. В месте соединения призм нанесено светоделительное покрытие.

Работа устройства основана на измерении угла между осями излучения, одно из которых прошло через призму БкР-180° (опорное излучение), а второе - через дополняющую призму, светоделительное покрытие и часть призмы БкР-180° (направление на звезду).

Зеркально-призменная система позволяет развернуть излучение, поступающее во входной зрачок призмы БкР-180°, на угол 180°. Точность угла разворота определяется точностью выполнения прямых двугранных углов призмы. Направление оси вышедшего из призмы излучения остается стабильным по отношению к оси излучения, поступающего в ее входной зрачок, и практически не зависит от внешних факторов (температуры, давления, влажности окружающей среды).

Отклонение направления излучения, прошедшего через дополняющую призму, светоделительное покрытие и часть призмы БкР-180°, определяется следующими факторами:

1) точностью изготовления в дополняющей призме ее двугранного угла 45°, где погрешность угла приводит к отклонению направления оси излучения от звезды, но угол отклонения остается стабильным и практически не зависит от внешних факторов;

2) материалом, позволяющим соединить обе призмы.

На практике таким материалом, позволяющим соединить две поверхности с нанесенным на одной из них светоделительным покрытием, является оптический клей. Присутствие клеевой прослойки может привести к нестабильности взаимного расположения соединяемых деталей и, как следствие этого, к дополнительному отклонению оси проходящего излучения. Угол дополнительного отклонения излучения является непредсказуемой переменной величиной и зависит от внешних факторов. Дефекты клеевого соединения ухудшают энергетические характеристики устройства, т.к. излучение обязательно проходит через склеиваемые поверхности.

Таким образом, наличие клеевого соединения в устройстве снижает его точностные и энергетические характеристики и является существенным недостатком.

В устройстве-прототипе излучение опорного канала и канала направления на звезду проходит через материал призм. Оптическая неоднородность и двулучепреломление материала призм может привести к ухудшению оптических характеристик излучения, что приведет к размытию или несимметрии изображений в плоскости фотоприемного устройства в канале регистрации угла отклонения осей. Это также снижает точностные характеристики устройства.

Прохождение излучения через материал призм приводит к энергетическим потерям, связанным с поглощением светового потока, которое сопровождается нагревом и нежелательной деформацией отражающих и преломляющих поверхностей призм и клеевого соединения, и с рассеянием светового потока на воздушных пузырях и непрозрачных включениях внутри материала. Это также является недостатком устройства-прототипа.

Задачей изобретения является создание устройства коллинеарного переноса осей оптического излучения, обеспечивающего минимальные энергетические потери и повышенную стабильность расположения осей излучения.

Технический результат изобретения состоит:

- в улучшении энергетических характеристик за счет использования зеркальных элементов с внешним отражением и минимальным ходом светового потока внутри материала светоделителя;

- в повышении стабильности расположения осей излучения за счет соединения отдельных элементов, например, с помощью глубокого оптического контакта, по участкам поверхностей элементов, через которые излучение не проходит.

Это достигается тем, что в устройстве коллинеарного переноса осей оптического излучения, содержащем зеркально-призменную систему и светоделитель, зеркально-призменная система содержит составленную из отдельных элементов призму-крышу с внешними отражающими поверхностями и монопластину, которые объединены посредством дополнительной призмы, при этом отражающие поверхности призмы-крыши обращены в сторону светоделителя, выполненного на монопластине, причем все элементы зеркально-призменной системы образуют между собой полый трехгранный прямой угол и последовательно соединены друг с другом по участкам вне зон прохождения оптического излучения.

Монопластина может быть выполнена плоскопараллельной.

Монопластина может быть выполнена клиновидной, при этом в устройство дополнительно вводится клиновидный компенсатор, размещенный по направлению выхода лучей из монопластины так, чтобы они в совокупности образовали эквивалентную плоскопараллельную пластину.

Изобретение поясняется чертежами, где изображены на

фиг. 1 - общий вид устройства.

фиг. 2 - призма-крыша и ее составные части.

фиг. 3 - общий вид устройства, в котором монопластина выполнена клиновидной с установленным за ней клиновым компенсатором.

На фиг. 1 показано устройство, в котором монопластина 1, выполнена, например, плоскопараллельной. Монопластина 1 последовательно соединена с дополнительной призмой 2 и составленной из отдельных элементов призмой-крышей 3 с внешними отражающими поверхностями. На поверхности монопластины 1, обращенной в сторону призмы-крыши 3 и вне зоны контакта с поверхностью дополнительной призмы 2, выполнено светоделительное покрытие (светоделитель) 4.

На фиг. 2 показано устройство, когда монопластина 1 выполнена, например, клиновидной, а по направлению выхода лучей из монопластины 1 установлен клиновидный компенсатор 5.

Дополнительная призма 2 выполнена в виде плоскопараллельной пластины со скошенными боковыми полированными поверхностями, которые по отношению к нижней шлифованной поверхности имеют углы 45° и 135°.

Составная призма-крыша 3 выполнена так, что та ее часть, которая контактирует с дополнительной призмой 2, составляет прямые двугранные углы с каждой из двух ее отражающих поверхностей.

Все элементы 1, 2, и 3 последовательно жестко соединены друг с другом по участкам их полированных поверхностей вне зон прохождения оптического излучения. Соединение может быть произведено, например, с помощью глубокого оптического контакта.

Призма-крыша на фиг. 3 состоит из трехгранной призмы ABCA1B1C1 и прямоугольной призмы DEFD1E1F1. В призме ABCA1B1C1 плоскости ABC, АВВ1А1 и ACC1A1 взаимно перпендикулярны. В призме DEFD1E1F1 взаимно перпендикулярны плоскости DEF и DFF1D1.

Для образования призмы-крыши 3 призма ABCA1B1C1 боковой гранью ABB1A1 соединена с частью поверхности DFF1D1 прямоугольной призмы DEFD1E1F1. Соединение призм выполнено так, что поверхность, составленная из плоскостей ABC и DEF, представляет собой единую плоскость, что обеспечивается технологическими приемами. Соединение может быть произведено, например, с помощью глубокого оптического контакта. На отражающих поверхностях призмы-крыши нанесено зеркальное покрытие.

Длина призмы 2 выбирается исходя из требуемого расстояния Δ1 между осями оптического излучения, которые требуют коллинеарного переноса.

Устройство работает следующим образом.

В случае, если монопластина 1 выполнена плоскопараллельной, то оптическое излучение направляется под углом, близким к 45°, к нормали поверхности монопластины 1 со светоделителем 4 (фиг. 1), где происходит его деление на два направления.

В первом направлении излучение проходит через пластину 1 и преломляется на ее поверхностях. На выходе из пластины оптическая ось излучения испытает параллельное смещение Δ2 относительно оптической оси падающего излучения, определяемое углами падения, показателем преломления материала пластины и ее толщиной, и возможный угловой разворот, зависящий от параллельности поверхностей пластины.

Во втором направлении излучение отражается от поверхности светоделителя 4 монопластины 1 и направляется на призму-крышу 3, после чего отражается от ее плоских поверхностей. Действие системы, состоящей из элементов 1, 2 и 3, эквивалентно действию системы, состоящей из трех ортогонально расположенных зеркал, поэтому ось излучения, прошедшего систему, будет развернута на угол 180° по отношению к оси падающего излучения и линейно смещена на расчетное расстояние Δ1 из-за присутствия дополнительной призмы 2. Возможный дополнительный угловой разворот оси зависит от точности изготовления прямых двугранных углов призмы-крыши 3 и параллельности полированных поверхностей дополнительной призмы 2.

Дополнительный угловой разворот осей может быть сведен к допустимой величине за счет правильно выбранного допуска на параллельность поверхностей монопластины 1, допуска на параллельность полированных поверхностей дополнительной призмы 2 и допуска на прямые двугранные углы призмы-крыши 3 (фиг. 1). Использование для соединения отдельных элементов глубокого оптического контакта позволяет исключить влияние соединения на угловой разворот осей.

Толщина монопластины 1 выбирается такой, при которой световой диаметр излучения, отраженного от второй поверхности монопластины, перекрывает световой диаметр излучения, отраженного от светоделителя 4, на допустимую величину, определяемую условиями эксплуатации устройства.

В случае, если монопластина 2 выполнена клиновидной, то оптическое излучение направляется под углом, близким к 45°, к нормали поверхности монопластины 1 со светоделителем 4 (фиг. 3), где происходит его деление на два направления.

В первом направлении излучение проходит через монопластину 1 и преломляется на ее поверхностях. На выходе из пластины оптическая ось излучения испытает параллельное и угловое смещение относительно оптической оси падающего излучения, определяемое углами падения, показателем преломления материала пластины и ее толщиной и углом клина α поверхностей монопластины. Затем излучение проходит через клиновидный компенсатор 5. Его положение, угол клина β и материал выбирается таким, чтобы суммарное действие монопластины 1 и компенсатора 5 было эквивалентно действию плоскопараллельной пластины, обеспечивающей смещение оси прошедшего излучения на величину Δ2 относительно оптической оси падающего излучения и параллельность этих осей. Угол клина β клиновидного компенсатора может быть выбран равным углу клина α монопластины, при этом соответствующие поверхности этих элементов должны быть установлены в устройстве параллельно друг другу.

Угол клина монопластины 1 и его направление выбирается таким, при котором световой диаметр излучения, отраженного от второй поверхности монопластины, перекрывает световой диаметр излучения, отраженного от светоделителя 4, на допустимую величину, определяемую условиями эксплуатации устройства, а в дальнейшем полностью выводится из системы. Применение данного технического решения позволяет уменьшить толщину монопластины и клиновиднго компенсатора по сравнению с толщиной плоскопараллельной монопластины.

Во втором направлении излучение отражается от поверхности светоделителя 4 монопластины 1 и направляется на призму-крышу 3, после чего отражается от ее плоских поверхностей. В дальнейшем работа устройства аналогична работе устройства в случае, если монопластина 1 выполнена плоскопараллельной.

Таким образом, предлагаемое устройство позволяет осуществить коллинеарный перенос излучения, направленного в устройство, разделив его на первое направление, соответствующее направлению падающего излучения, и второе направление, развернутое на 180° по отношению к направлению падающего излучения. Оси двух направлений будут линейно смещены на расчетные величины Δ1 и Δ2 по отношению к оси падающего излучения. Использование глубокого оптического контакта позволяет сделать устройство монолитным и сохранить направления коллинеарного переноса, при этом поверхности, по которым произведено соединение, выведены из излучения.

В предложенном устройстве минимизирован ход излучения в оптическом материале, т.к. излучение в основном распространяется в воздушной среде. Также в предложенном устройстве уменьшено количество преломляющих поверхностей, с трех до двух (в случае, если монопластина выполнена плоскопараллельной) по сравнению с прототипом. Это улучшает энергетические и оптические характеристики заявляемого устройства.


УСТРОЙСТВО КОЛЛИНЕАРНОГО ПЕРЕНОСА ОСЕЙ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
УСТРОЙСТВО КОЛЛИНЕАРНОГО ПЕРЕНОСА ОСЕЙ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
УСТРОЙСТВО КОЛЛИНЕАРНОГО ПЕРЕНОСА ОСЕЙ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 1-6 из 6.
18.05.2018
№218.016.5200

Способ выравнивания температурного поля объекта, нагреваемого внешним источником энергии

Изобретение относится к области высоких технологий, осуществляемых на основе управляемых термодинамических процессов, и может быть использовано для получения высокоизотермичных температурных полей объектов, нагреваемых внешним источником энергии. Одна из наиболее востребованных сфер...
Тип: Изобретение
Номер охранного документа: 0002653095
Дата охранного документа: 07.05.2018
25.08.2018
№218.016.7ed5

Способ синхронизации или сличения шкал времени и устройство для его осуществления (варианты)

Предлагаемое изобретение относится к способу синхронизации или сличения шкал времени удаленных объектов путем передачи высокостабильных сигналов времени с применением волоконно-оптической линии, соединяющей объекты, и к устройству для его осуществления, состоящему из двух составных частей,...
Тип: Изобретение
Номер охранного документа: 0002664825
Дата охранного документа: 22.08.2018
11.10.2018
№218.016.8fb3

Способ идентификации примеси исследуемого вещества, родственной его основному компоненту

Изобретение относится к области аналитической химии и может быть использовано для идентификации примесей, в частности микропримесей, родственных с основным компонентом исследуемого вещества, методом хромато-масс-спектрометрии с использованием дериватизации. Способ идентификации примеси...
Тип: Изобретение
Номер охранного документа: 0002669266
Дата охранного документа: 09.10.2018
11.04.2019
№219.017.0b1c

Установка для калибровки/поверки и способ калибровки средств измерений угла расходимости лазерного пучка

Изобретение относится к области оптических измерений, а именно к высокоточным фотометрическим установкам для калибровки/поверки средств измерений угла расходимости лазерного пучка. Заявленная установка для калибровки/поверки средств измерений расходимости лазерного пучка содержит закрепленные...
Тип: Изобретение
Номер охранного документа: 0002684435
Дата охранного документа: 09.04.2019
16.08.2019
№219.017.c05e

Способ воспроизведения, передачи и измерения термодинамической температуры

Изобретение относится к измерительной технике в области высоких температур и может быть использовано в эталонной метрологии для воспроизведения, передачи и измерения термодинамической температуры согласно новому международному определению единицы ее измерения. Заявленный способ включает...
Тип: Изобретение
Номер охранного документа: 0002697429
Дата охранного документа: 14.08.2019
14.03.2020
№220.018.0bc0

Способ измерения удельной теплоемкости материалов

Изобретение относится к измерительной технике теплофизических свойств веществ, предназначено для измерения удельной теплоемкости материалов и может быть использовано в метрологии, в промышленности, в научных исследованиях и для разработки новых материалов с заранее заданными свойствами. Заявлен...
Тип: Изобретение
Номер охранного документа: 0002716472
Дата охранного документа: 11.03.2020
Показаны записи 11-17 из 17.
25.08.2017
№217.015.bd77

Ретрорефлекторная сферическая система

Изобретение может быть использовано в оптическом диапазоне в качестве пассивной автономной ретрорефлекторной сферической системы (РСС) для калибровки измерений дальности лазерными дальномерами. РСС содержит равномерно расположенные в шарообразном корпусе несквозные отверстия, внутри которых...
Тип: Изобретение
Номер охранного документа: 0002616439
Дата охранного документа: 14.04.2017
26.08.2017
№217.015.e587

Секция сеялки для разноглубинного гнездового посева семян пропашных культур

Секция сеялки для разноглубинного гнездового посева семян пропашных культур содержит кронштейн, шарнирно-рычажную параллелограммную подвеску, пневматический высевающий аппарат с бункером, распределяющее устройство, трехуровневый сошник, загортачи, прикатывающее колесо и шлейф. Для подачи семян...
Тип: Изобретение
Номер охранного документа: 0002626757
Дата охранного документа: 31.07.2017
04.04.2018
№218.016.2f80

Рабочий орган почвообрабатывающего орудия

Изобретение относится к области сельскохозяйственного машиностроения, в частности к рабочим органам для орудий основной (зяблевой) обработки почвы. Рабочий орган почвообрабатывающего орудия состоит из стойки (1) с приваренным в нижней части башмаком с накладным долотом. Вдоль стойки (1)...
Тип: Изобретение
Номер охранного документа: 0002644572
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2ff9

Рабочий орган почвообрабатывающего орудия

Изобретение относится к области сельскохозяйственного машиностроения, в частности к почвообрабатывающим рабочим органам. Рабочий орган почвообрабатывающего орудия содержит изогнутую стойку с башмаком (2), к которому болтами (6) с потаем закреплено накладное оборотное долото (3). В накладном...
Тип: Изобретение
Номер охранного документа: 0002644561
Дата охранного документа: 13.02.2018
10.05.2018
№218.016.3e03

Орудие для основной обработки почвы

Изобретение относится к области сельскохозяйственного машиностроения, в частности к орудиям для основной обработки почвы. Орудие для основной обработки почвы содержит раму, опорное колесо с механизмом регулирования глубины обработки, плоскорезные лапы, состоящие из стойки с приваренным внизу...
Тип: Изобретение
Номер охранного документа: 0002648277
Дата охранного документа: 23.03.2018
29.03.2019
№219.016.f593

Уголковый отражатель

Изобретение относится к локационной технике и может быть использовано в качестве отражающего элемента в спутниковой лазерной дальнометрии для точного определения координат навигационных и геодезических спутников. Уголковый отражатель выполнен, например, из кварца в виде призмы с боковыми...
Тип: Изобретение
Номер охранного документа: 0002458368
Дата охранного документа: 10.08.2012
03.08.2019
№219.017.bcb3

Способ определения трёхосной пространственной ориентации космического аппарата

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения пространственной ориентации координатных осей космического аппарата (КА) в инерциальной системе отсчета, связанной с Землей. Ретрорефлекторные системы (РС), установленные на КА и состоящие из...
Тип: Изобретение
Номер охранного документа: 0002696317
Дата охранного документа: 01.08.2019
+ добавить свой РИД