×
24.07.2018
218.016.7495

Результат интеллектуальной деятельности: БИПОЛЯРНЫЙ ДАТЧИК ДЕФОРМАЦИИ НА ОСНОВЕ БИОСОВМЕСТИМОГО НАНОМАТЕРИАЛА

Вид РИД

Изобретение

Аннотация: Использование: для создания тензорезисторных датчиков деформации и давления. Сущность изобретения заключается в том, что биполярный датчик содержит тонкую пленку толщиной 0,05-0,5 мкм из композиционного наноматериала в составе бычьего сывороточного альбумина или микрокристаллической целлюлозы и многостенных углеродных нанотрубок. Технический результат - обеспечение возможности повышения чувствительности датчика. 1 з.п. ф-лы, 1 табл., 3 ил.

Заявка на изобретение относится к измерительной технике, в частности к тензорезисторным датчикам деформации и давления на основе тонкопленочных нано- и микроэлектромеханических систем и может быть использована в различных биомедицинских устройствах, в том числе биодатчиках, тензодатчиках, эластомерах и т.п.

В медицинской практике необходимо контролировать движения различных частей тела: конечностей, суставов, грудной клетки, а также отеков, опухолей, деформацию мышечной ткани в рамках послеоперационной терапии и т.п. Для таких целей требуются многочисленные и разнообразные датчики деформации, т.е. тензодатчики. Наиболее распространенным и простым является тип тензодатчиков, работающих на изменение сопротивления в зависимости от деформации - так называемые тензорезисторы. Тензочувствительность для тензорезистора определяется как S=δR/ε, где δR=ΔR/R0, R0 - начальное сопротивление, ΔR - абсолютное изменение сопротивления после деформации, относительная деформация - начальная длина чувствительного элемента, - абсолютное изменение его длины.

В основном коммерческие тензорезисторы создаются на базе металлических или полупроводниковых материалов. Тензорезисторы из металлической фольги в виде меандра обладают низким температурным коэффициентом сопротивления (α≤10-5 K-1), широким диапазоном измерения относительной деформации (ε=±5%), но имеют небольшую тензочувствительность S≤10, в то время как полупроводниковые тензорезисторы обладают высокой тензочувствительностью S ~100-200, очень низкой относительной деформацией ε≤0,2% и большим температурным коэффициентом сопротивления α≥10-3 K-1 [1]. Отметим, что оба типа тензорезисторов (металлические и полупроводниковые) являются недостаточно эластичными и сильно ограничивают движения биологического объекта. Это вызвано тем обстоятельством, что их модуль упругости (Е≥10 МПа) и максимальное значение относительной деформации (ε≤1%) сильно отличаются от параметров человеческой кожи: Е≤220 кПа, ε≥10% [2].

Углеродные нанотрубоки (УНТ) обладают уникальными свойствами: высокая прочность, удельная проводимость, теплопроводность, оптическая прозрачность и др. Композиционные наноматериалы, в состав которых входят УНТ в небольшом процентном содержании (<10%), также приобретают показатели, которые невозможно достигнуть в других случаях. Например, тензорезистивный эффект в зависимости от технологии приготовления и состава наноматериала или усиливается, или подавляется. Действительно, слои композиционного наноматериала в составе карбоксилметилцеллюлозы и многостенных УНТ (МУНТ) обладают высокой удельной электропроводностью σ ~104 S/m, S ~10 и очень низким α≤10-5 K-1 [3]. В другом случае, слои в составе МУНТ с добавками AgNO3 (концентрация 2÷10 г/л), нанесенные на подложки из полидиметилсилоксана (ПДМС), имеют практически фиксированные значения сопротивления при многочисленных изгибах в диапазоне угла ±180°, и тензорезистивный эффект практический отсутствует, т.е. S ~0 [4].

Пленка, изготовленная из МУНТ в качестве тензорезистора, показала практически линейную зависимость δR от ε, отсутствие гистерезиса при нагрузке и разгрузке, стабильность регистрируемого сигнала в течение 2 ч тестирования в небольших областях, ε≤10% и S ~7 [5]. Однако такой тензорезистор оказался чувствителен к различным газам, влажности и рабочей температуре, что ставит вопрос о необходимости его защиты от окружающей среды. Для тензорезистора на основе пленки из одностенных УНТ (ОУНТ), капсулированных в слое из ПДМС, получены значения S≤6,3, ε≤10% и хорошая влагаустойчивость относительно пленки без защитного слоя из ПДМС [6 9]. Несомненно, достигнутые показатели S и ε недостаточны для биомедицинских приложений.

Многие недостатки тензорезистора на основе пленки УНТ, капсулированых в слоях ПДМС, удалось исправить с использованием модифицированного ПДМС, так называемой силиконовой резины типа Ecoflex. В тензорезисторе УНТ/ПДМС-Ecoflex реализованы показатели [7]: линейная зависимость и незначительный гистерезис на δR(ε) при ε<150%, хорошая повторяемость снимаемого сигнала для многочисленных циклов (~2000) нагрузки и снятия нагрузки.

Наиболее близким техническим решением заявляемого тензочувствительного элемента является датчик биполярной деформации на основе углеродных нанотрубок (прототип) [8]. Датчик содержит пленку МУНТ, которая капсулируется между слоями ПДМС. Датчик деформации, т.е. тензочувствительный элемент (тензорезистор), работает следующим образом. Когда датчик деформируется таким образом, что середина пленки из УНТ сжимается, т.е. она вогнута, измерительный ток увеличивается, и сопротивление пленки уменьшается. Когда датчик деформируется таким образом, что середина пленки из УНТ растягивается, т.е. она изогнута, измерительный ток уменьшается, и сопротивление пленки увеличивается. Датчик имеет недостатки: высокое сопротивление (10-50 МОм), незначительные чувствительности Sθ ~10-4 град-1 и S≤1, сложность изготовления. Здесь Sθ=δR/Δθ, Δθ - изменение угла изгиба.

Датчики (тензорезисторы) капсулируются в ПДМС или герметизуруются слоями из ПДМС после их полимеризации при 60-80°С в течение нескольких часов [6-8]. Очевидно, что при таком термическом режиме такие датчики (тензорезисторы) невозможно формировать непосредственно на коже человека, и в этом аспекте они имеют существенные недостатки. Также модуль упругости ПДМС становится больше, когда он смешивается с УНТ, поэтому несоответствие эластичности человеческой кожи и тензорезистора увеличивается. Кроме того, из-за поглощения влаги (воды) ПДМС-ом, происходит его дополнительное ужесточение и старение. Он становится хрупким и его модуль упругости сильнее отличается от модуля упругости человеческой кожи. В целом, эти факторы несоответствия не позволяют нанести предложенные тензорезисторы непосредственно на кожу человека.

Задачей предлагаемого изобретения является повышение чувствительности биполярного датчика деформации и возможность создания датчика на поверхности человеческой кожи.

Поставленная задача решается тем, что в известном биполярном датчике деформации, содержащем гибкую подложку и пленку из сети углеродных нанотрубок, используется тонкая пленка толщиной 0,05-0,5 мкм из композиционного наноматериала в составе бычьего сывороточного альбумина (БСА) или микрокристаллической целлюлозы (МКЦ) и многостенных углеродных нанотрубок. При этом в качестве гибкой подложки служат слои бумаги, или текстиля, или полиэтилентерефталата (ПЭТ) толщинами до 50 мкм.

При деформации датчика происходит следующее: сжатие (вогнутость) увеличивает, а растяжение (изогнутость) уменьшает плотность контактов между УНТ в местах изгиба пленки. Соответственно, при сжатии электропроводимость увеличивается, а при растяжении уменьшается. Датчик может быть нанесен непосредственно на кожу человека. При большом числе (более 25) циклов изгиба гистерезисы на резистивных характеристиках пренебрежимо малы - ≤1%.

Сущность предлагаемого изобретения состоит в следующем. Приготавливаются водные дисперсии композиционных наноматералов, состоящие из матрицы БСА или МКЦ и наполнителя - МУНТ. Компоненты в составе водных дисперсий имеют соотношения: 20 мас. % БСА/0,5 мас. % МУНТ; 3 мас. % МКЦ/0,2 мас. % МУНТ.

Процедура приготовления водных дисперсии типична для всех материалов, рассмотренных в предложенном изобретении. Например, для получения водной дисперсии 20 мас. % БСА/0,5 мас. % МУНТ, осуществляются следующие шаги:

1. К дистиллированной воде добавляется МУНТ, и дисперсия перемешивается в магнитной мешалке в течение 30 мин, а потом диспергируется в ультразвуковом диспергаторе при температуре ≤30°С в течение 30 мин до получения однородной дисперсии черного цвета. Концентрация МУНТ подбирается в области 0,5-1 мас. %.

2. В водную дисперсию МУНТ вводится порошок БСА в концентрации 20-25 мас. %, таким образом, чтобы реализовалось соотношение 20 мас. % БСА/2 мас. % МУНТ и вода - остальное. Затем дисперсия помещается в ультразвуковую баню и диспергируется при температуре ≤40°С в течение 60 мин до получения однородной дисперсии БСА/МУНТ черного цвета.

3. Дисперсия БСА/МУНТ декантируется в течение 24 ч, фильтруется и переливается в другой сосуд.

В дальнейшем, пленка водной дисперсии БСА/МУНТ наносится на гибкую подложку методом шелкографии. После сушения при комнатной температуре в течение несколько минут (до 10 минут) структура БСА/МУНТ/ПЭТ становится прототипом датчика деформации с тензочувствительной пленкой из композитного наноматериала БСА/МУНТ толщиной 0,05-0,5 мкм. На свободной поверхности пленки, т.е. на поверхности, граничащей с воздухом, проводятся электрические измерения.

Подобным же образом изготавливаются водные дисперсии 3 мас. % МКЦ/0,2 мас. % МУНТ, а также на их основе создаются прототипы датчика деформации.

Составные материалы, которые используются в процессе приготовления водных дисперсий композитных наноматериалов, являются биосовместимыми. Некоторые их характеристики описаны ниже.

В качестве матрицы композитного наноматериала БСА/МУНТ применялся биологический материал БСА фирмы AMRESCO с кодом 0332-100G и CAS# 9048-46-8 [9]. В соответствии с паспортными данными содержание тяжелых металлов, в частности Pb составляет ≤0.001%, Fe - ≤0.0005%; pH водной дисперсии при 5 мас. % БСА и 25°С - 6,5-7,5; чистота - ≥98%. Выбор БСА был связан с его высокой биосовместимостью, относительно высокой температурой денатурации ≥55°С и стабильностью характерных параметров по сравнению с человеческим сывороточным альбумином, а также в связи с широким использованием БСА в медицинской практике в качестве медицинских препаратов или в составе их.

В качестве матрицы также использовался МКЦ серии VIVAPUR®MCG811P. Он представляет собой совместно обработанный композит, состоящий из микрокристаллической целлюлозы и незначительной части натрийкарбоксиметилцеллюлозы (Na-CMC) [10]. Благодаря своему экстраординарному стабилизирующему механизму VIVAPUR®MCG может применяться с широким спектром активных фармацевтических ингредиентов. В частности: назальные спреи и оральные суспензии, гели, кремы и лосьоны. Он часто используется в животных продуктах и педиатрических суспензиях.

В качестве наполнителя в композитном наноматериале применяется МУНТ типа «Таунит-МД» [11]. Основными параметрами этих углеродных нанотрубок являются: внешний диаметр -30-80 нм; внутренний диаметр - 10-20 нм; длина - ≥20 мкм; общее количество примесей после очистки - ≤1%; насыпная плотность - 0,03-0,05 г/см3; удельная поверхность - 180-200 м2/г; термическая устойчивость на воздухе - ≤600°С.

На фиг. 1 показан внешний вид типичной пленки толщиной d≈0,5 мкм, изготовленной из композитного наноматериала БСА/МУНТ, нанесенного на ситец. На фиг. 2 изображено фото механической части установки, позволяющей проводить измерения параметров датчика при деформациях изгиба (вогнутость, изогнутость). Установка проводит все измерения в автоматическом режиме, процесс измерения контролируется персональным компьютером. Записываются следующие параметры: количество циклов, количество шагов, сопротивление, рабочая температура, время измерения каждого шага. Радиус r изгиба регулируется в области 0,5-10 мм. Во всех случаях мы использовали r=2 мм.

На фиг. 2 видны электроды из стержней алюминия и гетинакса с разрезами, в которых закрепляются концы датчика. Одна сторона разреза электрода из гетинакса металлизирована, что автоматически различает проводящие и не проводящие поверхности датчика при его креплении. Один конец датчика остается фиксированным в электроде и не двигается, а второй конец закреплен во втором электроде, который поворачивается шаговым двигателем, тем самым датчик подвергается изгибу. Один шаг соответствует 2° угла θ поворота электрода, т.е. изгиба датчика. Скорость шага (изгиба) регулируется в области 0,2-2 шаг/с. Диапазон изгиба может быть Δθ=±180°. При θ=0 - датчик не деформирован; θ>0 - датчик вогнут (свободная поверхность вогнута); θ<0 датчик изогнут (свободная поверхность изогнута). В нашем эксперименте один полный цикл содержал около 280 шагов, т.е. датчик получал изгибы в диапазоне Δθ=±140°. Скорость изгиба ~0,5 шаг/сек, т.е. 1°/с, один цикл измерения длился ~560 с. Для некоторых датчиков полное число циклов измерения достигало n ~750, а число шагов ~200000.

На фиг. 3 представлена типичная зависимость сопротивления R от угла θ для датчика на основе пленки из композитного наноматериала БСА/МУНТ при количестве циклов измерения n=30. Видно, что кривая R(θ) является непрерывной и практически линейной при небольших диапазонах Δθ, например Δθ=20°. При начальных циклах (n=1-10) на R(θ) наблюдаются гистерезисы, которые с увеличением n постепенно уменьшаются, и при n≥25 практический исчезают. Например, при n=1 и фиксированном θ=0 диапазон гистерезиса для R достигает 10-15%, а при фиксированном R диапазон гистерезиса для θ - 30%. Однако с повышением циклов и при n≥25 показатели гистерезисов значительно уменьшаются и они не превосходят 1-2% при одном цикле измерения. С ростом n происходит незначительное увеличение абсолютного значения R. В частности, для случая, приведенного на фиг. 3 при θ=0 сопротивление датчика изменяется от 56,5 кОм до 57,1 кОм, при циклах регистрации n=1 и n=30, соответственно. Из R(θ) вычисленные чувствительности Sθ ~2⋅10-3 град-1 и S ~40 на порядок и более превосходят значения, достигнутые в прототипе. Величина S определялся с учетом радиуса изгиба r=2 мм и толщины d≈0,5 мкм, как S=(ΔR/R0)/(d/r) согласно геометрии пленки.

Подобные кривые R(θ) были записаны для пленок из композитного наноматериала МКЦ/МУНТ. Некоторые параметры датчиков, полученные при обработке R(θ) приведены в табл. 1. Удельное сопротивление ρ пленок определяется при отсутствии деформации, т.е. при θ=0.

В табл. 1 отражены измеренные данные датчика (точность по порядку величины), из которых следует корреляция: высокие чувствительности деформации на изгиб реализуются на более тонких пленках, имеющих относительно низкие удельные сопротивления. Отметим, что полученные значения Sθ ~(13-17)⋅10-3 (1/град) и S ~100-160 более, чем на два порядок превышают показатели, достигнутые в прототипе.

В прототипе чувствительным элементом служит пленка только из МУНТ, которая капсулируется между слоями ПДМС, тогда как в предложенной заявке чувствительным элементом, т.е. датчиком, служит пленка композитного наноматериала. В этом случае нанотрубки крепко связаны с матрицей и они не могут ее покинуть, что дополнительно повышает степень безопасности предложенного датчика.

Отметим некоторые важные свойства предложенного датчика:

- биполярный датчик деформации имеет высокую тензочувствительность относительно изгиба - 10-2 (1/град); низкое удельное сопротивление - ≤1 Ом⋅м;

- датчик представляет собой пленку толщиной ≤0,5 мкм из композиционного наноматериала, состоящего из матрицы биологического материала (бычий сывороточный альбумин или микрокристаллическая целлюлоза), или биосовместимого материала (акриловая краска) и многослойных углеродных нанотрубок в небольшом количестве (≤10 мас. %);

- возможность формирования на коже человека с помощью 3-D принтера;

- простая технология приготовления пленок на поверхности гибкой подложки, не требующих термической обработки;

- из-за высокой тензочувствительности и небольших массо-габаритов предложенный датчик перспективен как датчик давления и как датчик тактильных ощущении;

- при большом числе (более 25) циклов изгиба гистерезисы на резистивные характеристики пренебрежимо малы - ≤1%.

Достоинством предложенного датчика деформации на основе пленки является также возможность варьирования консистенции, твердости, модуля упругости (эластичности), тензочувствительности и удельной электропроводимости в зависимости от условий приготовления и концентрационного состава композицонного наноматериала. Следовательно, для каждой конкретной задачи можно подобрать нужные параметры датчика, в частности, модуль упругости для его формирования не только на коже человека, но и на кожном покрове различных биологических объектов. Рассмотренные композитные наноматериалы ввиду их биосовместимости, электропроводности и возможности нанесения на кожную поверхность, перспективны для бурно развивающего направления «Кожная электроника».

Таким образом, поставленная задача выполнена. Предложен биполярный датчик деформации на основе биосовместимых наноматериалов с повышенной чувствительностью и возможностью его формирования на поверхности человеческой кожи.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. http://www.hbm.ru/pic/pdf/1372416324.pdf.

2. Liang X., and Boppart S.A. / Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography // IEEE Transactions on Biomedical Engineering, 2010, 57(4), pp. 953-959. _DOI: 10.1109/TBME.2009.2033464.

3. Ichkitidze L., Podgaetsky V., Selishchev S., Blagov E., Galperin V., Shaman Y., Pavlov A., Kitsyuk E. / Electrically-Conductive Composite Nanomaterial with Multi-walled Carbon Nanotubes // Materials Sciences and Applications. 2013. Vol. 4 (5A). PP. 1-7.

4. Jiang D. / Carbon Nanotube Based Interconnect Materials for Electronic Applications // EMSL Department of Microtechnology and Nanoscience (MC2), Chalmers University of Technology SE-412 96 Gothenburg, Sweden, 2015. - 55 p. ISBN: 978-91-7597-305-0.

5. Jung D. and Lee G.S. / Strain-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet // Journal of Sensor Science and Technology, Vol. 22, No. 5 (2013) pp. 315-320. http://dx.doi.Org/10.5369/JSST.2013.22.5.315.

6. Liu Y., Sheng Q., Muftu S., Khademhosseini A., Wang M.L., and Dokmeci M.R. / A stretchable and transparent SWCNT strain sensor encapsulated in thin PDMS films // Transducers 2013, Barcelona, SPAIN, 16-20 June 2013, T3P.044, pp. 1091-1094.

7. Amjadi M., Yoon Y.J., and Park I. / Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites // Nanotechnology, 26 (2015) 375501 (11pp). doi: 10.1088/0957-4484/26/37/375501.

8. Патент KR 101527863 - прототип.

9. http://www.amresco-inc.com/ALBUMIN-BOVINE-0332.cmsx.

10. http://www.rettenmaier.ru/jrs_ru/life-science/food/products/functional-cellulose/.

11. http://www.nanotc.ru/contacts.


БИПОЛЯРНЫЙ ДАТЧИК ДЕФОРМАЦИИ НА ОСНОВЕ БИОСОВМЕСТИМОГО НАНОМАТЕРИАЛА
БИПОЛЯРНЫЙ ДАТЧИК ДЕФОРМАЦИИ НА ОСНОВЕ БИОСОВМЕСТИМОГО НАНОМАТЕРИАЛА
БИПОЛЯРНЫЙ ДАТЧИК ДЕФОРМАЦИИ НА ОСНОВЕ БИОСОВМЕСТИМОГО НАНОМАТЕРИАЛА
БИПОЛЯРНЫЙ ДАТЧИК ДЕФОРМАЦИИ НА ОСНОВЕ БИОСОВМЕСТИМОГО НАНОМАТЕРИАЛА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 64.
04.04.2018
№218.016.3665

Способ получения кремния с изотопическим составом si, si

Изобретение относится к технологии трансмутационного легирования полупроводниковых материалов, в частности к получению кремния с определенным изотопическим составом, который может быть использован для создания квантовых битов информации на ядерных спинах атомов фосфора, полученных трансмутацией...
Тип: Изобретение
Номер охранного документа: 0002646411
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.412c

Инфракрасный сенсор с переключаемым чувствительным элементом

Инфракрасный сенсор с переключаемым чувствительным элементом относится к устройствам для бесконтактного измерения температуры в различных системах управления и контроля. Инфракрасный сенсор с переключаемым чувствительным элементом содержит теплоприемную мембрану, прикрепленную к подложке с...
Тип: Изобретение
Номер охранного документа: 0002649040
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4a9b

Способ локального травления двуокиси кремния

Изобретение относится к микроэлектронике, способам контроля и анализа структуры интегральных схем, к процессам жидкостного травления. Сущность изобретения: выравнивание локальной неравномерности толщины слоя двуокиси кремния на поверхности кристалла ИС, образовавшейся в процессе...
Тип: Изобретение
Номер охранного документа: 0002651639
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.5539

Способ формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек

Суть настоящего изобретения состоит в процессе формирования трехмерных структур топологических элементов функциональных слоев на поверхности подложек. Способ основан на применении перспективной «аддитивной технологии», то есть топологические элементы функционального слоя создаются на локальных...
Тип: Изобретение
Номер охранного документа: 0002654313
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.557f

Способ получения фоторезистивного слоя на различных подложках

Изобретение относится к области литографии и касается способа получения фоторезистивного слоя. Фоторезистивный слой получают аэрозольным распылением из раствора фоторезистивного материала. Одновременно с аэрозольным потоком, при расходе не более 0,3 мл/мин, над подложкой формируют поток газа, с...
Тип: Изобретение
Номер охранного документа: 0002654329
Дата охранного документа: 17.05.2018
29.05.2018
№218.016.562c

Устройство для защиты от несанкционированного акустического контроля

Изобретение относится к устройствам защиты от несанкционированного прослушивания разговоров в помещениях. Техническим результатом является повышение эффективности защиты речевой информации от утечки по техническим каналам и несанкционированного акустического контроля. Упомянутый технический...
Тип: Изобретение
Номер охранного документа: 0002654545
Дата охранного документа: 21.05.2018
16.06.2018
№218.016.6250

Автоматизированная контрольно-проверочная аппаратура интегрированной информационно-управляющей системы беспилотного летательного аппарата

Автоматизированная контрольно-проверочная аппаратура (АКПА) интегрированной информационно-управляющей системы беспилотного летательного аппарата содержит ПЭВМ, универсальный решающий модуль и модуль ввода-вывода. Универсальный решающий модуль содержит решающее устройство на основе...
Тип: Изобретение
Номер охранного документа: 0002657728
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.632f

Биосовместимый наноматериал для лазерного восстановления целостности рассеченных биологических тканей

Изобретение относится к области лазерной медицины и, конкретно, к восстановительной хирургии. Описан биосовместимый наноматериал для лазерного восстановления целостности рассеченных биологических тканей, содержащий водную дисперсионную основу белка альбумина, углеродные нанотрубки и медицинский...
Тип: Изобретение
Номер охранного документа: 0002657611
Дата охранного документа: 14.06.2018
25.06.2018
№218.016.66c1

Автономный портативный термоэлектрический источник питания

Изобретение относится к термоэлектрическим источникам питания. Сущность изобретения: автономный портативный термоэлектрический источник питания включает термоэлектрическое устройство, преобразующее тепло в электричество, источник тепла, находящийся в тепловом контакте с нагреваемой стороной...
Тип: Изобретение
Номер охранного документа: 0002658494
Дата охранного документа: 21.06.2018
03.07.2018
№218.016.6a1e

Следящий синусно-косинусный преобразователь угла в код

Изобретение относится к области измерительной техники, в частности к синусно-косинусным преобразователям угла в код. Техническим результатом является повышение разрядности преобразователя при меньшем объеме ПЗУ без потери быстродействия преобразования. Следящий синусно-косинусный...
Тип: Изобретение
Номер охранного документа: 0002659468
Дата охранного документа: 02.07.2018
Показаны записи 11-20 из 29.
19.01.2018
№218.016.0dde

Способ получения биосовместимого наноматериала

Изобретение относится к медицине и может быть использовано для получения биосовместимого наноматериала. Для этого осуществляют проведение лазерного облучения водной дисперсии альбумина, содержащей углеродные нанотрубки, вплоть до испарения жидкостной составляющей дисперсии. При этом в состав...
Тип: Изобретение
Номер охранного документа: 0002633088
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.1972

Биоприпой для лазерной сварки биологических тканей

Изобретение относится к медицине и касается биоприпоя для лазерной сварки биологических тканей. Биоприпой содержит водную дисперсионную основу белка альбумина. При этом в его состав введены однослойные углеродные нанотрубки и медицинский краситель индоцианин зеленый при следующем соотношении...
Тип: Изобретение
Номер охранного документа: 0002636222
Дата охранного документа: 21.11.2017
16.06.2018
№218.016.632f

Биосовместимый наноматериал для лазерного восстановления целостности рассеченных биологических тканей

Изобретение относится к области лазерной медицины и, конкретно, к восстановительной хирургии. Описан биосовместимый наноматериал для лазерного восстановления целостности рассеченных биологических тканей, содержащий водную дисперсионную основу белка альбумина, углеродные нанотрубки и медицинский...
Тип: Изобретение
Номер охранного документа: 0002657611
Дата охранного документа: 14.06.2018
28.08.2018
№218.016.7fb1

Способ функционализации поверхности изделий из полилактида

Изобретение относится к полимерной промышленности и может быть использовано для медицинских имплантов и культивирования клеток. Осуществляют модификацию поверхности изделий из полилактида путем функционализации гидроксильными группами посредством обработки высокочастотной плазмой разряда...
Тип: Изобретение
Номер охранного документа: 0002664925
Дата охранного документа: 23.08.2018
07.09.2018
№218.016.8398

Способ формирования фоторезистивной пленки из раствора на поверхности подложки

Изобретение может быть использовано для формирования фоторезистивных пленок, однородных по толщине и пригодных для проведения операций фотолитографии для формирования интегральных микросхем, МЭМС и СВЧ-структур на подложках, в том числе со сложным рельефом, где перепад высот существенно больше...
Тип: Изобретение
Номер охранного документа: 0002666175
Дата охранного документа: 06.09.2018
01.11.2018
№218.016.9831

Устройство и способ дозирования заданного объема жидкости

Изобретение может быть использовано для дозирования и нанесения жидкостей и растворов, в том числе коллоидных с повышенной точностью и воспроизводимостью дозируемого объема, как розливом для заполнения контейнеров, так и аэрозольным распылением на поверхности. Содержит устройство и способ...
Тип: Изобретение
Номер охранного документа: 0002671182
Дата охранного документа: 29.10.2018
01.11.2018
№218.016.9932

Устройство для беспроводной чрескожной передачи оптической энергии для питания имплантируемых медицинских приборов

Изобретение относится к области медицинской техники и может быть использовано для беспроводного дистанционного питания имплантируемых медицинских приборов. Устройство содержит внешний передающий модуль, включающий источник энергии, источник оптического излучения, снабженный отражающим...
Тип: Изобретение
Номер охранного документа: 0002671418
Дата охранного документа: 31.10.2018
15.12.2018
№218.016.a78a

Искусственная мышца для сердечной ткани

Изобретение относится к медицинской технике, натотехнологиям, биомедицинским, биомеханическим протезам, может быть применено в робототехнике и актюаторах (приводах). Для создания искусственной мышцы (ИМ), выполняющей механическую функцию поврежденной сердечной ткани, наиболее подходящими...
Тип: Изобретение
Номер охранного документа: 0002675062
Дата охранного документа: 14.12.2018
20.03.2019
№219.016.e91e

Устройство для перекачивания крови

Изобретение относится к устройствам для перекачивания крови и может быть использовано в качестве вспомогательного устройства при недостаточной работе сердца, а также в качестве основного насоса в системах вспомогательного кровообращения. Устройство включает размещенные внутри статорной обмотки...
Тип: Изобретение
Номер охранного документа: 0002430748
Дата охранного документа: 10.10.2011
19.04.2019
№219.017.2f75

Фотометр

Изобретение относится к области измерения оптических характеристик рассеивающих, например биологических, сред. Фотометр состоит из источника оптического излучения, узкой трубки для размещения образца с осью, ориентированной вдоль исходного луча источника оптического излучения, и внутренней...
Тип: Изобретение
Номер охранного документа: 0002371703
Дата охранного документа: 27.10.2009
+ добавить свой РИД