×
24.07.2018
218.016.742c

Результат интеллектуальной деятельности: Способ выплавки с направленной кристаллизацией магнитного сплава системы Fe-Al-Ni-Co

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к технологии производства магнитных сплавов системы железо-алюминий-никель-кобальт, применяемых для получения постоянных магнитов электродвигателей и навигацинных устройств. Способ включает размещение поликристаллической заготовки из сплава на затравке в керамической форме, размещение керамической формы в области нагревателя над охладителем и проведение процесса направленной кристаллизации сплава при наличии температурного градиента перед фронтом кристаллизации, при этом поликристаллическую заготовку из сплава предварительно расплавляют и повышают ее температуру до 1580-1620°С, расплавленную поликристаллическую заготовку заливают в подогретую до температуры 1500-1600°С керамическую форму, выдерживают в ней 0,5-1 мин и проводят процесс направленной кристаллизации сплава посредством перемещения керамической формы в жидкометаллический охладитель с температурой 300-320°С со скоростью 1-5 мм/мин в условиях температурного градиента на фронте кристаллизации 100-150 град/см. Техническим результатом изобретения является получение заготовок магнитного сплава системы железо-алюминий-никель-кобальт с разориентацией кристаллов в пределах 5 градусов, а также обеспечение высоких магнитных свойств (остаточной индукции В, коэрцитивной силы по индукции Н, максимального энергетического произведения (ВН)) сплавов. 1 з.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, а именно к способам выплавки с направленной кристаллизацией магнитных сплавов системы железо-алюминий-никель-кобальт, применяемых для получения постоянных магнитов электродвигателей и навигационных устройств.

Основной проблемой повышения эксплуатационных характеристик постоянных магнитов (магнитных свойств и температурной стабильности) является создание технологии получения совершенной кристаллической структуры материала. Получение монокристаллической заготовки возможно за счет создания контролируемого (постоянного) высокого температурного градиента при затвердевании расплава в процессе кристаллизации и использования специальных монокристаллических затравок.

Известен способ получения ориентированных монокристаллических заготовок из сплавов с перитектическим превращением, включающий изготовление поликристаллической заготовки, ее повторное расплавление на монокристаллической затравке и направленное затвердевание с температурным градиентом, при этом используют монокристаллическую затравку из состава сплава твердого раствора, первоначально кристаллизующегося до начала перитектической реакции (RU 2084561 С1, 20.07.1997).

Недостатком описанного способа является трудоемкий процесс подбора химического состава материала затравки и расчет индивидуального химического состава для каждой марки сплава.

Известен способ получения литых монокристаллических заготовок с использованием затравки из сплава, содержащего все компоненты требуемого состава поликристаллической заготовки, кроме титана, причем содержание титана в исходной поликристаллической заготовке увеличивают по сравнению с требуемым составом на величину, определяемую из формулы: ΔCзаг=Cспл⋅(h/H), где Сспл - требуемое содержание титана в монокристаллической заготовке, %; Н - высота исходной поликристаллической заготовки, см; h - высота зоны приплавления к затравке, см; при этом содержание одного или нескольких компонентов в монокристаллической затравке увеличивают на величину содержания титана в сплаве, а в поликристаллической заготовке содержание этих компонентов, соответственно, уменьшается (RU 2127774 С1, 20.03.1999).

Недостатком описанного способа является трудоемкий процесс подбора материала затравки, расчет индивидуального химического состава для каждой марки сплава и проведение дополнительной плавки заготовок для затравок.

Наиболее близким аналогом предложенного способа является способ выращивания монокристаллов магнитных сплавов, включающий размещение поликристаллической заготовки на затравке в керамической форме из окиси алюминия, размещение керамической формы в тепловом узле многопозиционной установки «Кристаллизатор-203» над охладителем и проведение процесса направленной кристаллизации при наличии температурного градиента перед фронтом кристаллизации. С целью увеличения производительности способа, выхода годных монокристаллов и кратности использования огнеупорных форм градиент температуры в расплаве перед фронтом кристаллизации создают величиной G=1-10 град/мм, а кристаллизацию ведут со скоростью V=1-100 мм/мин (SU 1807101 А1, 07.04.1993).

Проведение процесса направленной кристаллизации на установке «Кристаллизатор-203» (описание установки «Кристаллизатор 203» на сайте производителя ВНИИТВЧ им. В.П. Вологдаина: vniitvch.ru/?part=&sp=140; Пикунов М.В., И.В. Беляев, Сидоров Е.В. Кристаллизация сплавов и направленное затвердевание отливок. Владимир: Владимирский государственный университет. 2002. 213 с.) предусматривает переплавление заготовки из магнитного сплава путем перемещения нагревателя от затравки, расположенной в нижней части формы, к верхней части заготовки, при этом положение заготовки относительно охладителя остается неизменным. Отдаление фронта кристаллизации от охладителя приводит к постепенному снижению температурного градиента между фронтом кристаллизации и охладителем по мере подъема нагревателя, что влечет за собой образование равноосных зерен. Поскольку в процессе перекристаллизации заготовки температурный градиент между фронтом кристаллизации и охладителем снижается, для обеспечения формирования монокристаллической структуры необходимо использовать затравку близкого к заготовке состава (за исключением титана). В виду кристаллизации заготовки без ее предварительного расплавления исключается возможность скорректировать ее химический состав.

Технической задачей предложенного изобретения является разработка способа выплавки с направленной кристаллизацией магнитного сплава системы железо-алюминий-никель-кобальт с улучшенными магнитными свойствами и температурной стабильностью.

Техническим результатом предложенного изобретения является получение заготовок магнитного сплава системы железо-алюминий-никель-кобальт с разориентацией кристаллов в пределах 5 градусов, а также обеспечение высоких магнитных свойств (остаточной индукции Вr, коэрцитивной силы по индукции Нсb, максимального энергетического произведения (ВН)mах) сплавов системы железо-алюминий-никель-кобальт.

Технический результат достигается предложенным способом направленной кристаллизации магнитного сплава системы железо-алюминий-никель-кобальт, включающим размещение поликристаллической заготовки из сплава на затравке в керамической форме, размещение керамической формы в области нагревателя над охладителем и проведение процесса направленной кристаллизации сплава при наличии температурного градиента перед фронтом кристаллизации, при этом поликристаллическую заготовку из сплава предварительно расплавляют и повышают ее температуру до 1580-1620°С, расплавленную поликристаллическую заготовку заливают в подогретую до температуры 1500-1600°С керамическую форму, выдерживают в ней 0,5-1 мин и проводят процесс направленной кристаллизации сплава посредством перемещения керамической формы в жидкометаллический охладитель с температурой 300-320°С со скоростью 1-5 мм/мин в условиях температурного градиента на фронте кристаллизации 100-150 град/см.

Поликристаллическую заготовку из сплава, дополнительно содержащего медь, расплавляют в печи, в которой предварительно создают вакуум от 1⋅10-2 до 5⋅10-3 мм рт.ст. и напускают аргон до давления 0,1-0,5 атм.

Вначале заготовку из высокочистых шихтовых материалов помещают в тигель установки высокоградиентной направленной кристаллизации и расплавляют, после чего расплав перегревают до температуры 1580-1620°С. При необходимости состав заготовки можно скорректировать, добавив шихтовые материалы в тигель перед расплавлением. Перегрев до более низких температур влечет за собой образование «паразитных» зерен на карбидах титана, присутствующих в структуре титановых сплавов.

При выплавке магнитных сплавов системы железо-алюминий-никель-кобальт, также содержащих медь, шихтовую заготовку предпочтительно расплавлять в печи, в которой предварительно создают вакуум от 1⋅10-2 до 5⋅10-3 мм рт.ст. и напускают аргон до давления 0,1-0,5 атм. Подача аргона позволяет избежать снижения концентрации меди вследствие ее испарения при плавке в вакууме.

После этого расплав заливают в подогретую до температуры 1500-1600°С керамическую форму, в нижней части которой предварительно размещают затравку. Расплав выдерживают в подогретой керамической форме 0,5-1 мин. Выдержка обеспечивает подплавление затравки и передачу заданной кристаллографической ориентации от затравки к заготовке.

Затравку предпочтительно использовать из сплава ЮНДК25БА для того, чтобы параметры кристаллической решетки затравки были близки с параметрами кристаллической решетки получаемых заготовок магнитных сплавов.

Далее проводят процесс направленной кристаллизации сплава посредством перемещения керамической формы в жидкометаллический охладитель с температурой 300-320°С со скоростью 1-5 мм/мин. Фронт кристаллизации металла находится между краем нагревателя и поверхностью жидкометаллического охладителя, что обеспечивает постоянный температурный градиент по всей высоте заготовки.

Выбранные режимы нагрева расплава, подогрева керамической формы, температуры жидкометаллического охладителя и скорости перемещения в него керамической формы обеспечивают температурный градиент перед фронтом кристаллизации в интервале 100-150 град/см. Высокий и неизменный температурный градиент обеспечивает минимальную разориентацию кристаллов по всей длине заготовки (не более 5 град). При более низком температурном градиенте возможно образование на карбидах титана, присутствующих в структуре титановых сплавов, «паразитных» зерен с большей степенью разориентации.

В предложенном способе используются затравки из сплава ЮНДК25БА диметром 7-8 мм, а к рабочей части заготовки магнита направленная структура передается через конусообразную стартовую зону, благодаря чему обеспечивается снижение расхода шихтовых материалов и трудозатрат на изготовление затравки диаметром, равным диаметру заготовки постоянного магнита, как в прототипе.

После получения отливки с монокристаллической структурой ее охлаждают до комнатной температуры, удаляют прибыльную часть, участок стартовой зоны 20 мм и контролируют качество структуры металлографическими и рентгеновскими методами.

Примеры осуществления изобретения.

Для проведения процесса направленной кристаллизации были подготовлены

поликристаллические заготовки, состоящие из высокочистых шихтовых компонентов: железо АРМКО тип 1, кобальт К0, никель Н1У, алюминий А99, медь М0, титан ВТ1-00, ниобий НБШ-0, с содержанием газов (кислорода и азота) не более 0,001 масс. %.

Химический состав обрабатываемых сплавов приведен в таблице 1.

Шихтовую заготовку массой 2,5 кг поместили в тигель, расположенный в вакуумной печи установки высокоградиентной направленной кристаллизации УВНС-5. Перед расплавлением сплава из камеры откачали воздух до давления 1⋅10-2- 5⋅10-3 мм рт.ст. и напустили аргон.

Далее шихтовую заготовку нагревали до получения расплава, после чего температуру расплава продолжали увеличить.

Далее расплав заливали в керамическую форму, в нижней части которой были расположены затравки диаметром 7-8 мм из сплава ЮНДК25БА, и выдерживали.

После этого включили механизм перемещения формы с заданной скоростью в жидкометаллический охладитель.

Температурный градиент оценивали с помощью термопар, установленных на керамической форме, по кривым распределения температуры в процессе кристаллизации.

Режимы направленной кристаллизации приведены в таблице 2.

Далее отливку охлаждали до комнатной температуры, срезали прибыльную часть и 20 мм стартовой зоны. Контролировали качество структуры на поверхности стартовой зоны металлографическими и рентгеновскими методами.

Полученные образцы имели отклонение кристаллографического направления <100> от направления протяжки не более 5 град.

Измерение магнитных свойств (остаточной индукции Вr, коэрцитивной силы по индукции Нсb, максимального энергетического произведения (ВН)mах) проводили методом медленно меняющегося магнитного поля на установке Permagraph С-300 по ГОСТ 8.286-77. Магнитные свойства, превышающие требования ГОСТ 17809-72, представлены в таблице 3.

Таким образом, как показали экспериментальные данные, предложенный способ обеспечивает получение заготовок магнитного сплава системы железо-алюминий-никель-кобальт с разориентацией кристаллов в пределах 5 градусов. Улучшение кристаллической структуры сплава, в свою очередь, обеспечивает высокие магнитные свойства - остаточную индукцию Вr 0,96-1,31 Тл, коэрцитивную силу по индукции Нсb 62,5-119 кА/м, максимальное энергетическое произведение (ВН)mах 53-74 кДж/м3.

Источник поступления информации: Роспатент

Показаны записи 331-340 из 354.
09.06.2019
№219.017.7ae0

Сплав на основе титана и изделие, выполненное из него

Изобретение относится к цветной металлургии, а именно к созданию титановых сплавов. Может использоваться для изготовления деталей и узлов авиакосмической и ракетной техники, материал которых работает в условиях высоких температур. Сплав на основе титана содержит, мас.%: алюминий 3,0-7,0,...
Тип: Изобретение
Номер охранного документа: 0002356978
Дата охранного документа: 27.05.2009
09.06.2019
№219.017.7b23

Присадочный материал на основе никеля

Изобретение относится к сплавам на основе никеля, предназначенным для применения в авиационной, энергетической отраслях промышленности в качестве присадочного материала в сварных конструкциях в виде «лапши» или в виде сварочной проволоки. Для обеспечения повышенной кратковременной прочности...
Тип: Изобретение
Номер охранного документа: 0002373038
Дата охранного документа: 20.11.2009
09.06.2019
№219.017.7cba

Радиопоглощающий материал

Изобретение относится к области получения радиопоглощающих материалов (РПМ), обеспечивающих снижение уровня вторичного излучения, электромагнитную совместимость бортовой аппаратуры, коррекцию диаграмм направленности бортовых антенных систем при длительной эксплуатации и воздействии агрессивных...
Тип: Изобретение
Номер охранного документа: 0002410777
Дата охранного документа: 27.01.2011
09.06.2019
№219.017.7f72

Полимерная теплоотражающая композиция для покрытия

Изобретение относится к полимерным теплоотражающим композициям для покрытий, которые наносятся на надувные конструкции, защитные и спасательные средства (трапы самолетов гражданской авиации, плоты, дирижабли, надувные ангары, теплоотражающие экраны, щиты для пожарных), состоящие из герметичного...
Тип: Изобретение
Номер охранного документа: 0002467042
Дата охранного документа: 20.11.2012
13.06.2019
№219.017.811d

Способ нанесения защитных покрытий и устройство для его осуществления

Изобретение относится к области нанесения защитных покрытий. Может применяться для получения керамического слоя теплозащитных покрытий на изделия авиационной техники, преимущественно на рабочих и сопловых лопатках турбин из жаропрочных литейных сплавов. Устройство для нанесения покрытий методом...
Тип: Изобретение
Номер охранного документа: 0002691166
Дата охранного документа: 11.06.2019
10.07.2019
№219.017.aa19

Слоистый композиционный материал и изделие, выполненное из него

Изобретение относится к слоистому алюмополимерному материалу для изготовления или ремонта силовых элементов планера самолета: обшивок, перегородок, стрингеров фюзеляжа и крыла, панелей пола, а также для наземного транспорта. Предложен слоистый композиционный материал, состоящий из чередующихся...
Тип: Изобретение
Номер охранного документа: 0002270098
Дата охранного документа: 20.02.2006
10.07.2019
№219.017.ab12

Сплав на основе магния и изделие, выполненное из него

Изобретение относится к области машиностроения и авиастроения, где могут быть применены высокопрочные и жаропрочные свариваемые магниевые сплавы с малой анизотропией механических свойств в качестве легкого свариваемого конструкционного материала, например, для изготовления несущих деталей,...
Тип: Изобретение
Номер охранного документа: 0002293784
Дата охранного документа: 20.02.2007
10.07.2019
№219.017.ab21

Защитное покрытие

Изобретение относится к области производства защитных покрытий, которые могут быть использованы при эксплуатации неорганических волокнистых композиционных материалов конструкционного и технологического назначения, в изделиях авиационно-космической и машиностроительной промышленности....
Тип: Изобретение
Номер охранного документа: 0002290371
Дата охранного документа: 27.12.2006
10.07.2019
№219.017.ac1f

Сплав на основе интерметаллида nial и изделие, выполненное из него

Изобретение относится к металлургии, а именно к литейным сплавам на основе интерметаллида NiAl и изделиям, получаемым методом точного литья по выплавляемым моделям с поликристаллической структурой, таким как сопловые лопатки, проставки соплового аппарата, крупногабаритные створки и другие...
Тип: Изобретение
Номер охранного документа: 0002349662
Дата охранного документа: 20.03.2009
10.07.2019
№219.017.acc0

Защитное технологическое покрытие для бериллия

Изобретение относится к покрытиям для защиты от окисления при технологических нагревах в процессе получения высококачественных деталей и полуфабрикатов из бериллия. Технический результат изобретения заключается в создании защитного покрытия для бериллия, обладающего повышенной термостойкостью и...
Тип: Изобретение
Номер охранного документа: 0002317954
Дата охранного документа: 27.02.2008
Показаны записи 321-323 из 323.
16.05.2023
№223.018.607b

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607c

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
16.05.2023
№223.018.607d

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, а именно к жаропрочным литейным сплавам на основе никеля, и может быть использовано для литья деталей горячего тракта газотурбинных двигателей. Жаропрочный литейный сплав на основе никеля содержит, мас. %: углерод до 0,20; хром 5,0-11,0; кобальт 5,0-11,0;...
Тип: Изобретение
Номер охранного документа: 0002740929
Дата охранного документа: 21.01.2021
+ добавить свой РИД