×
24.07.2018
218.016.7426

Результат интеллектуальной деятельности: ВОЗВРАТНАЯ СТУПЕНЬ МНОГОСТУПЕНЧАТОГО ТУРБОКОМПРЕССОРА ИЛИ ТУРБОРАСШИРИТЕЛЯ С ШЕРОХОВАТЫМИ ПОВЕРХНОСТЯМИ СТЕНОК

Вид РИД

Изобретение

№ охранного документа
0002661916
Дата охранного документа
23.07.2018
Аннотация: Изобретение относится к возвратной ступени (RS) флюидной радиальной турбоэнергомашины, в частности радиального турбокомпрессора (ТСО), с осью (Х) вращения, включающей в себя кольцеобразный проточный канал (СН) для подачи текущего технологического флюида (PF) от проточного отверстия первого импеллера (IMP1) к проточному отверстию расположенного вниз по потоку второго импеллера (IMP2). Для повышения к.п.д. предложено, что проточный канал (СН) образован ограничительными поверхностными зонами (SFA), из которых по меньшей мере одна определенная, проходящая в направлении периферии шероховатая зона имеет повышенную по сравнению с остальными зонами шероховатость (RZ) поверхности. 14 з.п. ф-лы, 1 ил.

У радиальных флюидных турбоэнергомашин, в частности у радиальных турбокомпрессоров, технологический флюид аксиально всасывается импеллером или рабочим колесом и выдается радиально ускоренным. В случае многоступенчатой конструкции так называемая возвратная ступень берет на себя подачу выдаваемого вверх по потоку импеллером технологического флюида к лежащему дальше вниз по потоку дополнительному рабочему колесу. При этом возвратная ступень выполняет не только функцию отклонять технологический флюид из направления течения радиально наружу в осевое направление течения и подавать к дополнительному рабочему колесу, но и задерживать, по меньшей мере, на отдельных участках течение технологического флюида и, таким образом, повышать, по закону Бернулли, давление. При этом возвратная ступень выполнена одновременно, как правило, в виде диффузора на направленном радиально наружу тракте течения и в виде конфузора на направленном радиально внутрь тракте течения при подаче технологического флюида к дополнительному рабочему колесу. Относительно рабочих колес возвратная ступень неподвижна, и предусмотренные на возвратной ступени направляющие лопатки изменяют, как правило, завихрение и, тем самым, направление течения технологического флюида для подготовки к последующему вхождению на последующую компрессию. Эта претенциозная аэродинамическая задача возвратной ступени требует тщательного аэродинамического выполнения для минимизации потерь давления и повышения к.п.д. Тем не менее, при протекании через радиальные диффузоры и конфузоры возвратной ступени на смоченных течением поверхностях возникают обусловленные трением и по сути неизбежные потери давления, которые снижают к.п.д. турбомашины. При данных эксплуатационных условиях в отношении вида газа, давления и температуры локальные, обусловленные трением потери давления зависят от локальной скорости течения и локальной неровности или шероховатости смоченной течением поверхности. Как правило, большие потери давления возникают там, где велики локальные скорости течения и, одновременно, локальные шероховатости обтекаемых поверхностей.

Из ЕР 1433960 В1 уже известно сглаживание направляющих течение деталей посредством полировальной обработки настолько, чтобы повысить общий к.п.д. компрессора. Обычно для смачиваемых течением поверхностей в радиальном диффузоре или конфузоре требуется единая максимальная шероховатость (например, Rz12), в частности тогда, когда эти поверхности изготавливаются из одной детали или за одну технологическую операцию. Предложенный в ЕР 1433960 В1 способ вызывает дополнительные трудозатраты и приводит к значительным издержкам.

В основе изобретения лежит задача выполнения поверхности направляющих течение зон возвратной ступени таким образом, чтобы по сравнению с известными решениями достичь уменьшенные или, при случае, такие же издержки производства при одновременном повышении к.п.д. турбокомпрессора.

Для решения поставленной задачи предложена возвратная ступень, охарактеризованная признаками п. 1 формулы изобретения. Предпочтительные варианты осуществления изобретения раскрыты в зависимых пунктах формулы изобретения.

Такие термины, как «аксиально», «тангенциально», «радиально» или «направление периферии», всегда относятся, если это не указано иначе, к оси вращения радиального турбокомпрессора. У предложенной возвратной ступени речь идет о кольцеобразно проходящей вокруг оси вращения детали. Эта деталь может быть выполнена в направлении периферии разъемной или неразъемной. Предпочтительно предусмотрено разъемное в направлении периферии выполнение, чтобы возник разделительный шов возвратной ступени или возвратных ступеней, который обеспечивает разборку ротора в случае разъемной возвратной ступени. В принципе, возможно также неразъемное в направлении периферии выполнение возвратной ступени, в частности в случае аксиально разборного ротора.

В связи с этим изобретением шероховатость всегда означает, если это не указано иначе, высоту неровностей профиля по десяти точкам Rz в мкм по DIN EN ISO 4287:1998.

Как правило, возвратная ступень выполнена аксиально разъемной, причем лопаточное дно отделяет направленную радиально наружу ветвь проточного канала от направленной радиально внутрь ветви вниз по потоку за отклонением течения на 180° и проточный канал размещен на промежуточном дне возвратной ступени, причем промежуточное дно служит, с одной стороны, для ведения течения в возвратной ступени, а, с другой стороны, для закрепления возвратной ступени на других конструктивных элементах турбокомпрессора, например на внутреннем корпусе или на держателе, объединяющем внутренний пакет турбокомпрессора.

В одном предпочтительном варианте предусмотрено, что проточный канал возвратной ступени можно виртуально разделить на следующие участки.

Первый участок проходит радиально и имеет радиальное отверстие к расположенному выше по потоку импеллеру на первом конце первого участка.

Второй участок граничит первым концом со вторым концом расположенного в случае турбокомпрессора вверх по потоку первого участка, а течение отклоняется примерно на 180° с одного радиального направления в противоположном радиальном направлении.

Третий участок, проходящий, в основном, радиально, граничит первым концом с расположенным в случае турбокомпрессора вверх по потоку вторым концом второго участка.

Четвертый участок радиально граничит первым концом со вторым концом расположенного в случае турбокомпрессора вверх по потоку третьего участка. Четвертый участок отклоняет течение примерно на 90° в осевом направлении и на втором конце имеет осевое отверстие ко второму расположенному вниз по потоку импеллеру.

На этих участках предпочтительно, согласно изобретению, предусмотрены шероховатые зоны в различных позициях, подробно рассматриваемые ниже.

Предпочтительно первая шероховатая зона на первом участке расположена на той осевой ограничительной поверхности, которая аксиально удалена от третьего участка дальше, чем другая осевая ограничительная поверхность.

Предпочтительно вторая шероховатая зона расположена на радиально внутренней ограничительной поверхности второго участка, начинается на втором конце второго участка и имеет протяженность 30-70% вдоль проточного канала.

Предпочтительно третья шероховатая зона граничит непосредственно со второй шероховатой зоной на третьем участке и проходит на 5-40% вдоль проточного канала.

Предпочтительно четвертая шероховатая зона на четвертом участке находится на радиально вешней ограничительной поверхности.

В одном предпочтительном варианте предусмотрено, что шероховатые зоны проходят соответственно по всей периферии проточного канала.

Если радиальной флюидной турбоэнергомашиной является турбокомпрессор, то технологический флюид протекает через участки в следующей последовательности: первый участок, второй участок, третий участок, четвертый участок.

Если радиальной флюидной турбоэнергомашиной является турбонагнетатель, то технологический флюид протекает через участки в следующей последовательности: четвертый участок, третий участок, второй участок, первый участок.

Целесообразно первый участок проточного канала может содержать направляющие лопатки, чтобы ориентировать течение по условиям ниже по потоку.

Целесообразно шероховатые зоны имеют высоту неровностей профиля по десяти точкам 20 мкм < Rz, особенно предпочтительно 30 мкм < Rz.

Предпочтительно нешероховатые зоны имеют высоту неровностей профиля по десяти точкам 20 мкм > Rz, особенно предпочтительно 10 мкм > Rz.

В случаях когда локальную скорость течения нельзя целесообразно согласовать с данной локальной шероховатой поверхностью, чтобы поддерживать на минимальном уровне обусловленные трением потери давления, согласно изобретению следует, наоборот, согласовать локальную шероховатую поверхность с локальной скоростью течения. Зонно-специфическая шероховатая поверхность согласно изобретению предусматривает, что в области высоких скоростей течения смоченная течением поверхность выполняется меньшей шероховатости, чем в области меньших скоростей течения.

Целесообразным является то, что возвратная ступень содержит облопаченный радиальный диффузор или, в случае радиальной турбины, облопаченный радиальный конфузор.

Предпочтительным является то, что возвратная ступень содержит безлопаточный радиальный диффузор или, в случае радиальной турбины, безлопаточный радиальный конфузор.

Уровень скорости в радиальных диффузоре и конфузоре самый высокий на внутреннем диаметре кольцевой камеры, т.е. на наружном диаметре рабочего колеса, и уменьшается с увеличением радиуса, т.е. наружу. В то же время смоченная течением обрабатываемая поверхность стенок кольцевой камеры увеличивается с радиусом. За счет предложенного позонного согласования шероховатости с локальным уровнем скорости течения смоченных им поверхностей в радиальных диффузорах и конфузорах уменьшаются обусловленные трением потери давления без необходимым образом повышения издержек производства деталей. Это достигается, в частности, потому, что повышенным затратам на меньшую шероховатость на маленькой площади в области высоких скоростей течения противостоят уменьшенные затраты на бóльшую допустимую шероховатость на большой площади в области меньших скоростей течения.

Изобретение поясняется с помощьючертежа, на котором схематично представлен продольный разрез предложенного согласно изобретению турбокомпрессора.

На чертеже изображен схематичный продольный разрез возвратной ступени RS от первого импеллера IMP1 ко второму импеллеру IMP2 турбокомпрессора TCO.

Оба импеллера, IMP1 и IMP2, являются составными частями ротора R, причем импеллеры IMP1, IMP2 установлены с силовым замыканием на проходящем вдоль оси Х валу SH. Ротор R окружен направляющими течение неподвижными деталями, из которых здесь показана возвратная ступень RS. Многоступенчатая турбомашина включает в себя, как правило, несколько возвратных ступеней RS, которые, если смотреть в направлении течения от первого импеллера IMP1, который в случае турбокомпрессора TCO аксиально всасывает технологический флюид PF и радиально выдает его, отклоняют технологический флюид PF на 180° после радиального диффузорного тракта, возвращают радиально внутрь, а затем отклоняют в осевом направлении для подачи технологического флюида PF ко второму, расположенному вниз по потоку импеллеру IMP2.

Возвратная ступень включает в себя, как правило, лопаточное дно SB и промежуточное дно ZB, которые, образуя между собой проточный канал, прочно соединены между собой посредством направляющих лопаток V. Как правило, возвратные ступени RS выполнены в направлении периферии разъемными, так что разделение возвратной ступени по разделительному шву обеспечивает извлечение ротора из структуры возвратных ступеней. При монтаже ротор радиально вкладывается, а при демонтаже радиально извлекается.

Возвратные ступени RS содержат к ротору R в разных местах сальники SHS, которые при эксплуатации должны предотвратить неиспользуемое уменьшение разностей давления или байпасные течения.

Проходящий от первого импеллера IMP1 ко второму импеллеру IMP2 проточный канал СН виртуально разделен на четыре последовательных участка S1, S2, S3, S4, которые в случае турбокомпрессора ТСО расположены в направлении течения друг за другом. В случае турборасширителя нумерация этих участков S1-S4 обратная против направления течения. Первый участок S1 проходит, в основном, радиально и имеет радиальное отверстие к первому импеллеру IMP1 на своем первом конце S1Е1. Второй участок S2 первым концом S2E1 граничит со вторым концом S1E2 первого участка S1 и отклоняет течение через канал СН примерно на 180° с одного радиального направления в противоположном радиальном направлении. В случае турбокомпрессора ТСО течение отклоняется с направленного радиально наружу в направленное радиально внутрь. Ко второму концу S2E2 второго участка S2 первым концом S3E1 примыкает третий участок S3. Он проходит, по существу, радиально и в случае турбокомпрессора ТСО направляет течение с направленного радиально дальше наружу в направленное радиально дальше внутрь. Четвертый участок S4 первым концом S4E1 радиально граничит со вторым концом S3E2 третьего участка S3 и отклоняет течение примерно на 90° в направлении второго импеллера IMP2. Второй конец S4E2 четвертого участка S4 граничит со вторым импеллером IMP2.

Первая шероховатая зона RZ1 находится на первом участке S1 на той осевой ограничительной поверхности, которая удалена от третьего участка S3 аксиально дальше, чем другая осевая ограничительная поверхность.

Вторая шероховатая зона RZ2 находится на радиально внутренней ограничительной поверхности второго участка S2, начинаясь на его втором конце S2E2. Эта вторая шероховатая зона RZ2 имеет протяженность 30-70% вдоль проточного канала второго участка S2.

Третья шероховатая зона RZ3 граничит непосредственно со второй шероховатой зоной RZ2 на третьем участке S3 и проходит на 5-40% вдоль его проточного канала СН.

Четвертая шероховатая зона RZ4 проходит на четвертом участке на радиально внешней ограничительной поверхности.

В принципе, возможно, чтобы из четырех шероховатых зон RZ1-RZ4 не все были предусмотрены или только одна шероховатая зона была предусмотрена для повышения к.п.д. турбомашины ТСО. Наибольший к.п.д. достигается за счет полной имплементации шероховатых зон RZ1-RZ4 согласно изобретению и в соответствии с примером его осуществления на чертеже. В принципе, возможно, чтобы из ограничительных поверхностей SFA проточного канала СН шероховатые зоны RZ1-RZ3 были выполнены экстрашероховатыми или остальные зоны ограничительной поверхности SFA имели меньшую шероховатость поверхности по сравнению с шероховатыми зонами RZ1-RZ4, например посредством полирования. Помимо этого, также возможны придание шероховатости шероховатым зонам RZ1-RZ4 и полирование остальных ограничительных поверхностей SFA для достижения эффекта изобретения.


ВОЗВРАТНАЯ СТУПЕНЬ МНОГОСТУПЕНЧАТОГО ТУРБОКОМПРЕССОРА ИЛИ ТУРБОРАСШИРИТЕЛЯ С ШЕРОХОВАТЫМИ ПОВЕРХНОСТЯМИ СТЕНОК
Источник поступления информации: Роспатент

Показаны записи 961-970 из 1 427.
29.05.2018
№218.016.5643

Короткозамкнутый ротор и стержень с прорезью

Изобретение относится к короткозамкнутому ротору для электрической машины, включающему в себя пакет сердечника ротора, который имеет паз (6), прилитое на осевом конце (7) пакета сердечника ротора короткозамыкающее кольцо (8), которое имеет материал (108), являющийся алюминием, стержень (9),...
Тип: Изобретение
Номер охранного документа: 0002654523
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.566c

Устройство для коммутации постоянного тока

Изобретение относится к устройству (1) для коммутации постоянного тока, содержащему путь (5) рабочего тока, который содержит механический переключатель (7), путь (15) тока отключения, включенный параллельно пути (5) рабочего тока, который содержит силовой электронный переключатель (17), и...
Тип: Изобретение
Номер охранного документа: 0002654533
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.5689

Система и способ для снабжения энергосети энергией из непостоянного возобновляемого источника энергии

Изобретение относится к энергетике. Система использует возобновляемую энергию, генерируемую ветряной фермой или другими возобновляемыми источниками энергии. Возобновляемая энергия может быть использована для энергоснабжения местной или национальной энергосети. Согласно настоящему изобретению,...
Тип: Изобретение
Номер охранного документа: 0002654551
Дата охранного документа: 21.05.2018
29.05.2018
№218.016.56e1

Паровая турбина и способ эксплуатации паровой турбины

Изобретение относится к паровой турбине (1) с возможностью охлаждения, в которой из проточного канала отбирается пар, охлаждающий перегородку (16) для компенсации осевой нагрузки и смешивается с небольшим количеством свежего пара и снова подаётся к проточному каналу. Технический результат -...
Тип: Изобретение
Номер охранного документа: 0002655068
Дата охранного документа: 23.05.2018
29.05.2018
№218.016.5838

Способ и устройство для управления разделением топлива в камере сгорания

Изобретение относится к энергетике. Способ определения установочного значения разделения топлива, используемого для регулировки установочного параметра разделения топлива для камеры сгорания, содержит следующие этапы: вывод первого элемента информации, связанного с теплотворной способностью...
Тип: Изобретение
Номер охранного документа: 0002654809
Дата охранного документа: 22.05.2018
29.05.2018
№218.016.58d8

Высоковольтный проходной изолятор, а также способ его изготовления

Изобретение относится к высоковольтному проходному изолятору (1), включающему в себя расположенное соосно вокруг цилиндрического намоточного основания (2) из проводящего электричество материала изоляционное тело (4), а также уплотнительное устройство для уплотнения зазора между намоточным...
Тип: Изобретение
Номер охранного документа: 0002653498
Дата охранного документа: 10.05.2018
29.05.2018
№218.016.591d

Архитектура безопасности для отказобезопасных систем

Группа изобретений относится к предохранительным устройствам. Защитное устройство отказобезопасных систем управления содержит блок контроля, блок тестирования и выходной каскад, имеющий по меньшей мере один контактный элемент. Блок контроля содержит выходы и сконфигурирован для обеспечения...
Тип: Изобретение
Номер охранного документа: 0002655232
Дата охранного документа: 24.05.2018
29.05.2018
№218.016.59b7

Способ и устройство для отделения отходящих газов при сжигании определенных металлов

Изобретение может быть использовано при создании источников для выработки электроэнергии. Отделение отходящего газа от твердых и/или жидких продуктов реакции проводят при сжигании в газообразном топливе металла, выбранного из группы, включающей щелочные металлы, щелочноземельные металлы, Al и...
Тип: Изобретение
Номер охранного документа: 0002655318
Дата охранного документа: 25.05.2018
09.06.2018
№218.016.5a2b

Монтажное устройство и способ монтажа

Монтажное устройство для монтажа направляющей лопатки в лопаточном пазу турбины включает зажимной блок и нажимной блок. Зажимной блок выполнен с возможностью создания в лопаточном пазу силового замыкания в окружном направлении, причем окружным направлением в рабочем положении монтажного...
Тип: Изобретение
Номер охранного документа: 0002655428
Дата охранного документа: 28.05.2018
09.06.2018
№218.016.5a43

Способ и устройство контрения завинченного в резьбовое гнездо резьбового элемента, способ установки, по меньшей мере, одного балансировочного груза турбины и турбина

Изобретение относится к способу контрения завинченного в резьбовое гнездо (2) турбинной установки (29) резьбового элемента (3), выполненного в виде монтажного винта (4). В способе завинченный в резьбовое гнездо (2) балансировочного груза резьбовой элемент (3) пластично деформируют, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002655412
Дата охранного документа: 28.05.2018
+ добавить свой РИД