×
19.07.2018
218.016.7263

Результат интеллектуальной деятельности: Способ формирования радиотеплового изображения

Вид РИД

Изобретение

№ охранного документа
0002661491
Дата охранного документа
17.07.2018
Аннотация: Изобретение относится к пассивным радиотеплолокационным системам (РТЛС) наблюдения миллиметрового диапазона длин волн, предназначенным для формирования радиотеплового изображения объектов в зоне обзора. Достигаемый технический результат - обеспечение возможности на базе сканирующего радиометра формировать радиотепловое изображение зоны обзора с пространственным разрешением, соответствующим размерам элементов искомой матрицы изображения. Указанный результат достигается применением способа формирования радиотеплового изображения, который заключается в сканировании антенной радиометра зоны обзора по азимуту и углу места, формировании по результатам сканирования матрицы наблюдений Y, ее обработке оператором восстановления R и получении матрицы Y=R[Y] радиотеплового изображения, при этом радиометр совмещают с фотокамерой, которая дает матрицу Х оптического изображения зоны обзора при центральном положении антенны. В матрице Х меняют масштаб на соответствие масштабу матрицы Y и получают матрицу Х, которую с помощью оператора R подвергают операциям сегментации по контрасту суммы амплитуд соответствующих элементов матриц Y и Х, взятых с определенными весовыми коэффициентами, и получают матрицу меток S=R[Y,X], где каждому i-му, j-му элементу присвоен номер s сегмента, которому он принадлежит. Затем усреднением элементов матрицы Y с меткой s определяют среднюю радиометрическую амплитуду каждого s-го сегмента и присваивают эту амплитуду элементам матрицы Х с той же меткой s, в результате из матрицы Х получают матрицу радиотеплового изображения с повышенным пространственным разрешением.

Изобретение относится к пассивным радиотеплолокационным системам (РТЛС) наблюдения миллиметрового диапазона длин волн, предназначенным для формирования радиотеплового изображения объектов в зоне обзора.

Из уровня техники известны способы формирования радиотеплового изображения объектов в зоне обзора с помощью сканирующего радиометра, работающего в миллиметровом диапазоне длин волн и совмещенного с фотокамерой (Николаев А.Г., Перцов С.В. Радиотеплолокация (пассивная радиолокация). М.: Сов. радио, 1964, с. 335) и (Шарков Е.А. Радиотепловое дистанционное зондирование Земли: физические основы: в 2 т. / Т. 1. М.: ИКИ РАН, 2014, с. 544).

Известны способы формирования изображений с помощью сканирующей антенны, основанные на формировании матрицы наблюдений и обработки полученной матрицы с помощью методов восстановления изображений.

Известен способ наблюдения за поверхностью и воздушной обстановкой на базе бортовой РЛС (патент RU №2284548, опубликовано 27.09.2006, МПК G01S 13/02 (2006.01). Способ наблюдения за поверхностью и воздушной обстановкой заключается в формировании матрицы радиолокационного изображения поверхности или воздушной обстановки в средах дальности, при этом за счет быстрого электронного переключения луча РЛС смещают луч по азимуту и углу места соответственно на величину n-й и m-й части ширины ДНА и обрабатывают полученные при каждом положении луча амплитуды отраженных сигналов путем их суммирования с весами, вычисленными заранее по определенной методике.

Известен способ наблюдения за воздушными объектами и поверхностью на базе бортовой РЛС (патент RU №2292060, опубликовано 20.01.2007, МПК G01S 13/02 (2006.01). Способ наблюдения за воздушными объектами и поверхностью на базе бортовой РЛС, основанный на работе в режиме реального луча с электронным сканированием, заключающийся в формировании матрицы радиолокационного изображения воздушной обстановки или поверхности в срезах дальности. При этом за счет быстрого электронного переключения луча РЛС смещают луч по азимуту и углу места построчно соответственно на величину n-й и m-й части ширины ДНА в зоне обзора, измеряют амплитуды сигналов отражения при каждом i-м, j-м положении луча и формируют из этих амплитуд матрицу измерений y'(i,j), суммарного канала, которую далее обрабатывают. Дополнительно формируют матрицу измерений y'(i,j), разностного канала, затем обрабатывают полученные матрицы для каждого i, j-ro положения луча, при этом элементы матриц y(i+k, j+1) и y'(i+k, j+1), взятые относительно i, j в окне размера M×N, суммируют с весами h(k,l) и h'(k,l), найденными заранее, и оценивают амплитуду x(i,j), соответствующую центральной m-й, n-й части ДНА при i-й, j-м положении луча, указанные операции повторяют для всех i, j в зоне обзора и тем самым получают матрицу оценок амплитуд представляющую восстановленное радиолокационное изображение воздушной обстановки или поверхности в заданных элементах дальности с повышенным в несколько раз разрешением по угловым координатам.

К недостаткам данных способов можно отнести то, что восстановить изображение с точностью до шага дискретизации матрицы изображения в этих способах не удается из-за наличия ошибок восстановления. Это выражается остаточной размытостью (нечеткостью) изображения.

Наиболее близким к заявляемому способу является способ формирования изображений в многоканальных РТЛС и РЛС (патент RU №2368917, опубликовано 27.09.2009, МПК G01S 13/89 (2006.01), который выбран в качестве прототипа. Способ формирования изображений в многоканальных РТЛС и РЛС применим и для одноканального радиометра. Алгоритмически данный способ заключается в следующем:

1. Антенна радиометра построчно сканирует зону обзора. Съем данных в каждой строке производится с шагом дискретизации Δϕ по азимуту (по j), а переход к другой строке осуществляется с шагом Δθ по углу места (по i). Принятый на каждом i-м, j-м шаге сканирования сигнал проходит тракт первичной обработки и регистрируется в цифровой форме величиной y(i,j), подчиненной модели наблюдений вида:

где Y={y(i,j)} - M×N-матрица радиотеплового изображения области D обзора; μ - нормирующий множитель; α(i,j) - аппаратная функция (АФ) описывающая действие диаграммы направленности антенны (ДНА) в i-х, j-х элементах дискретизации угла места θi и азимута ϕj, тракта первичной обработки и атмосферных влияний; x(i,j) - элементы искомого изображения, представляющие интенсивность электромагнитного поля излучения в i-м, j-м угловом направлении (в температурной шкале); p(i,j) - шумы аппаратуры; 2m+1 и 2n+1 - соответственно ширина ДНА по углу места и азимуту в количестве элементов дискретизации; числа М и N определяют размеры зоны обзора в количестве строк и столбцов искомой матрицы X={x{i,j)}.

2. Матрица Y подвергается операциям восстановления изображения с помощью оператора восстановления R1, то есть оценивания ненаблюдаемых величин x(i,j) на основе наблюдений y(i,j) и известной функции α(i,j) в пространственной или частотной областях [6, 7]: X1=R1[Y]. Результатом восстановления изображения области D является M×N-матрица Y1={y1(i,j)} оценок y1(i,j), подчиненных модели:

где μ1 - коэффициент усиления системы восстановления; - β(i,j) - функция рассеяния точки (ФРТ), описывающая остаточное искажение x(i,j) в (2ml+1)×(2n1+1)-окрестности i-й, j-й точки в силу ограниченной точности восстановления и низкого контраста в Y; p1(i,j) - остаточные шумы.

Недостаток данного способа заключается в том, что пространственное разрешение полученного изображения (2), определяемое размером (2m1+1)×(2n1+1)-области определения ФРТ, при m1>0, n1>0 превышает размер 1×1 элемента (пикселя) матрицы радиотеплового изображения.

Техническая проблема, решаемая созданием заявленного изобретения, заключается в том, что пространственное разрешение полученного изображения, определяемое размером (2m1+1)×(2n1+1)-области определения ФРТ, при m1>0, n1>0 превышает размер 1×1 элемента (пикселя) матрицы радиотеплового изображения.

Технический результат направлен на обеспечение возможности на базе сканирующего радиометра формировать радиотепловое изображение зоны обзора с пространственным разрешением, соответствующим размерам элементов искомой матрицы изображения.

Технический результат предлагаемого технического решения достигается применением способа формирования радиотеплового изображения, который заключается в сканировании антенной радиометра зоны обзора по азимуту и углу места, формировании по результатам сканирования матрицы наблюдений Y, обработке матрицы Y оператором восстановления R1 и получении матрицы Y1=R1[Y] радиотеплового изображения. При этом способ отличается от прототипа тем, что радиометр совмещают с фотокамерой, которая дает матрицу Х1 оптического изображения зоны обзора при центральном положении антенны. В матрице Х1 меняют масштаб на соответствие масштабу матрицы Y1 и получают матрицу Х2, которую с помощью оператора R2 подвергают операциям сегментации по контрасту суммы амплитуд соответствующих элементов матриц Y1 и X2, взятых с определенными весовыми коэффициентами, и получают матрицу меток S=R2[Y1,X2], где каждому i-му, j-му элементу присвоен номер s сегмента, которому он принадлежит. Затем усреднением элементов матрицы Y1 с меткой s определяют среднюю радиометрическую амплитуду каждого s-го сегмента и присваивают эту амплитуду элементам матрицы Х2 с той же меткой s, в результате из матрицы Х2 получают матрицу радиотеплового изображения с повышенным пространственным разрешением.

Алгоритмически способ осуществляется следующим образом:

1. В результате сканирования антенной радиометра зоны обзора по азимуту и углу места формируется матрица наблюдений Y с элементами y(i,j), , отвечающими модели (1).

2. Матрица Y подвергается операциям восстановления с помощью оператора восстановления R1, в результате получается матрица Y1=R1[Y] с элементами y1(i,j), отвечающими модели (2).

3. При центральном положении антенны с помощью совмещенной с радиометром фотокамеры получается матрица Х1 оптического изображения зоны обзора с элементами x1(i,j), , где M1=k⋅M, N1=k⋅N, k - масштабный множитель (целое число).

4. Матрица Х1 приводится в соответствие масштабу матрицы Y1, в результате получается матрица Х2 с элементами x2(i,j), вычисляемыми по формуле:

.

5. Полученная матрица Х2 сегментируется (Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в среде MATLAB. М.: Техносфера, 2006.? с. 616) с помощью оператора сегментации R2: S=R2[Y1,X2] по контрасту суммы амплитуд w1y1(i,j)+w2x2(i,j) соответствующих элементов матриц Y1 и Х2, взятых с весовыми коэффициентами w1≥0 и w2≥0, w2=1-w1, где w1 зависит от контраста изображения объектов в матрице Y1. В результате получается матрица S={S(i,j)}, , где S(i,j) - номер сегмента, которому принадлежат соответствующие i-e, j-е элементы матриц Y1 и Х2.

6. Для каждого s-го сегмента вычисляется средняя радиометрическая амплитуда на основе i-x, j-x элементов y1(i,j) матрицы Y1 сметкой s:

,

где ns - количество элементов с меткой s.

7. Всем элементам x2(i,j) матрицы Х2 с меткой s присваивается амплитуда . В результате формируется матрица Х2={x2(i,j)}, радиотеплового изображения с повышенным пространственным разрешением, элементы x2(i,j) которой отвечают модели (3).

Предлагаемый способ формирования радиотеплового изображения позволяет на базе сканирующего радиометра формировать радиотепловое изображение зоны обзора с пространственным разрешением, соответствующим размерам элементов искомой матрицы изображения. Тем самым обеспечивается формирование четкой тепловой карты зоны обзора и объектов наблюдения. Способ применим в существующих радиометрических системах.

Способ формирования радиотеплового изображения, заключающийся в сканировании антенной радиометра зоны обзора по азимуту и углу места, формировании по результатам сканирования матрицы наблюдений Y, обработке матрицы Y оператором восстановления R и получении матрицы Y=R[Y] радиотеплового изображения, отличающийся тем, что радиометр совмещают с фотокамерой, которая дает матрицу Х оптического изображения зоны обзора при центральном положении антенны, в матрице Х меняют масштаб на соответствие масштабу матрицы Y и получают матрицу Х, которую с помощью оператора R подвергают операциям сегментации по контрасту суммы амплитуд соответствующих элементов матриц Y и Х, взятых с определенными весовыми коэффициентами, и получают матрицу меток S=R[Y,X], где каждому i-му, j-му элементу присвоен номер s сегмента, которому он принадлежит, затем усреднением элементов матрицы Y с меткой s определяют среднюю радиометрическую амплитуду каждого s-го сегмента и присваивают эту амплитуду элементам матрицы Х с той же меткой s, в результате из матрицы Х получают матрицу радиотеплового изображения с повышенным пространственным разрешением.
Источник поступления информации: Роспатент

Показаны записи 41-44 из 44.
16.05.2023
№223.018.6298

Волноводная нагрузка высокой мощности

Изобретение относится к технике СВЧ. Волноводная нагрузка высокой мощности содержит короткозамкнутый отрезок прямоугольного волновода с фланцем на одном конце, с охлаждающими ребрами на внешней поверхности и короткозамыкающей металлической заглушкой на другом конце, а также размещенный внутри...
Тип: Изобретение
Номер охранного документа: 0002784331
Дата охранного документа: 23.11.2022
16.05.2023
№223.018.6451

Головка-переходник универсальная торцовая

Изобретение относится к ручному слесарно-монтажному инструменту, а именно к устройству - головке-переходнику универсальной торцовой для монтажа и демонтажа крепежных элементов, имеющих ограниченную поверхность для инструмента, например, в виде тройников для соединения трубопроводов и т.д. в...
Тип: Изобретение
Номер охранного документа: 0002790514
Дата охранного документа: 21.02.2023
30.05.2023
№223.018.72fa

Способ автоматического управления средством активной защиты информации

Изобретение относится к области вычислительной техники. Техническим результатом является создание способа автоматического управления системой активной защиты, позволяющего ограничивать время работы средства активной защиты без снижения уровня защищенности информации, обрабатываемой на объекте...
Тип: Изобретение
Номер охранного документа: 0002733083
Дата охранного документа: 29.09.2020
30.05.2023
№223.018.73e7

Система автоматизированной проверки устройств распределения и фазирования сверхвысокочастотного сигнала

Использование: для автоматизированной проверки устройств распределения и фазирования сверхвысокочастотного сигнала. Сущность изобретения заключается в том, что система автоматизированной проверки устройств распределения и фазирования сверхвысокочастотного сигнала содержит персональный...
Тип: Изобретение
Номер охранного документа: 0002790278
Дата охранного документа: 15.02.2023
Показаны записи 31-32 из 32.
26.05.2023
№223.018.704e

Способ обнаружения движущихся объектов системой доплеровских приемников

Изобретение относится к области радиолокации, в частности к способам обнаружения движущихся объектов с помощью полуактивной многопозиционной системы доплеровских приемников с антенными решетками (АР), принимающих и обрабатывающих радиотехнические сигналы. Технический результат - повышение...
Тип: Изобретение
Номер охранного документа: 0002796230
Дата охранного документа: 18.05.2023
17.06.2023
№223.018.7f47

Способ наблюдения за движущимися объектами многопозиционной системой приемников

Изобретение относится к многопозиционным сканирующим системам наблюдения за объектами в полуактивном и пассивном режимах. Система состоит из нескольких приемников (радиотехнических, радиометрических, оптических), принимающих сигналы отражения или излучения от объектов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002766569
Дата охранного документа: 15.03.2022
+ добавить свой РИД