×
18.07.2018
218.016.71b0

Способ очистки околоземного космического пространства от крупногабаритных объектов космического мусора

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002661378
Дата охранного документа
16.07.2018
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам очистки околоземного космического пространства (ОКП) от крупногабаритных объектов космического мусора (КМ). Способ включает выведение космического аппарата (КА) в область орбит, предназначенных для их очистки от крупногабаритных объектов КМ. В качестве элемента захвата и торможения КМ используют крупноячеистую сеть. До запуска КА с сетью на орбиту вокруг Земли на поверхности сети размещают пленочные электреты и осуществляют их электретирование одноименным положительным или отрицательным зарядом. На поверхности сети также размещают развертывающие надувные элементы в виде полых многослойных гермооболочек. После обнаружения крупногабаритного объекта КМ, измерения параметров его движения относительно КА и сближения КА с КМ наводят продольную ось контейнера в направлении на крупногабаритный объект КМ и выталкивают крупноячеистую сеть. За счет давления остаточного воздуха во внутренней полости развертывающих надувных элементов сеть разворачивают в космосе и придают ей заданную форму. Осуществляют захват или охват сетью крупногабаритного объекта КМ и/или зацепление сети за выступающие элементы крупногабаритного объекта КМ. Техническим результатом изобретения является повышение эффективности очистки ОКП от крупногабаритных объектов КМ. 19 з.п. ф-лы.
Реферат Свернуть Развернуть

Изобретение относится к космической технике и может быть использовано для очистки околоземного космического пространства (ОКП) от относительно крупного по размеру космического мусора, такого как прекратившие активное существование космические аппараты (КА), разгонные блоки, последние ступени ракет космического назначения (РКН).

Известен способ очистки ОКП от ненужных объектов, заключающийся в стыковке с этими объектами транспортного корабля и последующем спуске с орбиты образовавшейся связки [1]. Недостатками этого способа являются необходимость систем стыковки, стыковочных узлов и систем ориентации на обоих кораблях, потеря тормозного отсека транспортного корабля и ограниченные возможности по удаляемой спускаемой массе.

Другим аналогом изобретения является способ уборки космического мусора (КМ), включающий выведение на орбиту устройства уборки КМ, при этом осуществляют процесс наблюдения за КМ, перемещают устройства уборки КМ в положение захвата. Близко подводят устройства уборки КМ к космическому мусору, выпускают гарпун в полый фрагмент КМ. Соединяют устройства уборки КМ и космический мусор, фиксируют КМ. Тормозят захваченный КМ с помощью сброса проводящего фала [2]. Недостатком этого способа является длительное время схода с орбиты КМ.

Наиболее близким аналогом изобретения является способ очистки ОКП от космических объектов и мелких частиц, предложенный японским космическим агентством JAXA [3]. В предлагаемом агентством JAXA способе металлическая сеть с линейными размерами в несколько километров будет выводиться на орбиту на борту специального спутника. Там сеть разворачивается при помощи установленного на КА манипулятора. После того как сеть наберет достаточно мусора, она будет отсоединяться. Взаимодействие с магнитным полем Земли приведет к тому, что сеть вместе с собранными обломками космических аппаратов со временем войдет в плотные слои атмосферы. Во время падения сеть сгорит вместе с мусором. Недостатком прототипа является сложная система разворачивания металлической сети при помощи манипулятора и неэффективное использование способа для очистки околоземного космического пространства от крупногабаритных объектов КМ.

Технический результат предлагаемого изобретения заключается в повышении эффективности очистки околоземного космического пространства от крупногабаритных объектов КМ на орбитах более 600 километров (где не сказывается очищающий эффект от торможения об атмосферу), а также упрощении развертывания сети для сбора КМ на орбите.

Указанный технический результат достигается тем, что в область орбит, предназначенных для их очистки от крупногабаритных объектов космического мусора, выводят космический аппарат, проводят последовательно маневры дальнего и ближнего наведения для сближения КА с крупногабаритным объектом КМ. При этом новым является то, что в область орбит, предназначенных для их очистки от крупногабаритных объектов КМ, на борту КА транспортируют в качестве элемента захвата и торможения крупногабаритных объектов КМ крупноячеистую сеть. Причем до запуска КА с крупноячеистой сетью на орбиту вокруг Земли на поверхности сети размещают пленочные электреты [4, 5]. Кроме того, предварительно осуществляют электретирование [6] пленочных электретов одноименным положительным или отрицательным зарядом. Вместе с тем, на поверхности крупноячеистой сети размещают и закрепляют развертывающие надувные элементы в виде полых многослойных гермооболочек. В дальнейшем крупноячеистую сеть с электретированными пленочными электретами складывают или сворачивают и в сложенном или свернутом виде размещают в магнитонепроницаемом контейнере на борту КА. После вывода КА в область орбит, предназначенных для их очистки от крупногабаритных объектов КМ, осуществляют обнаружение крупногабаритного объекта КМ с помощью оптических, и/или лазерных, и/или радиолокационных систем с борта КА, а также измерение параметров движения КМ относительно КА. Затем с помощью приемников навигационной системы и бортовой вычислительной системы (БВС), расположенных на борту КА, определяют текущие координаты центра масс КА, углы текущей пространственной ориентации КА. С помощью БВС определяют положение центра масс КА относительно обнаруженного крупногабаритного объекта КМ. Далее БВС определяют ориентацию осей связанной системы координат КА относительно текущего положения крупногабаритного объекта КМ. С помощью системы ориентации КА осуществляют наведение продольной оси магнитонепроницаемого контейнера в направлении на крупногабаритный объект КМ. В дальнейшем по команде от БВС выталкивают или «отстреливают» крупноячеистую сеть с электретированными пленочными электретами из магнитонепроницаемого контейнера в направлении крупногабаритного объекта КМ. При этом крупноячеистую сеть выталкивают или «отстреливают» с относительной скоростью, обеспечивающей развертывание крупноячеистой сети с электретироваными пленочными электретами до момента встречи с крупногабаритным объектом КМ. При выходе из магнитонепроницаемого контейнера крупноячеистую сеть с электретированными пленочными электретами за счет давления остаточного воздуха во внутренней полости развертывающих надувных элементов разворачивают в космосе и придают ей заданную форму. Осуществляют захват или охват крупноячеистой сетью крупногабаритного объекта КМ и/или зацепление крупноячеистой сети за выступающие элементы крупногабаритного объекта КМ. Затем за счет взаимодействия заряда пленочных электретов с магнитным полем Земли осуществляют торможение крупноячеистой сети с КМ. В результате осуществляют вход крупноячеистой сети вместе с КМ в плотные слои атмосферы. Вследствие этого происходит сгорание сети с крупногабаритным объектом КМ.

Кроме того, сближение КА с крупногабаритным объектом КМ осуществляют на расстояние от нескольких десятков метров до нескольких километров.

Существует вариант, в котором координаты центра масс КА и углы текущей пространственной ориентации КА определяют при помощи приемников навигационной системы GPS и/или «ГЛОНАСС».

Существует вариант, в котором координаты центра масс КА и углы текущей пространственной ориентации КА определяют при помощи приемников навигационной системы типа GALILEO и/или «ГЛОНАСС».

Существует вариант, в котором координаты центра масс КА и углы текущей пространственной ориентации КА определяют при помощи приемников навигационной системы типа GALILEO и/или GPS.

Существует вариант, в котором в качестве материала многослойных гермооболочек развертывающих надувных элементов используют пленку из углеродных нанотрубок [7, 8].

Существует вариант, в котором для развертывания крупноячеистой сети с электретированными пленочными электретами осуществляют наддув развертывающих надувных элементов многослойных гермооболочек газом.

Существует вариант, в котором наддув развертывающих надувных элементов многослойных гермооболочек осуществляют из баллонов с газом.

Существует вариант, в котором баллоны с газом размещают на крупноячеистой сети с электретированными пленочными электретами.

Кроме того, наддув развертывающих надувных элементов многослойных гермооболочек газом осуществляют после выталкивания или «отстрела» крупноячеистой сети с электретированными пленочными электретами из магнитонепроницаемого контейнера.

Существует вариант, в котором операцию обнаружения крупногабаритного объекта КМ, а также измерение параметров его движения относительно КА осуществляют наземными средствами контроля космического пространства [9].

Существует вариант, в котором сближение КА с крупногабаритным объектом КМ осуществляют по командам и/или программам, передаваемым по радиолинии с наземных средств контроля космического пространства.

Существует вариант, в котором операцию обнаружения крупногабаритного объекта КМ, а также измерение параметров его движения относительно КА осуществляют с космических средств контроля космического пространства [10].

Существует вариант, в котором измеренные параметры движения крупногабаритного объекта КМ относительно КА передают на КА по радиолинии с космических средств контроля космического пространства.

Существует вариант, в котором на борту КА размещают два и более магнитонепроницаемых контейнера с крупноячеистой сетью с электретированными пленочными электретами.

Существует вариант, в котором линейные размеры крупноячеистой сети с электретированными пленочными электретами рассчитывают на Земле до запуска КА, транспортирующего сеть. Причем линейные размеры крупноячеистой сети определяются высотой орбиты КМ, размером и массой крупногабаритного объекта КМ, подлежащего удалению с орбиты, а также прогнозируемым временем входа КМ в плотные слои атмосферы.

Кроме того, повторяют операции обнаружения другого крупногабаритного объекта КМ и сближения КА с другим крупногабаритным объектом КМ.

Кроме того, повторяют операции выталкивания или «отстрела» крупноячеистой сети с электретироваными пленочными электретами из следующего магнитонепроницаемого контейнера, захвата или охвата крупноячеистой сетью с электретированными пленочными электретами другого крупногабаритного объекта КМ.

Кроме того, осуществляют торможение крупноячеистой сети с другим крупногабаритным объектом КМ.

Кроме того, развертывающие надувные элементы в виде полых многослойных гермооболочек размещают и закрепляют радиально, и/или продольно, и/или по периметру крупноячеистой сети.

Предложенный способ реализуется следующим образом. В область орбит, предназначенных для их очистки от крупногабаритных объектов КМ, выводят КА, проводят последовательно маневры дальнего и ближнего наведения для сближения КА с крупногабаритным объектом КМ. В качестве элемента захвата и торможения крупногабаритных объектов КМ на борту КА транспортируют крупноячеистую сеть. Причем до запуска КА с крупноячеистой сетью на орбиту вокруг Земли на поверхности сети размещают пленочные электреты. Кроме того, предварительно осуществляют электретирование пленочных электретов одноименным положительным или отрицательным зарядом. При этом на поверхности крупноячеистой сети размещают и закрепляют расположенные радиально и/или продольно развертывающие надувные элементы в виде полых многослойных гермооболочек, выполненных из тонкой пленки. В дальнейшем крупноячеистую сеть с электретированными пленочными электретами складывают или сворачивают и в сложенном или свернутом виде помещают в магнитонепроницаемый контейнер на борту КА. После вывода КА в область орбит, предназначенных для их очистки от крупногабаритных объектов КМ, с помощью оптических, и/или лазерных, и/или радиолокационных систем с борта КА осуществляют обнаружение крупногабаритного объекта КМ, а также измерение параметров его движения относительно КА. Причем обнаружение крупногабаритного объекта КМ осуществляют либо по априорным данным от наземного информационного комплекса, либо путем автономного сканирования космического пространства [11]. Затем с помощью приемников навигационной системы типа «ГЛОНАСС» и/или GPS и бортовой вычислительной системы (БВС), расположенных на борту КА, определяют текущие координаты центра масс КА, углы текущей пространственной ориентации КА. С помощью БВС определяют положение центра масс КА относительно обнаруженного крупногабаритного объекта КМ. Осуществляют сближение КА с крупногабаритным объектом КМ на расстояние от нескольких десятков метров до нескольких километров. Далее БВС определяют ориентацию осей связанной системы координат КА относительно текущего положения крупногабаритного объекта КМ. С помощью системы ориентации КА осуществляют наведение продольной оси магнитонепроницаемого контейнера в направлении на крупногабаритный объект КМ. Затем по команде от БВС прицельно выталкивают или «отстреливают» крупноячеистую сеть с электретироваными пленочными электретами из магнитонепроницаемого контейнера в направлении крупногабаритного объекта КМ с относительной скоростью, обеспечивающей развертывание крупноячеистой сети с электретированными пленочными электретами до момента встречи с крупногабаритным объектом КМ. При выходе из магнитонепроницаемого контейнера крупноячеистую сеть с электретироваными пленочными электретами за счет давления остаточного воздуха во внутренней полости развертывающих надувных элементов разворачивают в космосе и придают ей заданную форму. Осуществляют захват сетью крупногабаритного объекта КМ и/или зацепление крупноячеистой сети за выступающие элементы крупногабаритного объекта КМ. Сеть обволакивает КМ и таким образом создается механическая связь крупноячеистой сети с КМ.

За счет взаимодействия заряда пленочных электретов, размещенных на поверхности крупноячеистой сети, с магнитным полем Земли осуществляют торможение сети с крупногабаритным объектом КМ и в силу этого обеспечивают вход сети с КМ в плотные слои атмосферы.

В результате происходит сгорание крупноячеистой сети вместе с крупногабаритным объектом КМ.

При этом после выталкивания или «отстрела» крупноячеистой сети из контейнера по команде от БВС, либо по команде или программе, передаваемой по радиолинии с наземных средств контроля космического пространства, осуществляют перенацеливание КА на другой крупногабаритный объект КМ.

Далее повторяют операции: обнаружение другого крупногабаритного объекта КМ, сближение КА с крупногабаритным объектом КМ, выталкивание из следующего магнитонепроницаемого контейнера крупноячеистой сети, захват крупноячеистой сетью другого крупногабаритного объекта КМ. Затем происходит процесс торможения крупноячеистой сети с захваченным крупногабаритным объектом КМ.

Предлагаемое техническое решение позволяет осуществлять очистку околоземного космического пространства от крупногабаритных объектов КМ на орбитах выше 600 километров, где отсутствует эффект их торможения за счет атмосферы. В качестве элемента захвата и торможения крупногабаритного объекта КМ используют крупноячеистую сеть, которую выталкивают или «отстреливают» из магнитонепроницаемого контейнера, размещенного на борту специально запускаемого для этой цели КА. Причем для схода с орбиты крупногабаритного фрагмента космического мусора, охваченного крупноячеистой сетью, на поверхности сети размещают (до запуска КА на орбиту) пленочные электреты и осуществляют их электретирование одноименным положительным или отрицательным зарядом. При этом используется эффект торможения, который возникает при взаимодействии заряда размещенных на поверхности сети пленочных электретов с магнитным полем Земли (сила Лоренца). При орбитальном движении сети за счет взаимодействия заряда размещенных на поверхности сети пленочных электретов с магнитным полем Земли происходит торможение сети с космическим мусором. В результате торможения происходит перевод сети с КМ на более низкую орбиту и обеспечивается вход сети вместе с КМ в плотные слои атмосферы.

Небольшой объем, малая масса крупноячеистой сети с электретироваными пленочными электретами позволяет разместить на борту КА десятки магнитонепроницаемых контейнеров, в результате чего один маневрирующий КА способен удалить с орбиты десятки крупногабаритных объектов КМ, количество которых определяется запасом топлива и числом магнитонепроницаемых контейнеров с сетью, размещаемых на борту КА.

Развертывание крупноячеистой сети за счет давления остаточного воздуха во внутренней полости развертывающих надувных элементов, либо путем наддува развертывающих надувных элементов из баллонов с газом, размещенных на крупноячеистой сети, существенно упрощает процесс развертывания, а также обеспечивает полное раскрытие полотна сети.

Кроме того, размещение на поверхности крупноячеистой сети пленочных электретов, электретированных одноименным положительным или отрицательным зарядом, улучшает условия развертывания крупноячеистой сети, так как позволяет исключить слипание сети при длительном нахождении ее в сложенном или свернутом виде в магнитонепроницаемом контейнере на борту КА.

Вместе с тем, использование тонкой пленки из углеродных нанотрубок в качестве материала многослойных гермооболочек обеспечивает прочность конструкции развертывающих надувных элементов в условиях космического полета. Предел прочности пленки из углеродных нанотрубок составляет 9,6 гигапаскаля. Для сравнения: предел прочности кевларовых волокон составляет всего 3,7 гигапаскаля [7].

Следует отметить, что величина силы Лоренца пропорциональна величине заряда. Отсюда следует, что чем больше величина заряда пленочного электрета, чем больше площадь поверхности, на которой расположены пленочные электреты и соответственно больше их количество, тем больше проявляется эффект торможения крупноячеистой сети с электретированными пленочными электретами в магнитном поле Земли.

Это позволяет сделать вывод о возможности практического использования предлагаемого способа очистки околоземного космического пространства от крупногабаритных объектов КМ на орбитах более 600 километров (где не сказывается очищающий эффект от торможения об атмосферу, а уровень засорения космоса особенно высок) [12, 13].

Источники информации

1. Инженерный справочник по космической технике. М.: Воениздат. 1977. С. 134-140.

2. Патент №2574366 «Устройство уборки космического мусора и способ уборки космического мусора».

3. Космический мусор в рыболовные сети. Биржа Интеллектуальной собственности. Т. X. №7. 2011. С. 26.

4. Радиотехника. Энциклопедия / под ред. Мазора Ю.Л., Мачусского Е.А., Правды В.И. М.: ДМК Пресс. 2016. С. 48, с. 197.

5. Губкин А.Н. Электреты. М.: Наука. 1978.

6. Патент №2477540 «Способ изготовления пленочного электрета».

7. Углеродная нанопленка прочнее кевлара и углеродного волокна. Биржа Интеллектуальной собственности. Т. XV. №5. 2016. С. 24.

8. Колмаков А.Г., Баринов СМ., Алымов М.И. Основы технологий и применение наноматериалов. М.: Физматлит. 2013. С. 134.

9. Вениаминов С.С.Космический мусор - угроза человечеству. М.: ФГБУН Институт космических исследований Российской академии наук. 2013. С. 34-54, с. 174-179.

10. Малые космические аппараты информационного обеспечения / под ред. Фатеева В.Ф. М.: Радиотехника. 2010. С. 82-93.

11. Инфраструктура малых космических аппаратов / под ред. Фатеева В.Ф. М.: Радиотехника. 2011. С. 25, с. 315-347.

12. http://www.astronom2000.info/different/zk/ Константиновская Л.В. Засорение Космоса.

13. Иванов Н.М., Лысенко Л.Н. Баллистика и навигация космических аппаратов. М.: МГТУ им. Н.Э. Баумана. 2016. С. 50-51.

Источник поступления информации: Роспатент

Показаны записи 1-1 из 1.
05.07.2018
№218.016.6c39

Способ обзора геостационарной области для наблюдения элементов космического мусора и других объектов с космического аппарата на полусуточной высокоэллиптической орбите

Изобретение относится к способам получения детальных изображений космического мусора и других объектов вблизи геостационарной орбиты (ГСО). Обзор производят с космического аппарата (КА) на полусуточной высокоэллиптической орбите (ВЭО) с апогеем A на 200 км ниже или на 500 км выше ГСО и перигеем...
Тип: Изобретение
Номер охранного документа: 0002659379
Дата охранного документа: 29.06.2018
Показаны записи 1-10 из 13.
10.03.2013
№216.012.2ebc

Способ калибровки радиолокационной станции по величине эффективной поверхности рассеяния при проведении динамических измерений эффективной поверхности рассеяния исследуемых объектов

Изобретение относится к области радиолокации и может быть использовано при калибровке радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР). Предлагаемый способ включает запуск на орбиту вокруг Земли отражателя с известной величиной ЭПР, облучение отражателя...
Тип: Изобретение
Номер охранного документа: 0002477495
Дата охранного документа: 10.03.2013
10.03.2013
№216.012.2ebd

Способ калибровки радиолокационной станции, работающей на волнах круговой поляризации при параллельном приеме отраженных сигналов, по величине эффективной поверхности рассеяния при динамических измерениях эффективной поверхности рассеяния баллистических и космических объектов

Изобретение относится к области радиолокации и может быть использовано при калибровке радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР). Предлагаемый способ включает запуск ракеты-носителя (РН) с эталонным отражателем (ЭО), облучение отражателя сигналами РЛС,...
Тип: Изобретение
Номер охранного документа: 0002477496
Дата охранного документа: 10.03.2013
20.03.2015
№216.013.3479

Космический аппарат для калибровки радиолокационной станции по величине эффективной поверхности рассеяния

Изобретение относится к бортовому радиолокационному оборудованию космических аппаратов (КА), предназначенному для калибровки радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР). КА содержит корпус в форме прямоугольной призмы (1) с поперечным сечением (2) в виде...
Тип: Изобретение
Номер охранного документа: 0002544908
Дата охранного документа: 20.03.2015
20.01.2016
№216.013.a332

Способ калибровки радиолокационной станции с использованием космического аппарата с эталонными отражательными характеристиками

Изобретение предназначено для калибровки радиолокационных станций (РЛС) по величине эффективной поверхности рассеяния (ЭПР). Достигаемый технический результат - расширение функциональных возможностей и повышение точности калибровки РЛС. Предлагаемый способ включает запуск на орбиту вокруг Земли...
Тип: Изобретение
Номер охранного документа: 0002573420
Дата охранного документа: 20.01.2016
20.08.2016
№216.015.4ca4

Радиолокационный уголковый отражатель

Изобретение относится к радиолокационной технике. Особенностью заявленного уголкового отражателя является то, что грани уголкового отражателя, выполненные из радиоотражающих или проводящих пластин, развернуты под углом α в диапазоне от (90-Δ) до (90+Δ) градусов, где Δ определяется из...
Тип: Изобретение
Номер охранного документа: 0002594667
Дата охранного документа: 20.08.2016
27.08.2016
№216.015.51c2

Космический аппарат для калибровки радиолокационных станций

Изобретение относится к космической технике, в частности к конструкции космических аппаратов (КА) для калибровки РЛС. КА содержит корпус с приборным отсеком, двигательную установку, системы ориентации и стабилизации, солнечные батареи. Корпус КА выполнен в виде прямой призмы, одна из граней...
Тип: Изобретение
Номер охранного документа: 0002596194
Дата охранного документа: 27.08.2016
13.01.2017
№217.015.6dd2

Способ обзора космического пространства между солнцем и землёй, недоступного для наблюдения оптическими средствами, находящимися на земле и на околоземных орбитах, из-за их засветки солнцем, с космического аппарата, размещённого на орбите земли на постоянном расстоянии от земли

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для обнаружения астероидов и комет, опасных для Земли. Технический результат - расширение функциональных возможностей. Изобретение включает способ...
Тип: Изобретение
Номер охранного документа: 0002597028
Дата охранного документа: 10.09.2016
25.08.2017
№217.015.9b2d

Космическая система обзора небесной сферы для наблюдения небесных объектов и обнаружения опасных для земли небесных тел - астероидов и комет

Изобретение относится к космической технике и может быть использовано при создании космических средств и систем обзора космического пространства для наблюдения и обнаружения небесных объектов, прежде всего астероидов и комет, опасных для Земли, летящих к Земле со всех направлений, в том числе и...
Тип: Изобретение
Номер охранного документа: 0002610066
Дата охранного документа: 07.02.2017
25.08.2017
№217.015.d1c2

Космическая система обзора небесной сферы для обнаружения небесных тел

Изобретение относится к космической технике и может быть использовано при создании космических систем обзора космического пространства для наблюдения и обнаружения опасных астероидов и комет, летящих к Земле со стороны Солнца. Технический результат – расширение функциональных возможностей. Для...
Тип: Изобретение
Номер охранного документа: 0002621464
Дата охранного документа: 06.06.2017
29.12.2017
№217.015.fa67

Многофункциональный космический аппарат

Изобретение относится к оборудованию многофункциональных космических аппаратов (МКА), предназначенных для калибровки и юстировки радиолокационных станций (РЛС), а также для дистанционного зондирования Земли (ДЗЗ). МКА содержит корпус с приборным отсеком, двигательную установку, системы...
Тип: Изобретение
Номер охранного документа: 0002640167
Дата охранного документа: 26.12.2017
+ добавить свой РИД