×
18.07.2018
218.016.7182

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002661349
Дата охранного документа
16.07.2018
Аннотация: Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Расширение функциональных возможностей способа измерения за счет повышения точности измерения является техническим результатом изобретения. В способе измерения влагосодержания диэлектрической жидкости в первом такте измерений возбуждают электромагнитные волны первой фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, дополнительно во втором такте измерений возбуждают в волноводе электромагнитные волны фиксированной частоты, которую выбирают выше критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют фазовый сдвиг возбуждаемых и принимаемых электромагнитных волн, при этом хотя бы одну из частот выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды на этой частоте, производят совместное функциональное преобразование измеренных амплитуды и фазового сдвига, по результату которого судят о влагосодержании жидкости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам.

Известны различные способы и устройства для определения влагосодержания жидкостей, основанные на измерении электрофизических параметров (диэлектрической проницаемости или (и) тангенса угла диэлектрических потерь) жидкостей с применением радиоволновых ВЧ и СВЧ волноводов и резонаторов, содержащих контролируемую жидкость (монографии: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Физматгиз. 1963. 403 с. С. 37-144; Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. - М.: Наука. 1989. 208 с. С. 168-177). Недостатком таких способов и реализующих эти способы измерительных устройств является их ограниченная область применения, обусловленная невозможностью контроля малых изменений влагосодержания жидкостей ввиду невысокой точности измерения соответствующих малых изменений информативных параметров (резонансной частоты, добротности резонатора и др.). Для обеспечения возможности проведения таких измерений применяют двухканальные измерительные схемы с независимыми измерительным и эталонным каналами. В эталонном канале чувствительный элемент содержит жидкость с известными физическими свойствами (монография: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. - М.: Физматгиз. 1963. 403 с. С. 258-268).

Известен также способ определения влагосодержания жидкости, который заключается в проведении измерений фазового сдвига зондирующих и провзаимодействовавших с контролируемым веществом электромагнитных волн на двух фиксированных частотах (RU 2614054 С1, 22.03.2017). Этот способ обеспечивает независимость результатов измерения влагосодержания от диэлектрической проницаемости контролируемого диэлектрического вещества. Недостатком этого способа являются его ограниченные функциональные возможности, характеризуемые сложностью реализации и необходимостью применения антенн для зондирования и приема электромагнитных волн в поперечном к стенкам емкости или трубопровода направлении через специальные диэлектрические "окна" в стенках емкости (измерительной ячейки) с веществом (при измерениях в стационарных условиях) или трубопровода с перемещаемым веществом (при измерениях в трубопроводах). Это может встречать затруднения при реализации, в частности, при измерениях в емкостях (измерительных ячейках) или трубопроводах малых диаметров.

Известно также техническое решение (RU 2626409 С1, 27.07.2017), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Согласно этому способу-прототипу определение влагосодержания жидкости производят при возбуждении электромагнитных волн фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля. Недостатком данного способа измерения является ограниченность его функциональных возможностей, обусловленная невысокой точностью измерений при изменении диэлектрической проницаемости влагосодержащей жидкости, что имеет место, например, при изменении сорта жидкого топлива (нефтепродукта).

Техническим результатом настоящего изобретения является расширение функциональных возможностей способа измерения за счет повышения точности измерения.

Технический результат достигается тем, что в предлагаемом способе измерения влагосодержания диэлектрической жидкости, при котором в первом такте измерений возбуждают электромагнитные волны первой фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, согласно изобретению дополнительно во втором такте измерений возбуждают в волноводе электромагнитные волны фиксированной частоты, которую выбирают выше критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют фазовый сдвиг возбуждаемых и принимаемых электромагнитных волн, при этом хотя бы одну из частот выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды на этой частоте, производят совместное функциональное преобразование измеренных амплитуды и фазового сдвига, по результату которого судят о влагосодержании жидкости.

Предлагаемый способ поясняется чертежом. На фиг. 1 приведена схема устройства, поясняющая принцип измерения с применением способа.

Здесь показаны волновод 1, генераторы 2 и 3, первый коммутатор 4, элементы связи 5 и 6, второй коммутатор 7, детектор 8, функциональный преобразователь 9, фазометр 10, регистратор 11.

Способ реализуется следующим образом.

В данном способе реализуют структурный подход к достижению инвариантности к диэлектрической проницаемости εн контролируемой жидкости, в частности к ее сортности, изменения которой имеют место, в частности, при контроле нефти и нефтепродуктов в какой-либо емкости или в процессе их транспортирования по трубопроводу. Этот подход связан с организацией двух измерительных каналов (двух последовательных тактов измерений на двух разных фиксированных частотах ƒ1 и ƒ2) и совместным функциональным преобразованием их выходных величин с целью получения результата этого преобразования, который не зависит от возмущающего фактора, в данном случае - от величины диэлектрической проницаемости εн контролируемой жидкости и изменений εн.

Предлагаемый способ заключается в возбуждении электромагнитных волн в волноводе, используемом в качестве измерительной ячейки (при измерениях в стационарных условиях) или в качестве отрезка измерительного волновода, встроенного в трубопровод с перекачиваемой жидкостью (при измерениях в трубопроводах). Электромагнитные волны в волноводе возбуждают последовательно на двух разных фиксированных частотах ƒ1 и ƒ2, одна из которых, для определенности частота ƒ1 ниже критической частоты ƒкр для волны низшего типа, а другая частота, для определенности, частота ƒ2, выше этой критической частоты ƒкр. При этом на частоте ƒ1 вдоль волновода существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента у одного из торцов емкости. На частоте ƒ2 электромагнитные волны распространяются в обычном режиме на "рабочем" типе волн, в частности на низшем типе Н11 в круглом волноводе (Лебедев И.В. Техника и приборы СВЧ. Т. 1. – М.: Высшая школа. 1970. 440 с. С. 80-89).

Электромагнитные волны принимают после их распространения вдоль данного волновода на другом его торце и измеряют на частоте ƒ1, ниже критической частоты волновода, амплитуду Е напряженности электрического поля и на частоте ƒ2, выше критической частоты волновода, фазовый сдвиг Δϕ электромагнитных волн, возбуждаемых на одном торце волновода и принимаемых на другом его торце. По результату совместного преобразования измеренных амплитуды Е и фазового сдвига Δϕ судят о влагосодержании жидкости. При этом хотя бы одну из частот ƒ1 или ƒ2 выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды на этой частоте.

Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства: ƒ>ƒкp, которому должны удовлетворять рабочая частота ƒ и критическая частота ƒкр для волны низшего типа, например для волны Н11 в круглом волноводе. При ƒ<ƒкp имеет место режим, при котором распространения волн по волноводу не происходит, а существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента (Лебедев И.В. Техника и приборы СВЧ. Т. 1. - М.: Высшая школа. 1970. 440 с. С. 132-136).

При этом электрическое поле (как и магнитное поле) изменяется вдоль координаты z (оси волновода) по закону:

а постоянная ослабления α есть

В этих формулах Е0 - амплитуда напряженности электрического поля при z=0; ε - диэлектрическая проницаемость диэлектрической жидкости в волноводе, с - скорость света. Выбирая соотношение между ƒ и ƒкр, можно управлять величиной ослабления α.

Если частота ƒ генератора меньше критической частоты ƒкр данного волновода, то амплитуда напряженности Е электрического поля, являющаяся информативным параметром, в точке приема есть

где Е0 - амплитуда напряженности поля в области возбуждения электромагнитных волн в рассматриваемом волноводе (т.е. в области расположения связи 3), λкр - критическая длина волны для данного волновода, l - длина измерительного участка, т.е. расстояние вдоль волновода между элементами возбуждения и съема электромагнитных колебаний. Напряженность электрического поля Е при удалении от элемента связи, служащего для возбуждения и приема электромагнитных колебаний, спадает в соответствии с соотношением (3). При этом значение Е зависит от влагосодержания контролируемой жидкости в волноводе.

Для волн низшего типа Н11 имеем λкр=3,4d/2 и, соответственно, где d - внутренний диаметр волновода (Лебедев И.В. Техника и приборы СВЧ. Т. 1. - М.: Высшая школа. 1970. 440 с. С. 132-136). Например, при d=30 мм, для волн типа Н11 будем иметь λкр=3,41d/2=5,115 см; тогда ƒкp=5,865/√ε ГГц. Если, например, ε=2,0, то должно быть ƒ<ƒкp = 5,865/√ε ГГц = 4,148 ГГц.

Длина l измерительного участка, частота ƒ генератора выбираются с учетом диаметра волновода, электрофизических параметров контролируемой жидкости и диапазона их изменения.

Согласно данному способу, определение влагосодержания производят при проведении двух последовательных тактов измерений на фиксированных частотах ƒ1 и ƒ2.

В первом такте измерений, при возбуждении в волноводе на одном из его торцов электромагнитных волн на фиксированной частоте ƒ1, меньшей критической частоты ƒкр волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду Е напряженности электрического поля:

где

Е0 - амплитуда напряженности поля в области возбуждения электромагнитных волн в рассматриваемом волноводе, l - длина измерительного участка, т.е. расстояние вдоль волновода между элементами возбуждения и съема электромагнитных колебаний, λкр - критическая длина волны в волноводе, ε(ƒ1) - диэлектрическая проницаемость жидкости на частоте ƒ1.

Во втором такте измерений, при возбуждении в волноводе на одном из его торцов электромагнитных волн на фиксированной частоте ƒ2, большей той же критической частоты ƒкp волновода (или иной критической частоты для какого-либо другого рабочего типа волн, если его выбирают для измерений), принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют фазовый сдвиг Δϕ электромагнитных волн, возбуждаемых на одном торце волновода и принимаемых на другом его торце:

где ε(ƒ2) - диэлектрическая проницаемость жидкости на частоте ƒ2.

Величина диэлектрической проницаемости ε влагосодержащего диэлектрика, имеющего диэлектрическую проницаемость εн и влагосодержание W, описывается при малых W формулой Винера (Теория и практика экспрессного контроля влажности твердых и жидких материалов / Кричевский Е.С., Бензарь В.К., Венедиктов В. М.В. Под общ. ред. Кричевского Е.С. М: Энергия. 1980. 240 с. С. 55-66):

где εв(ƒ) - диэлектрическую проницаемость воды, являющаяся функцией частоты ƒ в СВЧ-диапазоне частот.

Например, если производить измерения на частоте ƒ1=10 ГГц, то (ƒ1)=1,095, а на частоте ƒ2=37,5 ГГц, то D(ƒ2)=1,383, если считать εн=2.

Выражения для D(ƒ1), D(ƒ2) в формулах (4) и (5) можно упростить, если положить D(ƒ1)-W≈D(ƒ1), D(ƒ1)-W≈D(ƒ2), и не зависят от εн, то допустимо при малых значениях влагосодержания (до ~ 5%) и реальных пределах изменения εн.

Постоянство величин D(ƒ1) и D(ƒ2) для соответствующих частот ƒ1 и ƒ2 вытекает из постоянства величин εн и εв, входящих в формулы для D(ƒ1) и D(ƒ2). Величина εн постоянна в широком диапазоне изменения частоты ƒ, величина εв постоянна на недисперсионном участке кривой εв(ƒ) и принимается постоянной на дисперсионном участке этой кривой. Это справедливо при проведении изменений с помощью измерительных устройств, работающих на фиксированных частотах.

Покажем теперь на реальном примере, что D(ƒ1)-W и D(ƒ2)-W, а точнее, величины 3/(D(ƒ1)-W) и 3/(D(ƒ2)-W), входящие в общем виде при произвольном значении частоты ƒ в формулу (1), не зависят (с некоторой допустимой погрешностью) от εв. Так, при реальном изменении εв на 10% по сравнению с первоначальным значением εн=2, т.е. до значения 2,2, при значениях частот ƒ1=10 ГГц и ƒ2=37,5 ГГц будем иметь:

при εн=2: D(ƒ1)=1,095, D(ƒ2)=1,383;

при εн=2,2: D(ƒ1)=1,105, D(ƒ2)=1,337.

Отсюда следует, что относительное изменение D(ƒ1) есть ~ 0,9%, а относительное изменение D(ƒ2) есть ~ 2,6%.

Оценим, как влияют эти изменения D(ƒ1) и D(ƒ2) на коэффициенты при W в формуле (1) при ƒ=ƒ1 и ƒ=ƒ2, а именно на коэффициент k1=3/(D(ƒ1)-W) и коэффициент k2=3/(D(ƒ2)-W):

при εн=2 имеем: k1 ≈ 2,752, k2 ≈ 2,31;

при εн=2,2 имеем: k1 ≈ 2,727, k2 ≈ 2,33.

Отсюда следует, что относительное изменение как k1, так и есть ~ 0,9%, что в ~ 100 раз меньше относительного изменения εн, т.е. реальное изменение εн не влияет практически на k1 и k2. В формулах для D(ƒ1) и D(ƒ2) можно использовать для выражения εн значение - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.

Отметим, что для реализации данного способа измерений достаточно, если рассматриваемой частотной дисперсией обладает вода только на одной из двух рабочих частот (ƒ1 или ƒ2).

При проведении измерений в первом такте на частоте ƒ1 будем иметь:

где εв1) - диэлектрическая проницаемость воды, являющаяся функцией частоты ƒ1 в СВЧ-диапазоне частот, - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости. При проведении измерений во втором такте на частоте ƒ2 будем иметь:

где

εв2) - диэлектрическая проницаемость воды, являющаяся функцией частоты ƒ2 в СВЧ-диапазоне частот, - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.

При достаточно больших значениях W следует использовать другие известные выражения для ε (Теория и практика экспрессного контроля влажности твердых и жидких материалов / Кричевский Е.С., Бензарь В.К., Венедиктов В. М.В. Под общ. ред. Кричевского Е.С. - М.: Энергия. 1980. 240 с.).

При рассмотрении (7) и (8) как системы уравнений и ее решении относительно искомого влагосодержания W получим

С учетом формул (4) и (5) выражение (9) принимает следующий вид:

Формулу (10) запишем в следующем виде:

где k1, k2, k3, k4, k5, k6 - постоянные величины, причем

Таким образом, осуществляя совместное преобразование измеряемых значений амплитуды Е и фазового сдвига Δϕ согласно соотношению (11), получаем значение влагосодержания W, которое не зависит от диэлектрической проницаемости εн контролируемой жидкости и ее возможных изменений.

На фиг. 1 приведена схема устройства для реализации данного способа.

Возбуждение электромагнитных волн в волноводе 1 осуществляется последовательно, в первом и втором тактах измерений, на фиксированной частоте ƒ1, меньшей критической частоты ƒкр для этого волновода, и на фиксированной частоте ƒ2, большей критической частоты ƒкр, с помощью, соответственно, генератора 2 и генератора 3 через первый коммутатор 4 и элемент связи 5. Другой элемент связи (приема) 6 электромагнитных волн расположен на расстоянии l вдоль волновода 1. В первом такте измерений принимаемые волны на частоте ƒ1 поступают через второй коммутатор 7 на детектор 8 и затем продетектированные сигналы амплитуды Е подаются на первый вход функционального преобразователя 9. Во втором такте измерений принимаемые волны на частоте ƒ2 поступают с выхода коммутатора 7 на первый вход фазометра 10, на второй вход которого подаются волны с генератора 2 для определения фазового сдвига Δϕ. С выхода фазометра 10 сигналы поступают на второй вход функционального преобразователя 9, в котором осуществляют совместное преобразование значений амплитуды Е и фазового сдвига Δϕ согласно вышеприведенному соотношению. Выход функционального преобразователя 9 подсоединен к регистратору 11 для определения искомого влагосодержания W, которое не зависит от значения εн.

Для волноводов конкретных размеров выбором частот ƒ1 и ƒ2 генераторов 2 и 3 и размеров волновода (измерительной ячейки) можно оптимизировать чувствительность устройства для измерения влагосодержания жидкости в рабочем диапазоне его изменения. При этом имеет место монотонность зависимости информативных параметров - значений амплитуды Е и фазового сдвига Δϕ - от значений, соответственно, ε(ƒ1) и ε(ƒ2), функционально связанных с измеряемым влагосодержанием жидкости.

Таким образом, данный способ позволяет достаточно просто и с высокой точностью определять влагосодержание различных диэлектрических жидкостей с высокой точностью, независимо от диэлектрической проницаемости контролируемой жидкости. Предлагаемый способ может быть реализован как при работе с образцами контролируемой влагосодержащей жидкости в стационарных условиях, так и при ее движении - при перемещении жидкости по трубопроводу.

Способ определения влагосодержания диэлектрической жидкости, при котором в первом такте измерений возбуждают электромагнитные волны первой фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, отличающийся тем, что дополнительно во втором такте измерений возбуждают в волноводе электромагнитные волны фиксированной частоты, которую выбирают выше критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют фазовый сдвиг возбуждаемых и принимаемых электромагнитных волн, при этом хотя бы одну из частот выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды на этой частоте, производят совместное функциональное преобразование измеренных амплитуды и фазового сдвига, по результату которого судят о влагосодержании жидкости.
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ
СПОСОБ ОПРЕДЕЛЕНИЯ ВЛАГОСОДЕРЖАНИЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 276.
10.06.2015
№216.013.510f

Способ определения состояния поверхности дороги

Изобретение относится к способам для определения состояния поверхности дорожного полотна, на котором возможно образование слоя воды, снега или льда. Контролируемый участок поверхности дороги зондируют электромагнитными волнами, принимают отраженные от этого участка поверхности электромагнитные...
Тип: Изобретение
Номер охранного документа: 0002552272
Дата охранного документа: 10.06.2015
10.07.2015
№216.013.6084

Способ контроля процесса плавки в вакуумной дуговой печи

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является отслеживание длины дуги в процессе плавки в вакуумной дуговой печи. Технический результат достигается тем, что в способе контроля процесса плавки в вакуумной дуговой печи, включающем...
Тип: Изобретение
Номер охранного документа: 0002556249
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60af

Способ измерения уровня жидкости в емкости

Изобретение может быть использовано для высокоточного измерения уровня диэлектрической жидкости, находящейся в емкости, например для измерения уровня нефтепродуктов. Техническим результатом является увеличение чувствительности и точности измерений. В предлагаемом способе измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002556292
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.60d3

Устройство для определения внешнего объема цилиндрического полого изделия

Изобретение относится к области измерительной техники. Техническим результатом заявляемого решения является упрощение процедуры обработки информационных сигналов о геометрических параметрах цилиндрического изделия. Устройство для определения внешнего объема цилиндрического полого изделия...
Тип: Изобретение
Номер охранного документа: 0002556329
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6154

Сеть с топологией расширенного обобщенного гиперкуба

Изобретение относится к области высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является обеспечение надежных высокоэффективных сетей с большим числом процессорных узлов. Системная сеть с топологией расширенного n-мерного R-ичного обобщенного гиперкуба,...
Тип: Изобретение
Номер охранного документа: 0002556458
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.69c4

Способ измерения параметров сжиженного газа в трехфазном состоянии

Изобретение относится к электрическим методам контроля и может быть использовано для измерения параметров сжиженных газов, включая криогенные жидкости, в трехфазном состоянии (газовом, жидком и твердом). Оно может быть использовано также для измерения положения границ раздела и диэлектрической...
Тип: Изобретение
Номер охранного документа: 0002558629
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002558630
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69c6

Бесконтактное радиоволновое устройство для определения уровня жидкости в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения уровня жидкости, находящейся в какой-либо емкости, в частности для измерения уровня воды, нефтепродуктов, сжиженных газов и других жидкостей. Предлагается устройство для измерения уровня...
Тип: Изобретение
Номер охранного документа: 0002558631
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6b94

Устройство для получения электроэнергии на основе использования морских волн

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Устройство для получения электроэнергии на основе использования морских волн содержит преобразователь энергии морских волн, выполненный в виде набора...
Тип: Изобретение
Номер охранного документа: 0002559098
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6c06

Способ использования морских волн для получения электроэнергии

Изобретение относится к области возобновляемой энергетики, а именно к преобразованию энергии волн открытых водоемов в электроэнергию. Способ использования морских волн для получения электроэнергии заключается в том, что осуществляют концентрацию фронта волны за счет пропускания воды через набор...
Тип: Изобретение
Номер охранного документа: 0002559212
Дата охранного документа: 10.08.2015
Показаны записи 71-80 из 86.
29.04.2019
№219.017.4377

Устройство для определения содержания спирта и сахара в вине

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения концентрации различных водосодержащих растворов, в частности концентрации спирта и сахара в вине. Предлагается устройство, содержащее первый и второй чувствительные элементы в виде,...
Тип: Изобретение
Номер охранного документа: 0002413218
Дата охранного документа: 27.02.2011
09.05.2019
№219.017.50ab

Способ определения влагосодержания вещества

Изобретение относится к измерительной технике и может быть использовано для измерения влагосодержания, а также других физических свойств (концентрации смеси, плотности) различных материалов и веществ, перемещаемых по ленточным конвейерам, транспортерам. В частности, оно может быть применено при...
Тип: Изобретение
Номер охранного документа: 0002468358
Дата охранного документа: 27.11.2012
09.06.2019
№219.017.7628

Датчик давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения избыточного давления высокотемпературных сред в широком диапазоне его изменения. Датчик давления выполнен в виде совокупности первого коаксиального резонатора, содержащего цилиндрический корпус,...
Тип: Изобретение
Номер охранного документа: 0002690971
Дата охранного документа: 07.06.2019
13.06.2019
№219.017.809e

Устройство для измерения давления

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения статического и динамического давления. Устройство содержит металлическую полость в виде предельного волновода, для которого частота возбуждаемых в нем электромагнитных волн выбрана ниже...
Тип: Изобретение
Номер охранного документа: 0002691283
Дата охранного документа: 11.06.2019
13.06.2019
№219.017.80a0

Способ измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения внутреннего диаметра металлических труб как готовых изделий, так и при их производстве. Сущность заявленного решения заключается в том, что в предлагаемом способе измерения внутреннего диаметра...
Тип: Изобретение
Номер охранного документа: 0002691288
Дата охранного документа: 11.06.2019
19.06.2019
№219.017.88d0

Устройство для измерения физических свойств жидкости

Изобретение относится к области электротехники, в частности к устройству для измерения физических свойств жидкости, и может быть использовано, например, в пищевой промышленности. Предлагаемое устройство для измерения физических свойств жидкости содержит размещаемый в контролируемой жидкости...
Тип: Изобретение
Номер охранного документа: 0002412432
Дата охранного документа: 20.02.2011
01.09.2019
№219.017.c548

Способ измерения положения границы раздела двух веществ в резервуаре

Использование: для высокоточного измерения положения границы раздела двух веществ. Сущность изобретения заключается в том, что способ измерения положения границы раздела двух веществ в резервуаре, при котором в емкости с веществами, одно над другим, образующими плоскую горизонтальную границу...
Тип: Изобретение
Номер охранного документа: 0002698575
Дата охранного документа: 28.08.2019
12.10.2019
№219.017.d54f

Способ измерения положения границ раздела между компонентами трехкомпонентной среды в емкости

Изобретение может быть использовано для определения положения границ раздела трехкомпонентной среды, например воздуха и жидкостей с разной плотностью. Техническим результатом является расширение функциональных возможностей. В способе размещают два отрезка длинной линии, возбуждают...
Тип: Изобретение
Номер охранного документа: 0002702698
Дата охранного документа: 09.10.2019
21.11.2019
№219.017.e432

Способ измерения положения границы раздела двух веществ в резервуаре

Изобретение может быть использовано для измерения положения границы раздела двух веществ, находящихся в резервуаре одно над другим и образующих плоскую границу раздела, в частности двух несмешивающихся жидкостей с разной плотностью, независимо от электрофизических параметров обоих веществ....
Тип: Изобретение
Номер охранного документа: 0002706455
Дата охранного документа: 19.11.2019
20.04.2023
№223.018.4bcd

Устройство для измерения физических свойств жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств Устройство для измерения физических свойств жидкости содержит волноводный резонатор в виде отрезка коаксиальной длинной линии с двумя, рабочим и эталонным,...
Тип: Изобретение
Номер охранного документа: 0002760641
Дата охранного документа: 29.11.2021
+ добавить свой РИД