×
12.07.2018
218.016.705d

Результат интеллектуальной деятельности: Поршневая гибридная энергетическая машина со ступенчатым уплотнением

Вид РИД

Изобретение

Аннотация: Изобретение относится к области энергетики, гидравлических и пневматических устройств, в частности для сжатия и перемещения газов и жидкостей. Машина содержит цилиндр 1 и размещенный в нем с радиальным зазором δ в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней компрессорной 4 и нижней насосной 5 полостей. Полость 4 имеет мертвый объем V и соединена с источником и потребителем сжатого газа соответственно через всасывающие 6 и нагнетательные 7 газовые клапаны. Полость 5 - с источником и потребителем жидкости через всасывающие 8 и нагнетательные 9 жидкостные клапаны. В зоне полости 5 имеется ступенчатое расширение цилиндра 1 в виде выточки 10 с образованием радиального зазора δ большей величины, чем радиальный зазор δ. При работе машины выполняется соотношение V=V-V, где V - мертвый объем полости 4, V - объем жидкости, перетекшей из полости 5 в полость 4 в процессе сжатия и нагнетания жидкости; V - объем жидкости, перетекшей из полости 5 в полость 4 в процессе сжатия и нагнетания газа. Над поршнем 2 всегда присутствует слой жидкости, причем толщина этого слоя в конце процесса сжатия газа равна линейному мертвому объему L, что дает возможность получать высокое давление в одной ступени при полном отсутствии утечек. Постоянная циркуляция жидкости в зазоре между поршнем 2 и цилиндром 1 снижает их температуру. Позволяет использовать большие зазоры между поршнем 2 и цилиндром 1, т.е. исключить возможность заклинивания поршня 2 при пуске машины, организовать хорошее охлаждение газа и повысить экономичность машины. 5 ил.

Изобретение относится к области энергетики, гидравлических и пневматических устройств и систем и может быть использовано при создании поршневых высокоэффективных машин для сжатия и перемещения газов и жидкостей, особенно в тех случаях, когда давление нагнетания жидкости относительно невелико (4-6 бар), а давление газа его значительно превосходит (например, 10-12 бар и более).

Известна поршневая гибридная энергетическая машина, содержащая цилиндр и размещенный в нем поршень с образованием компрессорной и насосной полости (см., например, патент РФ на ПМ №125635. Поршневой насос-компрессор, МПК F04B 19/06, заявка №2012140810/06 от 24.09.2012, опубл. 10.03.2013, Бюл. №7).

Известна поршневая гибридная энергетическая машина, содержащая цилиндр и размещенный в нем с радиальным зазором дифференциальный поршень с образованием компрессорной и насосной полости, причем компрессорная полость соединена с источником и потребителем сжатого газа через всасывающие и нагнетательные газовые клапаны, а жидкостная полость - с источником и потребителем жидкости через всасывающие и нагнетательные жидкостные клапаны (см. патент РФ на ПМ№118371 МПК F04B 19/06, заявка №2012107932/06 от 01.03.2012, опубл. 20.07. 2012, Бюл. №20).

Недостатком известных конструкций является их низкая экономичность при сжатии газов до высокого давления газа в одной ступени в связи с большими утечками, и невозможность обеспечения приемлемой экономичности при работе на сравнительно больших радиальных зазорах в цилиндропоршневой группе (порядка 30-50 мкм), что затрудняет ее изготовление.

При использовании же малых (порядка 10-15 мкм) радиальных зазоров из-за неравномерности прогрева по длине поршня и цилиндра в процессе пуска, работа машины находится под постоянной угрозой заклинивания поршня в цилиндре. Все это вместе взятое снижает экономичность работы и надежность машины в период пуска.

Задачей изобретения является повышение экономичности поршневой гибридной энергетической машины и обеспечение ее надежного бесконтактного пуска.

Указанная цель достигается тем, что в поршневой гибридной энергетической машине, содержащей цилиндр и размещенный в нем с радиальным зазором дифференциальный поршень с образованием верхней компрессорной и нижней насосной полости, причем компрессорная полость соединена с источником и потребителем сжатого газа через всасывающие и нагнетательные газовые клапаны, а жидкостная полость - с источником и потребителем жидкости через всасывающие и нагнетательные жидкостные клапаны, согласно изобретению, цилиндр в зоне насосной полости в нижней части цилиндра имеет ступенчатое расширение в виде выточки с образованием между нижней цилиндрической поверхностью поршня и поверхностью цилиндра радиального зазора большей величины, чем радиальный зазор между поршнем и цилиндром в зоне верхней компрессорной полости, и при этом соблюдаются следующие соотношения:

VM=V1-V2,

где VM - мертвый объем компрессорной полости, , где LM - линейный мертвый объем компрессорной полости, dP - диаметр поршня;

- V1 - объем жидкости, перетекшей из жидкостной полости в компрессорную в процессе сжатия и нагнетания жидкости;

- V2 - объем жидкости, перетекшей из компрессорной полости в жидкостную в процессе сжатия и нагнетания газа,

и при этом

где - средняя протяженность круговой щели с радиальным зазором δ1, pWG - среднее давление жидкости в зоне ступенчатого расширения цилиндра на ходе сжатия жидкости, pGB - давление всасывания газа, pG - среднее индикаторное давление газа в процессе его сжатия и нагнетания, pGW - среднее давление жидкости в зоне ступенчатого расширения цилиндра на ходе сжатия и нагнетания газа, μ - динамическая вязкость жидкости, ν - средняя скорость поршня, Т - время хода поршня из нижней мертвой точки (ВМТ) в верхнюю мертвую точку (НМТ) и наоборот.

Сущность изобретения поясняется чертежами.

На фиг. 1 схематично показано продольное сечение машины в некоторый промежуточный момент времени.

На фиг. 2 показано сечение машины в процессе хода всасывания газа и сжатия-нагнетания жидкости.

На фиг. 3 показано сечение машины в момент окончания процессов всасывания газа и нагнетания жидкости.

На фиг. 4 показано сечение машины в момент нагнетания сжатого газа и всасывания жидкости.

На фиг. 5 показано сечение машины в момент окончания процессов нагнетания газа и нагнетания жидкости.

Поршневая гибридная энергетическая машина (фиг. 1) содержит цилиндр 1 и размещенный в нем с радиальным зазором δ1 в верхней части дифференциальный поршень 2 со штоком 3 с образованием верхней компрессорной 4 и нижней насосной 5 полости.

Компрессорная полость 4 имеет мертвый объем VM и соединена с источником и потребителем сжатого газа соответственно через всасывающие 6 и нагнетательные 7 газовые клапаны, а жидкостная полость 5 - с источником и потребителем жидкости соответственно через всасывающие 8 и нагнетательные 9 жидкостные клапаны.

В зоне насосной полости 5 в нижней части цилиндра 1 имеется ступенчатое расширение в виде выточки 10 с образованием между нижней цилиндрической поверхностью поршня 2 и поверхностью цилиндра 1 радиального зазора δ2 большей величины, чем радиальный зазор δ1 между поршнем 2 и цилиндром 1 в зоне верхней компрессорной полости 4.

Машина содержит картер 11 (на чертеже показана только его верхняя часть) и контактное уплотнение 12, препятствующее утечкам жидкости из полости 5 в картер.

Остальные обозначения.

dP - диаметр поршня 2.

ВМТ и НМТ - положение днища поршня 2 соответственно в верхней и нижней мертвой точке.

LM - величина линейного мертвого объема.

L - расстояние от начала выточки 10 до ВМТ.

- длина уплотняющей части поршня 2 в зоне радиального зазора δ1.

- длина уплотняющей части поршня 2 в зоне радиального зазора δ2.

pGW - давление в месте перехода уплотняющей части длиной l1 в уплотняющую часть длиной l2 (начало выточки 10) при течении жидкости из полости 4 в полость 5.

pWG - давление в месте перехода уплотняющей части длиной l1 в уплотняющую часть длиной l2 (начало выточки 10) при течении жидкости из полости 5 в полость 4.

LP - длина поршня 2.

S - полный ход поршня 2.

V1 - объем жидкости, поступивший в полость 4 при ходе поршня 2 вниз.

V2 - объем жидкости, поступивший в полость 5 при ходе поршня 2 вверх.

pG - давление газа в полости 4, pW - давление жидкости в полости 5.

pWB и pWH - соответственно давление всасывания и нагнетания жидкости.

pGB и pGH - соответственно давление всасывания и нагнетания газа.

Δ - слой жидкости над поршнем 2 в конце хода поршня 2 вниз (фиг. 3).

- минимальная длина уплотняющей части поршня 2 в зоне радиального зазора δ1. при ходе поршня 2 вниз (фиг. 3).

- максимальная длина уплотняющей части поршня 2 в зоне радиального зазора δ1. при ходе поршня 2 вверх (фиг. 5).

- максимальная длина уплотняющей части поршня 2 в зоне радиального зазора δ2. при ходе поршня 2 вниз (фиг. 3).

- минимальная длина уплотняющей части поршня 2 в зоне радиального зазора δ2. при ходе поршня 2 вверх (фиг. 5).

Машина работает следующим образом.

При ходе поршня 2 вниз от ВМТ к НМТ (ход всасывания газа, сжатия и нагнетания жидкости, фиг. 2) в полости 4 образуется разрежение, под действием перепада давления клапан 7 закрывается, и открывается клапан 6, газ под давлением всасывания pGB поступает в полость 4. Движение газа показано стрелками.

В это же время в полости 5 происходит сжатие жидкости и ее нагнетание потребителю под давлением нагнетания pWH через открытый перепадом давления клапан 9.

В связи с тем, что давление нагнетания жидкости больше, чем давление всасывания газа, жидкость из полости 5 через радиальный зазор δ2 и далее через радиальный зазор δ1 протекает в полость 4 (это движение жидкости показано стрелками) и образует над днищем поршня 2 слой жидкости.

При достижении НМТ (фиг. 3) все клапаны закрыты, и скорость поршня 2 становится равной нулю, в результате чего исчезает разрежение в полости 4 и прекращается нагнетание жидкости из полости 5.

При движении поршня 2 от ВМТ к НМТ и сопровождающих это движение перетечек жидкости через ступенчатый зазор между поршнем 2 и цилиндром 1, над днищем поршня 2 образуется слой жидкости, толщиной Δ.

При ходе поршня 2 вверх от НМТ к ВМТ (ход сжатия и нагнетания газа, всасывания жидкости, фиг. 4), при достижении газом давления нагнетания pGH, открывается клапан 7, и газ из полости 4 истекает потребителю (движение газа показано стрелками).

В это же время происходит увеличение объема полости 5, в связи с чем в ней образуется разрежение, и жидкость от источника под давлением всасывания pWB поступает через открытый клапан 8 в полость 5 (движение жидкости показано стрелками).

В связи с тем, что давление сжатия-нагнетания газа в полости 4 выше, чем давление всасывания жидкости в полости 5, жидкость сначала через радиальный зазор δ1, а затем через радиальный зазор δ2 протекает из полости 4 в полость 5, при этом толщина слоя жидкости над днищем поршня 2 уменьшается.

При подходе к положению ВМТ скорость поршня 2 становится равной нулю, изменения давлений в полостях 4 и 5 не происходит, газовые и жидкостные клапаны закрываются (фиг. 5).

Разность между расходами жидкости из полости 4 в полость 5 и наоборот является таковой, что выполняется условие: , где Δ - уровень жидкости над поршнем в конце его хода вниз (см. фиг 3), V2 - объем жидкости, перетекшей из компрессорной полости в жидкостную в процессе сжатия и нагнетания газа, LM - линейный мертвый объем компрессорной полости.

После полного перехода к объемам и после преобразования эта формула принимает вид

Уравнение для определения объемного расхода жидкости V через узкую круглую кольцевую щель диаметром d высотой δ с перепадом давления Δр=р12 и с одной подвижно стенкой длиной , движущейся со скоростью ν против движения жидкости, в течение промежутка времени Т, имеет общий вид

где μ - динамическая вязкость жидкости

В этом случае, при известной из конструктивных соображений и технологических возможностей изготовления машины величине мертвого объема VM, для определения величин V1 и V2, необходимых для выполнения условия (1), следует записать следующую систему уравнений:

где - средняя длина зазора δ1 в процессе движения поршня 2 между мертвыми точками.

Величины pGW и pWG могут быть определены из решения уравнений баланса объемных расходов жидкости через зазоры δ1 и δ2, аналогичных уравнениям системы (3), составленных для хода поршня 2 вверх и вниз. При этом определение расхода через зазор δ2 необходимо вести с использованием в качестве его средней длины .

Таким образом, в предложенной конструкции возможно использование сравнительно больших зазоров между поршнем 2 и цилиндром 1 (радиальный зазор δ1 - порядка 30-50 мкм и более, радиальный зазор δ2 - 100 мкм и более).

При этом обеспечивается не только гарантированный пуска машины без угрозы заклинивания поршня 2, но и стабильное омывание всех его наружных поверхностей, что стабилизирует и снижает температуру его тела и тела цилиндра. Последнее, в свою очередь, позволяет увеличить отводимую от газа теплоту в процессах его сжатия и нагнетания и снизить подводимую от стенок компрессорной полости подводимую теплоту в процессе всасывания. Это дает возможность приблизить процессы, происходящие в компрессорной полости 4, к изотермическим, что повышает КПД ее работы.

Кроме того, выполнение выше указанных соотношений позволяет создать над поршнем постоянно присутствующий слой жидкости, который выполняет функцию гидравлического затвора, препятствующего утечкам сжимаемого до высокого (по сравнению с давлением нагнетания жидкости) давления газа.

Выполнение условия (1) также дает возможность снизить практически до нуля фактический мертвый объем компрессорной полости 4, занятый газом, что также, как известно, повышает КПД компрессорной полости и позволяет сжимать газ до высоких давлений в одной ступени.

Таким образом, поставленная перед новой конструкцией машины задача полностью выполнена.


Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Поршневая гибридная энергетическая машина со ступенчатым уплотнением
Источник поступления информации: Роспатент

Показаны записи 31-40 из 109.
19.01.2018
№218.016.0aad

Порошковая проволока

Изобретение относится к области металлургии, а именно к порошковой проволоке, которая может быть использована в энергетической, химической и нефтяной отраслях для восстановления и упрочнения посадочных поверхностей валов, запорной и дросселирующей арматуры, торцевых уплотнений контактных пар....
Тип: Изобретение
Номер охранного документа: 0002632311
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0c00

Устройство контроля веществ

Использование: для контроля веществ. Сущность изобретения заключается в том, что устройство содержит последовательно включенные аналого-запоминающий блок, первую и вторую цепи преобразования, каждая из которых содержит последовательно соединенные узлы выборки и хранения, аналого-цифровой...
Тип: Изобретение
Номер охранного документа: 0002632633
Дата охранного документа: 06.10.2017
19.01.2018
№218.016.0cfd

Способ получения повышенного выходного напряжения

Использование: в области электротехники. Технический результат - повышение значения наводимой электродвижущей силы в обмотке статора магнитоэлектрической машины. Согласно способу валом двигателя с переменной скоростью вращения приводят во вращение нерегулируемый магнитоэлектрический генератор....
Тип: Изобретение
Номер охранного документа: 0002632817
Дата охранного документа: 10.10.2017
19.01.2018
№218.016.0d31

Способ микроклонального размножения картофеля in vitro сорта картофеля "ермак"

Изобретение относится к области биотехнологии растений. Способ включает культивирование оздоровленных растений картофеля in vitro путем микрочеренкования на питательную среду, содержащую макро- и микроэлементы по прописи Мурасиге-Скуга, Fe-хелат, агар-агар, витамины по Уайту, аскорбиновую...
Тип: Изобретение
Номер охранного документа: 0002632938
Дата охранного документа: 11.10.2017
20.01.2018
№218.016.17a4

Сырьевая смесь для газобетона

Изобретение относится к производству изделий из газобетона и может быть использовано в домостроении для изготовления строительных блоков, а также в дорожном строительстве для изготовления бордюров, ограждений и плиток. Сырьевая смесь для газобетона содержит, мас.%: портландцемент 35 - 55,...
Тип: Изобретение
Номер охранного документа: 0002635687
Дата охранного документа: 15.11.2017
20.01.2018
№218.016.1cc2

Способ ремонта вмятин на сосудах

Изобретение относится к области ремонта сосудов, работающих под давлением и содержащих на корпусе дефекты в виде вмятин, и может быть использовано в химической, нефтехимической, нефтеперерабатывающей промышленности. Способ ремонта вмятин на корпусе сосудов включает изготовление заплаты, по...
Тип: Изобретение
Номер охранного документа: 0002640512
Дата охранного документа: 09.01.2018
20.01.2018
№218.016.1d4e

Поршневая двухступенчатая машина с внутренней системой жидкостного охлаждения

Изобретение относится к энергетическим машинам и может быть использовано при создании высокоэкономичных автономно работающих двухступенчатых компрессоров и гибридных машин - насос-компрессоров с жидкостным охлаждением компрессорных полостей первой и второй ступени. Поршневая двухступенчатая...
Тип: Изобретение
Номер охранного документа: 0002640658
Дата охранного документа: 11.01.2018
20.01.2018
№218.016.1d80

Поршневой двухцилиндровый компрессор с жидкостным рубашечным охлаждением

Изобретение относится к области энергетических машин и касается поршневых машин и систем их охлаждения, и может быть использовано при создании поршневых компрессоров с повышенной экономичностью за счет организации автономной энергосберегающей системы охлаждения цилиндропоршневой группы....
Тип: Изобретение
Номер охранного документа: 0002640970
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1ddb

Роторно-поршневая гибридная машина объемного действия

Изобретение относится к области энергетических машин объемного действия и может быть использовано при создании высокоэффективных источников энергии для одновременного питания пневматического и гидравлического оборудования. Машина состоит и корпуса 1 с цилиндрами 2, 3, с роторами 10, 11 с...
Тип: Изобретение
Номер охранного документа: 0002640886
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1de0

Способ работы поршневого компрессора с автономным жидкостным охлаждением и устройство для его осуществления

Изобретение относится к области энергетики и может быть использовано при создании экономичных поршневых компрессоров малой и средней производительности с автономным жидкостным охлаждением. Способ работы компрессора заключается в том, что величину дополнительного объема, напрямую соединенного с...
Тип: Изобретение
Номер охранного документа: 0002640899
Дата охранного документа: 12.01.2018
Показаны записи 31-40 из 90.
20.03.2016
№216.014.cc8f

Система охлаждения двигателя внутреннего сгорания

Изобретение относится к области двигателей внутреннего сгорания (ДВС) и может быть использовано в системе охлаждения ДВС автотранспортной и автотракторной техники, работающей при низкой температуре. Система охлаждения двигателя внутреннего сгорания, содержащая заполненные охлаждающей жидкостью...
Тип: Изобретение
Номер охранного документа: 0002577914
Дата охранного документа: 20.03.2016
27.04.2016
№216.015.38c3

Способ производства выстрела в пневматической метательной конструкции и устройство для его осуществления

Изобретение относится к области метательных устройств, а именно к способам и устройствам производства выстрела в пневматической метательной конструкции. Способ заключается в том, что в рабочий объем цилиндра перед выстрелом вместе с воздухом подается жидкое топливо с образование рабочей смеси...
Тип: Изобретение
Номер охранного документа: 0002582754
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3d2a

Снаряд с газовым подвесом

Изобретение относится к боеприпасам, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом содержит гладкую цилиндрическую часть, в которой выполнена полость питания для создания давления в несущем газовом слое, соединенная с наружной цилиндрической поверхностью через питающие...
Тип: Изобретение
Номер охранного документа: 0002583529
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4c1b

Поршневая машина с индивидуальной системой охлаждения цилиндра

Изобретение относится к области энергетики и компрессоростроения и может быть использовано при создании поршневых компрессоров. Поршневая машина содержит цилиндр 1 с поршнем 2 с образованием рабочего объема 4, клапанную коробку 5 с полостью всасывания 6, линию всасывания 7, всасывающий клапан...
Тип: Изобретение
Номер охранного документа: 0002594389
Дата охранного документа: 20.08.2016
10.08.2016
№216.015.52a1

Снаряд с газовым подвесом

Изобретение относится к боеприпасам, в частности к снарядам с газовым подвесом. Снаряд с газовым подвесом имеет гладкую цилиндрическую часть, в которой выполнена полость питания для создания давления в несущем газовом слое. Полость питания соединена с наружной цилиндрической поверхностью через...
Тип: Изобретение
Номер охранного документа: 0002594320
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.52ec

Поршневая машина с индивидуальным жидкостным охлаждением

Изобретение относится к области компрессоростроения и может быть использовано при создании экономичных поршневых машин для сжатия газа с индивидуальным жидкостным охлаждением цилиндропоршневой группы. Поршневая машина содержит цилиндр 1 и размещенный в нем поршень 2, полость сжатия 3,...
Тип: Изобретение
Номер охранного документа: 0002594040
Дата охранного документа: 10.08.2016
10.08.2016
№216.015.53d4

Гидравлический или пневматический диод

Изобретение относится к области управления или регулирования расхода в текучей среде (жидкость, газ) и может быть использовано в различных гидравлических и пневматических системах, в которых необходимо регулировать параметры потоков рабочей среды при низких и средних давлениях, в том числе в...
Тип: Изобретение
Номер охранного документа: 0002593919
Дата охранного документа: 10.08.2016
12.01.2017
№217.015.583e

Снаряд с газостатическим подвесом

Изобретение относится к боеприпасам, в частности к снарядам с газостатическим подвесом. Снаряд с газостатическим подвесом содержит боевую и направляющую части. В направляющей части выполнена полость питания для создания давления в несущем газовом слое газостатического подвеса. Полость питания...
Тип: Изобретение
Номер охранного документа: 0002588408
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.58e5

Способ работы поршневого насос-компрессора и устройство для его осуществления

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании поршневых машин объемного действия, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов. Способ работы поршневого насоса-компрессора состоит в том, что...
Тип: Изобретение
Номер охранного документа: 0002588347
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.5ea8

Колесо транспортного средства

Изобретение относится к конструкциям колес с пневматическими шинами, предназначенными для колесных транспортных средств, в т.ч. тракторов, комбайнов, экскаваторов и других транспортных средств с безрессорными подвесками. Колесо транспортного средства содержит обод (1) и смонтированную на нем...
Тип: Изобретение
Номер охранного документа: 0002590785
Дата охранного документа: 10.07.2016
+ добавить свой РИД