×
12.07.2018
218.016.6fe8

Результат интеллектуальной деятельности: Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации

Вид РИД

Изобретение

№ охранного документа
0002660752
Дата охранного документа
10.07.2018
Аннотация: Изобретение относится к информационно-измерительной системе и может быть использовано в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов. Достигаемый технический результат - определение местоположения приближающихся опасных объектов путем использования второй и третьей измерительных баз, расположенных в азимутальной и гипотенузной плоскостях, антенны которых размещены в виде прямоугольного треугольника. Радиолокационная система (РЛС), реализующая предлагаемый способ, содержит блок управления РЛС, синтезатор частот, генератор М-кода, два модулятора, два усилителя мощности, СВЧ коммутатор, блок управления антенной системой, блок антенной системы, три антенны, три усилителя высокой частоты, три смесителя, устройство временной автоматической регулировки усиления, четыре усилителя промежуточной частоты, коммутатор промежуточной частоты, блок автоматической и ручной регулировки усиления, четыре блока фазовых детекторов, фазовращатель, два блока аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, блок первичной цифровой обработки, двухпортовое буферное оперативное запоминающее устройство, цифровой измеритель, три перемножителя, три узкополосных фильтра, опорный генератор. 2 н.п. ф-лы, 2 ил.

Предлагаемые способ и система относятся к информационно-измерительной системе и могут быть использованы в радиолокационной технике для высокоточной оценки ледовой обстановки в районах морской добычи и транспортировки нефтегазовых ресурсов.

Известны способы и устройства обнаружения и определения параметров морских ледовых полей (авт. свид. СССР №№1.778.487, 1.818.608; патенты РФ №№2.082.095, 2.158.008, 2.170.442, 2.319.205, 2.349.513, 2.360.848, 2.435.136, 2.467.347, 2.500.031; патенты США №№3.665.466, 4.697.254, 6.188.348; Простаков А.Л. Электронный ключ к океану. Л.: Судостроение, 1986, с. 15, 16, 24 и другие).

Из известных способов и систем наиболее близкими к предлагаемым являются «Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система, его реализующая» (патент РФ №2.467.347, G01S 13/00, 2011), которые и выбраны в качестве прототипов.

Известный способ заключается в том, что радиоизлучение производят с одной из двух разнесенных по высоте интерферометрических антенн, отраженные сигналы принимают двумя антеннами и при приеме отраженные сигналы разбиваются на секции и производятся вычисления каждой свертки посекционно. Радиолокационная система включает в себя определенным образом соединенные между собой блок антенной системы из двух антенн, усилители мощности, усилители высокой частоты, усилители промежуточной частоты, смесители, фазовые детекторы, фазовращатель, блок управления РЛС, синтезатор частот и другие элементы, которые обеспечивают определение образования в заданном радиусе кромки льда, приближение ее к объекту, измерение толщины опасных ледяных образований, определение скорости, направления движения дрейфующих полей и могут предоставить высокоточную оценку ледовой обстановки.

Известные технические решения обеспечивают только измерение угла места β приближающих опасных объектов, таких как айсберги, обширные ледовые поля, торосы, крупные льдины, используя для этого измерительную базу d1, расположенную в угломестной (вертикальной) плоскости.

Технической задачей изобретения является определение местоположения приближающихся опасных объектов путем использования второй и третьей измерительных баз, расположенных в азимутальной и гипотенузной плоскостях, антенны которых размещены в виде прямоугольного треугольника.

Поставленная задача решается тем, что способ обнаружения и высоко точного определения параметров морских ледовых полей, включающий, в соответствии с ближайшим аналогом, действия на дистанции по обнаружению изменений параметров отраженных сигналов двумя интерферометрическими антеннами, создание мониторинга изменений, построение карт изменений, анализ изменений, при этом радиоизлучение производят с одной из двух разнесенных по высоте антенн, отраженные сигналы принимают двумя антеннами, временные отчеты отраженных сигналов разбивают на секции и для сжатия фазоманипулированных отраженных сигналов производят линейные свертки между отсчетами секций и отсчетами опорных функций, определяющих доплеровское смещение принимаемых сигналов посекционно для эхо-сигналов интерферометрических антенн, накопления результатов сжатия и по ним обнаружения кромки ледового поля, его фрагментов, оценки скорости дрейфа и разности фаз отраженных сигналов, приходящих на две интерферометрические антенны, отличается от ближайшего аналога тем, что устанавливают в азимутальной плоскости вторую приемную антенну с возможностью ее вращения с угловой скоростью Ω по окружности вокруг приемопередающей антенны, формируют вторую измерительную базу d2 между приемопередающей и второй приемной антеннами в азимутальной плоскости и третью измерительную базу d3 между первой и второй приемными антеннами в гипотенузной плоскости, перемножают отраженные сигналы на промежуточной частоте fпр, принятые приемопередающей и первой приемной антеннами, выделяют низкочастотное напряжение, измеряют разность фаз между отраженными сигналами и определяют угол места β опасного объекта, перемножают отраженные сигналы, принятые передающей антенной и второй приемной антеннами, первой и второй приемными антеннами, выделяют низкочастотные напряжения с частотой Ω сравнивают их по фазе с опорным напряжением с частотой Ω и определяют азимут и угол ориентации опасного объекта, по значению трех углов α, β и γ определяют местоположение опасных объектов.

Поставленная задача решается тем, что радиолокационная система обнаружения и высокоточного определения параметров морских ледовых полей, содержащая, в соответствии с ближайшим аналогом, последовательно включенные блок управления РЛС, синтезатор частот, генератор М-кода, первый модулятор, второй вход которого соединен с вторым выходом синтезатора частот, первый усилитель мощности, СВЧ коммутатор, второй вход которого соединен с вторым выходом блока управления РЛС, блок управления антенной системой, второй вход которого связан с блоком управления РЛС, третий вход - связан с приемопередающей антенной, а третий вход соединен с первой приемной антенной, первый усилитель высокой частоты, первый смеситель, второй вход которого соединен с третьим выходом синтезатора частот, первый усилитель промежуточной частоты, второй вход которого через устройство временной автоматической регулировки усиления соединен с третьим выходом блока управления РЛС, коммутатор промежуточной частоты, второй вход которого через блок автоматической и ручной регулировки усиления соединен с его выходом и с пятым выходом блока управления РЛС, первый блок фазовых детекторов, второй вход которого через фазовращатель соединен с шестым выходом синтезатора частот, первый блок аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, второй вход которого соединен с шестым выходом синтезатора частот, двухпортовое буферное оперативное запоминающее устройство, второй вход которого соединен с седьмым выходом блока управления РЛС, и цифровой измеритель, второй вход которого соединен с шестым выходом синтезатора частот, третий вход соединен с выходом блока управления антенной системы, а выход является выходом блока первичной цифровой обработки, последовательно подключенные к второму выходу генератора М-кода второго модулятора, второй вход которого соединен с третьим выходом синтезатора частот, и второй усилитель мощности, выход которого соединен с третьим входом СВЧ коммутатора, последовательно подключенные к третьему выходу блока управления антенной системы второй усилитель высокой частоты, второй смеситель, второй вход которого соединен с пятым выходом синтезатора частот, и второй усилитель промежуточной частоты, второй вход которого соединен с вторым выходом устройства временной автоматической регулировки усиления, а выход подключен к третьему входу коммутатора промежуточной частоты, последовательно подключенные к выходу усилителя промежуточной частоты второй блок фазовых детекторов, второй вход которого соединен с шестым выходом синтезатора частот, и второй блок аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, второй вход которого соединен с седьмым выходом синтезатора частот, а выход подключен к третьему входу двухпортового буферного оперативного запоминающего устройства, отличается от ближайшего аналога тем, что она снабжена второй приемной антенной, третьим усилителем высокой частоты, третьим смесителем, третьим усилителем промежуточной частоты, тремя перемножителями, тремя узкополосными фильтрами, опорным генераторами, первым и вторым дополнительными фазовыми детекторами, причем приемопередающей, первой и второй приемными антеннами образованы три измерительные базы, расположенные в виде прямоугольного треугольника, в вершине которого расположена приемопередающая антенна с возможностью вращения с частотой Ω, вокруг вертикального катета, к выходу второй приемной антенны последовательно подключен блок управления антенной системы, третий усилитель высокой частоты, третий смеситель, второй вход которого соединен с девятым выходом синтезатора частот, и третий усилитель промежуточной частоты, второй вход которого соединен с третьим выходом устройства временной автоматической регулировки усиления, а выход подключен к четвертому входу коммутатора промежуточной частоты, к выходу первого усилителя промежуточной частоты последовательно подключены первый перемножитель, второй вход которого соединен с выходом второго усилителя промежуточной частоты, и первый узкополосный фильтр, выход которого соединен с пятым входом цифрового измерителя, к выходу первого усилителя промежуточной частоты последовательно подключены второй перемножитель, второй вход которого соединен с выходом третьего усилителя промежуточной частоты, второй узкополосный фильтр и первый дополнительный фазовый детектор, второй вход которого через опорный генератор соединен с пятым выходом блока управления РЛС, а выход подключен к шестому входу цифрового измерителя, к выходу второго усилителя промежуточной частоты последовательно подключены третий перемножитель, второй вход которого соединен с выходом третьего усилителя промежуточной частоты, третий узкополосный фильтр и второй дополнительный фазовый детектор, второй вход которого соединен с выходом опорного генератора, а выход подключен к седьмому входу цифрового измерителя.

Структурная схема радиолокационной станции, реализующей предлагаемый способ, представлена на фиг. 1. Взаимное расположение приемных антенн показано на фиг. 2.

Радиолокационная станция содержит последовательно включенные блок 1 управления РЛС, синтезатор 2 частот, генератор 3 М-кода, первый модулятор 4, второй вход которого соединен с вторым выходом синтезатора 2 частот, первый усилитель 6 мощности, СВЧ коммутатор 8, второй вход которого соединен с вторым выходом блока 1 управления РЛС, блок 9 управления системой, второй вход которого связан с блоком 1 управления РЛС, третий вход связан с приемопередающей антенной 11, четвертый вход соединен с выходом первой приемной антенны 12, пятый вход соединен с выходом второй приемной антенны 31, первый усилитель 13 высокой частоты, первый смеситель 15, второй вход которого соединен с четвертым выходом синтезатора 2 частот, первый усилитель 18 промежуточной частоты, второй вход которого через блок 22 автоматической и ручной регулировки усиления соединен с третьим выходом блока 1 управления РЛС, первый блок 23 фазовых детекторов, второй вход которого через фазовращатель 25 соединен с пятым выходом синтезатором 2 частот, первый блок 26 аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, второй вход которого соединен с четвертым выходом блока 1 управления РЛС, и цифровой измеритель 30, выход которого является выходом блока 28 первичной цифровой обработки. К второму выходу генератора 3 М-кода последовательно подключены второй модулятор 5, второй вход которого соединен с третьим выходом синтезатора 2 частот, и второй усилитель 7 мощности, выход которого соединен с третьим входом СВЧ коммутатора 8. К третьему выходу блока 9 управления антенной системой последовательно подключены второй усилитель 14 высокой частоты, второй смеситель 16, второй вход которого соединен с пятым выходом синтезатора 2 частот, второй усилитель 19 промежуточной частоты, второй вход которого соединен с вторым выходом устройства 17 временной автоматической регулировки усиления, а выход подключен третьему входу коммутатора 20 промежуточной частоты. К четвертому выходу блока 9 управления антенной системой последовательно подключены третий усилитель 32 высокой частоты, третий смеситель 33, второй вход которого соединен с шестым выходом синтезатора 2 частот, третий усилитель 34 промежуточной частоты, второй вход которого соединен с третьим выходом устройства 17 временной автоматической регулировки усиления, а выход подключен к четвертому коммутатору 20 промежуточной частоты. К выходу усилителя 21 промежуточной частоты последовательно подключены второй блок 24 фазовых детекторов, второй вход которого соединен с пятым выходом синтезатором 2 частоты и второй блок 27 аналого-цифровых преобразователей квадратурных сигналов в цифровую форму, второй вход которого соединен с шестым выходом синтезатора 2 частот, а выход подключен к второму входу двухпортовного буферного оперативного запоминающего устройства 29. К выходу первого усилителя 18 промежуточной частоты последовательно подключены первый перемножитель 35, второй вход которого соединен с выходом второго усилителя 19 промежуточной частоты, и первый узкополосный фильтр 38, выход которого соединен с пятым входом цифрового измерителя 30. К выходу первого усилителя 18 последовательно подключены второй перемножитель 36, второй вход которого соединен с выходом третьего усилителя 34 промежуточной частоты, второй узкополосный фильтр 39 и первый дополнительный фазовый детектор 42, второй вход которого соединен с выходом опорного генератора 41, и выход подключен к шестому входу цифрового измерителя 30. К выходу второго усилителя 19 промежуточной частоты последовательно подключены третий перемножитель 37, второй вход которого соединен с выходом третьего усилителя 34 промежуточной частоты, третий узкополосный фильтр 40 и второй дополнительный фазовый детектор 43, второй вход которого соединен с выходом опорного генератора 41, а выход подключен к седьмому входу цифрового измерителя 30.

Предложенный способ заключается в следующем.

В способе обнаружения и высокоточного определения параметров морских ледовых полей производят действия по обнаружению изменений радиоизлучений тремя интерферометрическими антеннами на дистанции. Радиоизлучения производят приемопередающей антенной, а отраженные сигналы принимают тремя антеннами. Отраженные сигналы разбиваются на секции. Производятся действия по обработке сигналов. Причем производятся вычисления каждой свертки посекционно. После чего спектр каждой секции перемножается почленно со спектром опорной функции. По окончании этого процесса над результатом перемножения проводится операция комплексного сопряжения. А над полученным выражением далее проводится операция преобразования функций посредством ОБПФ - обратного быстрого преобразования Фурье и затем повторно берется комплексное сопряжение от результата операции преобразования функций (ОБПФ). Для обнаружения кромки ледового поля, его фрагментов, оценки скорости дрейфа, направления дрейфа, торосистости ледовой поверхности осуществляется наполнение результатов сжатия, после чего производят сжатие эхо-сигналов интерферометрических антенн. При этом обеспечивается создание мониторинга измерений. По завершению процесса при необходимости производят построение карт изменений.

Существует множество способов ускорения вычисления БПФ. В нашем случае выбрана простая и весьма эффективная вычислительная структура «пинг/понг» с постоянными параметрами. Как правило, подобный устройства проектируются на основе ПЛИС - программируемых логических интегральных схем, что позволяет достигать высокой производительности, так как все операции решаются аппаратным путем, а не программным. Кроме того, им свойственна высокая степень адаптивности. Отсчеты сжатых ФМн сигналов квадратурно накапливаются и объединяются для решения задачи обнаружения кромки ледового поля. Одновременно когерентно накопленные отсчеты сжатых ФМн сигналов используются для анализа доплеровского спектра в каждом элементе дальности (после срабатывания обнаружителя), позволяющего оценить скорость дрейфа ледового поля.

Работа РЛС контроля ледовой обстановки может быть описана следующим образом.

Блок 1 управления РЛС формирует все служебные команды, выбор адресов в ОЗУ при записи и считывании, необходимые сигналы управления. Синтезатор 2 частот формирует гармонические сигналы двух диапазонов f1=9,372 ГГц (λ=3,2 см) и f2=34,88 ГГц (λ=8,6 мм), тактовые импульсы FT для регистра сдвига генератора М-кода, гетеродинные частоты fr1 и fr2 для преобразования по частот принимаемых сигналов, сигнал опорной частоты для первого 23 и второго 24 блоков фазовых детекторов. Генератор 3 М-кода предназначен для формирования М-псевдослучайной последовательности из 1023 дискретов СВЧ коммутатор 8 переключает сигналы обоих диапазонов 8,6 мм и 3,2 см по команде от блока 1 управления РЛС. При этом в качестве основного рабочего режима РЛС принят диапазон на длине волны 8,6 мм. Переключение режима работы РЛС на частотный диапазон 3,2 см используется в основном в случае плохих погодных условий, вызывающих сильные потери в мм диапазоне или распространении сигнала на трассе. Блок 9 управления антенной системой предназначен для коммутации режимов излучения и приема сигналов. Блок 10 антенной системы состоит из трех антенн: 11, 12 и 31. Причем антенна 11 используется как передающая и приемная для частот обоих диапазонов (отличие только в конструкции облучателя), а антенна 12 и 31 используется только как приемные антенны при работе РЛС в радиоинтерферометрическом режиме. Антенны 11, 12, и 31 вращаются на опоре основания 32.

Отраженные от опасных приближающихся объектов (айсберги, торосы и т.п.) сложные ФМн сигналы принимаются антеннами 11, 12 и 31 соответственно:

,

,

, 0≤t≤T1

где U1, U2, U3, f1, ϕ1, ϕ2, T1 - амплитуды, несущая частота, начальные фазы и длительность сигналов;

± Δf - нестабильность несущей частоты сигналов, обусловленная различными дестабилизирующими факторами, в том числе и эффектом Доплера:

ϕk(t)={0, π} - манипулируемая составляющая фазы, отображающая закон фазовой манипуляции в соответствии с модулирующим кодом M(t), причем ϕk(t)=coust при kτЭ<t<(k+1) τЭ, и может изменяться скачком при t= kτЭ, т.е. на границах между элементарными посылками (k=1,2,…,N-1);

τЭ, N - длительность и количество элементарных посылок, из которых составлен сигнал длительностью T1 (T1=N⋅τЭ);

d2 - радиус окружности, по которой вращается антенна 31 (измерительная база) (фиг 2.);

Ω - скорость вращения антенны 31 вокруг антенны 11;

α - пеленг (азимут) на опасный приближающий объект.

Указанные сигналы поступают на первые входы смесителей 15, 16, и 33, на вторые входы которых из синтезатора 2 частот подаются напряжения генераторов:

,

.

На выходах смесителей 15, 16 и 33 образуются напряжения комбинационных частот. Усилителями 18, 19 и 35 выделяются напряжения промежуточной частоты соответственно:

,

,

, 0≤t≤T1

где ;

;

;

- промежуточная частота;

; , .

Напряжения uпр1(t) и uпр2(t) поступают на два входа первого перемножителя 35, на выходе которого образуется гармоническое напряжение

,

;

- угол места опасного объекта

λ - длина волны;

d1 - измерительная база, которое выделяется узкополосным фильтром 38 и поступает на пятый вход цифрового измерителя 30.

Напряжение uпр1(t) и uпр3(t) поступают на два входа второго перемножителя 36, на выходе которого образуется гармоническое напряжение

,

где ,

которое выделяется узкополосным фильтром 39 и поступает на первый вход первого дополнительного фазового детектора 42, на второй вход которого подается опорное напряжение опорного генератора 41

.

На выходе фазового детектора 42 образуется низкочастотное напряжение

,

где ,

- азимут опасного объекта;

d2 - измерительная база,

которое поступает на шестой вход цифрового измерителя 30.

Напряжения uпр2(t) и

Поступают на два входа третьего перемножителя 37, на выходе которого образуется гармоническое напряжение

,

где .

Это напряжение выделяется узкополосным фильтром 40 и поступает на первый вход второго дополнительного фазового детектора 43, на второй вход которого подается опорное напряжение u0(t) с выхода опорного генератора 41.

На выходе фазового детектора 43 образуется низкочастотное напряжение

,

где;

- угол стабилизации опасного объекта,

которое поступает на седьмой вход цифрового измерителя 30.

Для осуществления замеров толщины ледовой кромки, шероховатости льда, т.е. его торосов, подключается к работе миллиметровый диапазон антенны 11 и замеры этих показателей осуществляются при помощи двух антенн 11 и 12, т.е. в сантиметровом режиме обнаруживает кромку льда, а в миллиметровом не только обнаруживает, но и замеряет шероховатость льда, толщину ледовой кромки. При поступлении сигнала он усиливается усилителями 13 и 14 высокой частоты, преобразуется по частоте смесителями 15 и 16, усиливается усилителями 18 и 19 промежуточной частоты и поступает на коммутатор 20, который переключает каналы 8,6 мм и 3,2 см. Первый блок 26 и второй блок 27 аналого-цифровых преобразователей преобразовывают квадратурные сигналы в цифровую форму, которые поступают в двухпортовое буферное оперативное запоминающее устройство 29. В радиоинтерферометрическом режиме работы РЛС на частоте f2=34,88 ГГц (λ=8,6 мм) от антенн 11 и 12 по СВЧ и ПЧ трактам, по фазовому детектированию и оцифровке в АЦП используют идентичные параллельные приемные каналы. Запись и считывание отсчетов в двухпортовом буферном оперативном запоминающем устройстве (БОЗУ) 29 происходит одновременно, но с разными темпами и по разным адресам.

Блок 28 первичной цифровой обработки состоит из двухпортового БОЗУ 29 и цифрового измерителя 30. Двухпортовое буферное оперативное запоминающее устройство 29 включает в себя процессор сжатия ФМн сигналов и обнаружитель. Цифровой измеритель 30 состоит из счетчика дальности, процессора БПФ, цифрового коррелятора интерферометра и соответственно цифрового измерителя.

Все используемые блоки являются известными, либо могут быть получены из известных устройств путем их объединения известными методами.

Предлагаемые технические решения позволяют обеспечить бесконтактное измерение толщины опасных ледовых образований с толщиной льда более 50 см с высокой точностью, определить в заданном радиусе кромки льда. Кроме того, может быть определена скорость движения дрейфующих полей и крупногабаритного льда по направлению к морским добывающим платформам.

Таким образом, предлагаемые технические решения по сравнению с прототипами и другими техническими решениями аналогичного назначения обеспечивает определение местоположения приближающихся опасных объектов, таких как айсберг, обширные ледовые поля, торосы, крупные льдины и оценку их опасности для морских добывающих платформ. Это достигается за счет использования второй и третьей измерительных баз, расположенных в азимутальной и гипотенузной плоскостях, антенны которых размещены в виде прямоугольного треугольника, в вершине которого помещена приемопередающая антенна.

Предлагаемые технические решения инвариантны к виду модуляции (манипуляции) и нестабильности несущей частоты принимаемых сложных ФМн, что также обеспечивает повышение точности определения местоположения приближающихся опасных объектов.


Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации
Способ обнаружения и высокоточного определения параметров морских ледовых полей и радиолокационная система для его реализации
Источник поступления информации: Роспатент

Показаны записи 61-70 из 106.
08.07.2018
№218.016.6d99

Псевдослучайная кодовая шкала

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код. Техническим результатом является повышение информационной надежности псевдослучайной кодовой шкалы за счет формирования с нее...
Тип: Изобретение
Номер охранного документа: 0002660609
Дата охранного документа: 06.07.2018
14.07.2018
№218.016.7174

Устройство гальванической развязки логических сигналов (варианты)

Изобретение относится к устройствам приема и передачи информации по проводным линиям связи. Может быть использовано для приема и передачи импульсных сигналов произвольной длительности в системах автоматического управления и системах сбора и обработки информации. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002661278
Дата охранного документа: 13.07.2018
01.03.2019
№219.016.ce63

Система радиочастотной идентификации на поверхностных акустических волнах

Предлагаемая система относится к области радиотехники и может быть использована для идентификации и охраны различных объектов. Технической задачей изобретения является повышение эффективности охраны объектов путем применения надежной системы, контроля над действиями охранных патрулей. Система...
Тип: Изобретение
Номер охранного документа: 0002422848
Дата охранного документа: 27.06.2011
01.03.2019
№219.016.ced4

Датчик контроля уровня жидкости

Изобретение относится к приборостроению, а именно к дискретным датчикам контроля уровня, и может быть использовано в системах и приборах для контроля уровня топлива при хранении, заправке, а также в процессе работы двигателей на криогенном топливе при жестких механических воздействиях. Датчик...
Тип: Изобретение
Номер охранного документа: 0002456551
Дата охранного документа: 20.07.2012
01.03.2019
№219.016.cf0d

Рекурсивная кодовая шкала

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код. Техническим результатом является упрощение рекурсивной кодовой шкалы. Устройство содержит первую информационную кодовую дорожку...
Тип: Изобретение
Номер охранного документа: 0002450437
Дата охранного документа: 10.05.2012
01.03.2019
№219.016.cffc

Рекурсивная кодовая шкала

Изобретение относится к измерительной технике, в частности к аналого-цифровому преобразованию, а именно к кодовым шкалам преобразователей угла поворота вала в код. Техническим результатом является упрощение рекурсивной кодовой шкалы. Рекурсивная кодовая шкала содержит первую информационную...
Тип: Изобретение
Номер охранного документа: 0002446557
Дата охранного документа: 27.03.2012
01.03.2019
№219.016.d0bb

Способ маркировки автотранспорта

Изобретение относится к области предотвращения несанкционированного использования транспортных средств и предназначено для использования при идентификации автомобиля или его частей с целью предупреждения угона, затруднения преступной продажи угнанного транспорта или его частей, а также...
Тип: Изобретение
Номер охранного документа: 0002464644
Дата охранного документа: 20.10.2012
14.03.2019
№219.016.dee2

Компьютерная система дистанционного управления навигационными комплексами для автоматизированного мониторинга окружающей среды в условиях арктики

Предлагаемая система относится к области автоматизированного мониторинга окружающей среды в условиях Арктики, а именно состояния атмосферы и льда с одновременным определением координат собственного местонахождения навигационных комплексов и передачей полученной информации по радиоканалам, и...
Тип: Изобретение
Номер охранного документа: 0002681671
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1d5

Способ комбинированной обработки растений для уничтожения вредителей и микроорганизмов

Изобретение относится к области защиты растений. Способ комбинированной обработки растений для уничтожения вредителей и микроорганизмов включает воздействие направленным потоком теплоносителя и направленным бактерицидным излучением. В качестве теплоносителя используют поток горячего воздуха....
Тип: Изобретение
Номер охранного документа: 0002681982
Дата охранного документа: 14.03.2019
20.03.2019
№219.016.e5b5

Пьезоэлектрический гироскоп

Изобретение относится к акустоэлектронным приборам, предназначенным для преобразования угловой скорости вращения объектов в электрический сигнал, и может быть использовано в системах навигации, ориентации и управления подвижными объектами. Гироскоп содержит пластину 1 пьезоэлектрика, на одной...
Тип: Изобретение
Номер охранного документа: 0002387951
Дата охранного документа: 27.04.2010
Показаны записи 61-70 из 180.
20.04.2016
№216.015.336c

Система измерений и долговременного контроля состояния конструкции здания или инженерно-строительного сооружения

Изобретение относится к автоматическим средствам периодического отслеживания состояния конструкции здания или инженерно-строительного сооружения в процессе его эксплуатации. Особенностью заявленной системы является то, что она снабжена ридером, а в качестве измерительных преобразователей...
Тип: Изобретение
Номер охранного документа: 0002582233
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37d8

Система безопасности людей с ограниченными возможностями жизнедеятельности и здоровья

Изобретение относится к области радиотехники и может быть использовано для оповещения лиц с ограниченными возможностями жизнедеятельности и здоровья, а также для оповещения соответствующих служб безопасности. Технической результат - обеспечение функциональных возможностей передачи и приема...
Тип: Изобретение
Номер охранного документа: 0002582549
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.398e

Территориальная система контроля движения специальных транспортных средств

Изобретение относится к контролю движения транспортных средств. Территориальная система контроля специальных транспортных средств содержит на каждом транспортном средстве радиостанцию, абонентское устройство кодирования и устройство регистрации, а также датчик координатной информации, датчик...
Тип: Изобретение
Номер охранного документа: 0002582502
Дата охранного документа: 27.04.2016
10.05.2016
№216.015.3cfc

Способ синхронизации часов и устройство для его реализации

Изобретение относится к технике связи и может быть использовано в радиоинтерферометрии со сверхдлинными базами (РСДБ), а также в службе единого времени и частот. Устройство, реализующее предлагаемый способ синхронизации часов, содержит стандарт 1 частоты и времени, первый 2.1 и второй 2.2...
Тип: Изобретение
Номер охранного документа: 0002583894
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3d20

Супергетеродинный приемник сложных фазоманипулированных сигналов с двойным преобразованием частоты

Изобретение относится к супергетеродинному приемнику сложных фазоманипулированных сигналов с двойным преобразованием частоты. Технический результат заключается в повышении избирательности, помехоустойчивости и достоверности приема сложных фазоманипулированных сигналов. Приемник содержит...
Тип: Изобретение
Номер охранного документа: 0002583724
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.3dcc

Способ приема шумоподобных фазоманипулированных сигналов

Изобретение относится к области радиотехники и может использоваться в радиоприемных устройствах систем радиосвязи. Достигаемый технический результат - повышение помехоустойчивости приема шумоподобных фазоманипулированных сигналов путем подавления ложных сигналов и помех. Способ приема...
Тип: Изобретение
Номер охранного документа: 0002583706
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.4538

Способ раннего обнаружения пожара и устройство для его реализации

Изобретение относится к области пожарной безопасности и обеспечивает обнаружение пожара на ранних стадиях тления и возгорания горючих материалов. Технический результат - повышение избирательности и помехоустойчивости приемного устройства путем подавления ложных сигналов (помех), принимаемых по...
Тип: Изобретение
Номер охранного документа: 0002586856
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4955

Система регистрации и контроля рейсов подвижных объектов

Изобретение относится к области технических средств регистрации и контроля рейсов подвижных объектов. Технический результат - осуществление контроля за выполнением графика заданного маршрута движения. Система регистрации и контроля рейсов подвижных объектов содержит контролируемые подвижные...
Тип: Изобретение
Номер охранного документа: 0002586860
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.4ea8

Способ автокорреляционного приема шумоподобных сигналов

Изобретение относится к радиотехнике. Технический результат - расширение функциональных возможностей способа автокорреляционного приема шумоподобных сигналов путем точного и однозначного определения местоположения источника излучения сигнала, размещенного на борту летательного аппарата. Для...
Тип: Изобретение
Номер охранного документа: 0002595565
Дата охранного документа: 27.08.2016
10.08.2016
№216.015.563e

Система дистанционного контроля и управления солнечным концентраторным модулем

Изобретение относится к гелиотехнике и может использоваться в системах управления солнечным концентраторным модулем для получения электрической и тепловой энергии. Технический результат состоит в повышении надежности централизованного контроля и управления солнечными концентраторными модулями с...
Тип: Изобретение
Номер охранного документа: 0002593598
Дата охранного документа: 10.08.2016
+ добавить свой РИД