×
12.07.2018
218.016.6fbf

Результат интеллектуальной деятельности: Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного давления в топливном баке. Дополнительно обеспечивается заданное термодинамическое состояние ПГ, исключающее переход криогенного КТ из состояния газовой фазы в жидкую и твердую при движении в дренажной системе при сбросе ПГ из топливного бака. Газы, подаваемые, в топливный бак, получают в автономном газогенераторе (АГГ), при этом твердотопливные газогенерирующие составы (ТГС) выбирают из условий химической нейтральности между продуктами сгорания ТГС и газифицируемым КТ. Устройство для реализации способа включает в свой состав топливный бак, АГГ для получения горячих газов (теплоносителя), магистрали ввода теплоносителя, дренажную систему и тепловой мост, который дополнительно вводят между АГГ и дренажной системой. Расположение АГГ выбирают в непосредственной близости от дренажной системы. Техническим результатом группы изобретений является обеспечение взрывобезопасности отработавших ступеней РН и безаварийной работы топливного бака. 2 н.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для обеспечения взрывобезопасности отработавших орбитальных ступеней ракет-носителей (РН) с остатками компонентов ракетного топлива (КРТ) в топливных баках.

Необходимость обеспечения взрывобезопасности отработавших орбитальных ступеней РН с маршевыми жидкостными ракетными двигателями (ЖРД), как средство снижения космического мусора в околоземном космическом пространстве, рекомендована международными организациями, такими как Технический подкомитет ООН по мирному использованию космоса (Доклад секретариата. Меры, принимаемые космическими агентствами для снижения темпов образования космического мусора или его потенциальной опасности. Комитет по использованию космического пространства в мирных целях, 13.12.1996. [Электронный ресурс]: http://www.unoosa.org/pdf/reports/ac105/AC105_663R.pdf. - (Дата обращения: 22.08.2016) [1]), Межагентский координационный комитет по космическому мусору (Update of the IADC space debris mitigation guidelines. IADC-11-02. Beijing, May 2014 [2]).

Взрывобезопасность отработавших ступеней РН с маршевыми ЖРД предлагается обеспечивать вентилированием топливных баков, т.е. превращением в газовую фазу жидких остатков КРТ и их выброс через дренажные клапаны и дренажные магистрали, т.к. элементарное открытие дренажных клапанов не приводит к желаемому результату.

Известно техническое решение, основанное на газификации самовоспламеняющихся компонентов топлива в баках РН после выключения маршевого ЖРД, например, патент RU 2359876, МПК B64D 37/28. Способ очистки отделяющейся части ракеты от жидких токсичных остатков КРТ и устройство для его осуществления.

Прототипом предлагаемого способа является техническое решение по патенту RU 2522536 B64G 1/00, предусматривающее подачу горячих газов (теплоносителя) в топливный бак и сброс продуктов газификации (ПГ) по достижении заданного давления, например, в газовый ракетный двигатель.

Применение указанного технического решения для обеспечения взрывобезопасности отработавшей орбитальной ступени РН затруднено по следующим основным причинам:

- сброс ПГ необходимо осуществлять через дренажную систему, а не через газовый ракетный двигатель, путем сжигания, т.к. это требует существенной модернизации;

- при истечении ПГ из топливного бака в окружающее космическое пространство через дренажный клапан и дренажную магистраль вследствие резкого падения давления и температуры смесь паров КРТ и теплоносителя могут выпадать в конденсат с последующим замерзанием во внутренней полости дренажной магистрали. Периодические сбросы ПГ приведут к полной «закупорке» дренажной магистрали, что может привести к взрыву топливного бака из-за повышения давления внутри бака до величины, превышающей критическое давление, при котором происходит его разрушение; в настоящее время на орбитах в околоземном космическом пространстве по данным отдела NASA по слежению за искусственными космическими объектами количество взорвавшихся отработанных ступеней с маршевыми ЖРД достигло свыше 200 шт.;

- теплота, остающаяся в автономном газогенераторе, не утилизируется; к примеру, использование твердотопливных газогенерирующих составов, оставляет в шлаке до 60% теплоты от фактической, реализуемой при полном сгорании газогенерирующего состава.

Целью предлагаемого технического решения является повышение взрывобезопасности топливного бака орбитальной ступени РН после выключения маршевого ЖРД за счет газификации остатков КРТ, исключающей переход КРТ из состояния газовой фазы в жидкую и твердую фазу при движении в дренажной системе при сбросе ПГ из топливного бака.

Указанный технический результат достигается за счет того, что твердотопливные газогенерирующие составы (ТГС) выбирают из условий химической нейтральности между продуктами сгорания ТГС и газифицируемым компонентом топлива, а состав продуктов сгорания ТГС не содержит веществ, превращающихся в твердую или жидкую фазу, при температуре кипения компонента топлива, а твердая фаза продуктов сгорания ТГС содержит минимальное количество остаточного тепла и массы шлака и остается в автономном газогенераторе (АГГ).

Реализация предлагаемого технического решения поясняется фиг. 1-3, где:

на фиг. 1 приведена дренажная система, состоящая из дренажного клапана (ДК) и дренажной магистрали (ДМ);

на фиг. 2 приведено изменение фазового состояния ПГ при их сбросе из бака в координатах давления р и температуры Т;

на фиг. 3 приведен элемент топливного бака с дренажной системой, состоящей из дренажного клапана и дренажной магистрали, теплового моста, соединяющего автономный газогенератор и дренажную систему.

Выбор газогенерирующих составов

К ТГС предъявляются следующие требования:

- продукты сгорания ТГС не должны вступать в химические реакции с газифицируемым КРТ (Шишков А.А., Румянцев Б.В. Газогенераторы ракетных систем. М.: Машиностроение. - 1981. - 152 С. [3]);

- продукты сгорания ТГС не должен иметь в своем составе веществ, превращающихся в твердую или жидкую фазу, при температуре кипения КРТ, например, кислорода (90-120 K, в зависимости от давления в баке);

- в результате сгорания ТГС твердая фаза продуктов сгорания (шлаки) в газогенераторе должна содержать минимальное количество остаточной теплоты и массы шлака, и оставаться в автономном газогенераторе (АГГ);

- скорость горения ТГС на установившемся режиме выбирается из условия сохранения фиксированного давления в топливном баке, определяемом его прочностью, при открытой дренажной системе.

В табл. 1 приведены результаты расчетов температуры и состава продуктов сгорания для различных вариантов ТГС. В качестве газифицируемого КРТ для примера взят жидкий кислород. Расчеты проводились с использованием программного комплекса Терра (Trusov В. G. // The XIV Int. Symp. on Chemical Thermodynamics, St. Petersburg, Russia, 2-5 July 2002 [4]).

Как следует из приведенных результатов (табл. 1) для рассматриваемых ТГС с №1-4 состав продуктов сгорания следующий: газовая фаза - азот 32-43%, твердая фаза - шлак 57-68%; для №5-8 состав продуктов сгорания: газовая фаза - кислород 28-42%, твердая фаза - шлак 58-78%.

В табл. 2 приведены общие термодинамические характеристики при сжигании рассмотренных ТГС.

В последнем столбце показаны оценки остаточной теплоты в твердой фазе ТГС, из которых следует, что наибольшие потери соответствуют варианту №8, именно в его продуктах сгорания наибольшая доля тепла, оставшаяся в твердом шлаке после сгорания ТГС.

Количество теплоты, подводимое к дренажной системе, позволяет поднять ее температуру до величины, обеспечивающей исключение выпадение жидкой фазы из ПГ, ее замерзание на внутренней поверхности дренажной системы (дренажный клапан + дренажная магистраль), что:

- повышает вероятность незамерзания дренажной магистрали;

- снижает затраты на потребное количество ТГС для обеспечения пребывания текущего фазового состояния ПГ в зоне требуемого фазового состояния, т.е. газа.

В табл. 3 приведены результаты расчетов (расчеты проводились с использованием программного комплекса Терра, [5]) передачи остаточной теплоты от твердой фазы ТГС, находящейся в АГГ, к дренажной магистрали через тепловой мост (потери тепла не учитывались). В расчетах использовались среднестатистические данные дренажной системы: масса дренажной системы - 2 кг, материал - сплав АМг6. Для расчета теплового моста выбран материал - АМг6, геометрические размеры взяты по сортаменту Профиль ГОСТ 8617-81.

Как следует из результатов, приведенных в табл. 3, использование теплового моста приводит к повышению температуры системы «тепловой мост-дренажная система» на значительные величины от 85 до 206 градусов, что приведет к испарению выпавшего твердого осадка КРТ и, соответственно, открытию проходного сечения дренажной магистрали.

Для примера реализуемости предлагаемого способа взяты параметры топливного бака окислителя (жидкий кислород) второй ступени РН "Зенит". Рассматриваемый топливный бак был выбран исключительно из-за большого количества имеющейся информации в открытых источниках о его взрывах на орбите [1] в результате замерзания дренажной магистрали конденсированными парами жидкого кислорода.

Оценка фазового состояния паров кислорода проводилась при следующих начальных условиях: давление - 2,5 атм; температура газовой фазы - 90 К; объемная доля гелия / кислорода - 0,8 / 0,2.

На начало процесса сброса продуктов газификации из бака отработавшей ступени РН рассматривается термодинамическая система, соответствующая 2 состояниям:

- для исходного, когда происходит тепло- и массообмен в топливном баке, вызванный тепловым нагружением конструкции топливного бака отработанной ступени РН излучением от Солнца и Земли при орбитальном движении. Повышение внутреннего давления в баке обусловлено ростом температуры парогазовой смеси (пары жидкого кислорода + газ наддува гелий) и интенсивностью испарения жидкого кислорода.

На фиг. 2 кривая 1 показывает линию равновесия в координатах давление р - температура Т между жидкой и газообразной фазой кислорода, кривая 2 показывает линию равновесия в координатах давление р - температура Т между твердой и жидкой фазами кислорода.

Как следует из результатов, приведенных на фиг. 2, при давлениях и температурах, соответствующих выше кривой 1, пары кислорода, находящиеся в продуктах газификации, при дренаже будут конденсироваться, а при давлении и температуре, находящихся левее кривой 2, пары кислорода будут кристаллизоваться и, соответственно, возникает возможность замерзания дренажной системы с последующим взрывом топливного бака.

Кривая 3 показывает изменение парциального давления кислорода в результате теплового нагружения топливного бака излучением от Солнца и Земли при орбитальном движении, повышение парциального давления кислорода в баке обусловлено ростом температуры парогазовой смеси (паров кислорода + газ наддува гелия).

После выключения маршевого ЖРД запускается АГГ с ТГС, в результате сгорания ТГС в топливный бак подается азот со средней температурой 1500 K. Рост внутреннего давления происходит в результате смешивания смеси паров кислорода и гелия с продуктами сгорания ТГС и испарения жидкого кислорода. На фиг. 2 кривая 4 показывает изменение парциального давления кислорода в результате подачи продуктов сгорания ТГС в топливный бак, по мере прогрева (увеличения температуры) парогазовой смеси происходит рост парциального давления кислорода.

Процесс сброса продуктов газификации из бака кислорода (испарившийся кислород + остатки газа наддува гелия + продукты сгорания ТГС) представлен 2 состояниями:

- при сбросе паров кислорода + газ наддува гелия (парогазовой смеси), фазовое состояние паров кислорода таково, что оно соответствует появлению жидкой фазы. На фазовой диаграмме кислорода (фиг. 2, кривая 5) это соответствует положению точек, соответственно, начальное положение сброса газа - G2 и конечное положение - L1, при изменении величин температуры и парциального давления выше значений описанных кривой 1 на фиг. 2 происходит изменение фазового состояния кислорода;

- для случая сброса продуктов газификации, видно, что фазовое состояние паров кислорода соответствует газовой фазе (фиг. 2, кривая 6), соответственно, начально сброса - точка G3 и конец сброса - точка G4.

Из приведенных на фиг. 2 результатов следует, что существует принципиальная возможность подбора ТГС, которые при сжигании и подачи в бак позволяют обеспечить сброс паров кислорода без замерзания дренажной магистрали.

Устройство для реализации способа

В качестве прототипа рассматривается устройство по патенту РФ №2522536 B64G 1/00, включающее в свой состав топливные баки окислителя и горючего, систему наддува баков, систему газификации, магистрали подачи теплоносителя, систему сброса продуктов газификации.

К недостаткам этого устройства относится возможность замерзания дренажной системы при сбросе газифицированных продуктов и, соответственно, взрыв топливного бака.

Целью предлагаемого технического устройства является обеспечение безаварийной работы дренажной системы (вентилирования) топливного бака, которая достигается тем, что в известное устройство, включающее в свой состав топливный бак, АГГ для получения горячих газов (теплоносителя), магистрали ввода теплоносителя, дренажную систему - дополнительно вводят тепловой мост между АГГ и дренажной системой, а расположение АГГ выбирают в непосредственной близости от дренажной системы.

Для реализации заявляемого способа предложено устройство, состоящее из топливного бака 1, АГГ 2 для получения горячих газов (теплоносителя), магистрали ввода теплоносителя 3, дренажную систему 4 в которое дополнительно вводят тепловой мост 5 между АГГ 2 и дренажной системой, а расположение АГГ 2 относительно дренажной системы выбирают из условия минимального расстояния между ними (Фиг. 3).

Работа теплового моста осуществляется следующим образом: теплота выделяющаяся в процессе горения ТГС в АГГ, а также остающийся огарок (шлак) нагревают корпус АГГ 2 до высокой температуры (1000 K и выше) и передается за счет теплопроводности материала теплового моста 5 к дренажной системе 4. По предварительным оценкам (таблица 3) это позволяет повысить температуру корпуса дренажной системы на AT от 85 до 206 градусов.


Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Источник поступления информации: Роспатент

Показаны записи 81-90 из 109.
09.02.2019
№219.016.b8a8

Порошковая проволока

Изобретение может быть использовано при электродуговой наплавке износостойких сплавов на детали, работающие в условиях интенсивного износа при повышенных температурах с ударными нагрузками, например деталей кузнечно-прессового инструмента горячего деформирования, валков горячей прокатки....
Тип: Изобретение
Номер охранного документа: 0002679374
Дата охранного документа: 07.02.2019
14.03.2019
№219.016.df43

Способ и устройство разжижения нефтяных шламов внутри резервуаров и закрытых емкостей свч-полем

Изобретение относится к устройству разжижения нефтяных шламов внутри резервуаров и закрытых емкостей СВЧ-полем. Устройство содержит «СВЧ-излучатель» 1 с коаксиальным кабелем 2, подключенным одним концом к «СВЧ-генератору» 3, находящемуся снаружи резервуара и предназначенному для подачи тока...
Тип: Изобретение
Номер охранного документа: 0002681619
Дата охранного документа: 11.03.2019
29.03.2019
№219.016.ece2

Порошковая проволока

Изобретение может быть использовано для восстановления и упрочнения деталей, работающих в условиях трения металла о металл в контакте с коррозионной средой, например уплотнительных поверхностей запорной и дросселирующей арматуры, торцевых уплотнений контактных пар. Порошковая проволока состоит...
Тип: Изобретение
Номер охранного документа: 0002682941
Дата охранного документа: 25.03.2019
29.03.2019
№219.016.ed00

Порошковая проволока

Изобретение может быть использовано для электродуговой наплавки износостойких сплавов на детали, работающие в условиях интенсивного износа при температуре до 800°С с ударными нагрузками, например детали кузнечно-прессового инструмента, валки горячей прокатки. Проволока состоит из...
Тип: Изобретение
Номер охранного документа: 0002682940
Дата охранного документа: 25.03.2019
29.03.2019
№219.016.edc7

Способ работы поршневого насос-компрессора и устройство для его осуществления

Изобретение относится к области насосо- и компрессоростроения и может быть использовано при создании гибридных поршневых машин объемного действия преимущественно малой и средней производительности, предназначенных для сжатия и подачи потребителю одновременно или попеременно жидкостей и газов....
Тип: Изобретение
Номер охранного документа: 0002683051
Дата охранного документа: 26.03.2019
30.03.2019
№219.016.f930

Устройство тактовой синхронизации с оценкой качества принимаемого сообщения

Изобретение относится к радиотехнике и может быть использовано в системах радиосвязи при передаче дискретных сообщений. Технический результат - исключение влияния случайных помех на точность тактовой синхронизации при приеме дискретных сообщений, сохранение синхронизации во время...
Тип: Изобретение
Номер охранного документа: 0002683280
Дата охранного документа: 27.03.2019
10.04.2019
№219.016.fee7

Устройство для сварки пластмассовых труб

Изобретение относится к сварочным устройствам для сварки пластмассовых труб. Предложено центрирующее устройство, закрепленное на раме, на направляющих которого установлены неподвижный и подвижный зажимы. Подвижный зажим снабжен гидравлическим приводом с гидроцилиндрами и соединен с...
Тип: Изобретение
Номер охранного документа: 0002684379
Дата охранного документа: 08.04.2019
12.04.2019
№219.017.0c05

Устройство защиты однофазного трансформатора от электрических повреждений в обмотках

Использование: в области электротехники. Технический результат – повышение надежности функционирования устройства защиты однофазного трансформатора от электрических повреждений за счет устранения зависимости его чувствительности от места расположения замкнувшихся витков в обмотках защищаемого...
Тип: Изобретение
Номер охранного документа: 0002684607
Дата охранного документа: 10.04.2019
01.05.2019
№219.017.47c7

Гибридная машина объемного действия с тронковым поршнем

Изобретение относится к поршневым энергетическим машинам объемного действия и может быть использовано при создании компактных агрегатов, подающих потребителю одновременно или попеременно сжатый воздух и жидкость под давлением. Машина содержит картер 1 с кривошипно-шатунным механизмом привода 2,...
Тип: Изобретение
Номер охранного документа: 0002686536
Дата охранного документа: 29.04.2019
20.05.2019
№219.017.5c43

Бесколлекторный синхронный генератор с постоянными магнитами

Изобретение относится к области электротехники. Технический результат - улучшение пусковых и эксплуатационных характеристик. Бесколлекторный синхронный генератор с постоянными магнитами включает статор, ротор и устройство для выпрямления электрического тока. На роторе закреплены постоянные...
Тип: Изобретение
Номер охранного документа: 0002687964
Дата охранного документа: 17.05.2019
Показаны записи 51-52 из 52.
27.05.2023
№223.018.721c

Способ моделирования процесса очистки поверхности и устройство для его реализации

Группа изобретений относится к области моделирования процессов очистки различных поверхностей изделий от загрязнений, возникающих в процессе производства и эксплуатации, с целью выбора оптимальных режимов и воздействующих факторов. Способ моделирования процесса очистки поверхности включает...
Тип: Изобретение
Номер охранного документа: 0002743936
Дата охранного документа: 01.03.2021
17.06.2023
№223.018.7e1a

Способ моделирования процесса тепло- и массообмена при испарении жидкости из прозрачной емкости и устройство для его реализации

Изобретения относятся к технологическим процессам, связанным с осушкой различных изделий. Предлагается способ моделирования процесса тепло- и массообмена при испарении модельной жидкости (МЖ) из экспериментального образца (ЭО), основанный на энергетическом воздействии с заданными параметрами на...
Тип: Изобретение
Номер охранного документа: 0002777650
Дата охранного документа: 08.08.2022
+ добавить свой РИД