×
12.07.2018
218.016.6fbf

Результат интеллектуальной деятельности: Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации

Вид РИД

Изобретение

Аннотация: Группа изобретений относится к ракетно-космической технике. Способ газификации остатков жидкого компонента топлива (КТ) в баке отработавшей ступени ракеты-носителя (РН) основан на подаче горячих газов (теплоносителя) в топливный бак и сбросе продуктов газификации (ПГ) по достижении заданного давления в топливном баке. Дополнительно обеспечивается заданное термодинамическое состояние ПГ, исключающее переход криогенного КТ из состояния газовой фазы в жидкую и твердую при движении в дренажной системе при сбросе ПГ из топливного бака. Газы, подаваемые, в топливный бак, получают в автономном газогенераторе (АГГ), при этом твердотопливные газогенерирующие составы (ТГС) выбирают из условий химической нейтральности между продуктами сгорания ТГС и газифицируемым КТ. Устройство для реализации способа включает в свой состав топливный бак, АГГ для получения горячих газов (теплоносителя), магистрали ввода теплоносителя, дренажную систему и тепловой мост, который дополнительно вводят между АГГ и дренажной системой. Расположение АГГ выбирают в непосредственной близости от дренажной системы. Техническим результатом группы изобретений является обеспечение взрывобезопасности отработавших ступеней РН и безаварийной работы топливного бака. 2 н.п. ф-лы, 3 табл., 3 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для обеспечения взрывобезопасности отработавших орбитальных ступеней ракет-носителей (РН) с остатками компонентов ракетного топлива (КРТ) в топливных баках.

Необходимость обеспечения взрывобезопасности отработавших орбитальных ступеней РН с маршевыми жидкостными ракетными двигателями (ЖРД), как средство снижения космического мусора в околоземном космическом пространстве, рекомендована международными организациями, такими как Технический подкомитет ООН по мирному использованию космоса (Доклад секретариата. Меры, принимаемые космическими агентствами для снижения темпов образования космического мусора или его потенциальной опасности. Комитет по использованию космического пространства в мирных целях, 13.12.1996. [Электронный ресурс]: http://www.unoosa.org/pdf/reports/ac105/AC105_663R.pdf. - (Дата обращения: 22.08.2016) [1]), Межагентский координационный комитет по космическому мусору (Update of the IADC space debris mitigation guidelines. IADC-11-02. Beijing, May 2014 [2]).

Взрывобезопасность отработавших ступеней РН с маршевыми ЖРД предлагается обеспечивать вентилированием топливных баков, т.е. превращением в газовую фазу жидких остатков КРТ и их выброс через дренажные клапаны и дренажные магистрали, т.к. элементарное открытие дренажных клапанов не приводит к желаемому результату.

Известно техническое решение, основанное на газификации самовоспламеняющихся компонентов топлива в баках РН после выключения маршевого ЖРД, например, патент RU 2359876, МПК B64D 37/28. Способ очистки отделяющейся части ракеты от жидких токсичных остатков КРТ и устройство для его осуществления.

Прототипом предлагаемого способа является техническое решение по патенту RU 2522536 B64G 1/00, предусматривающее подачу горячих газов (теплоносителя) в топливный бак и сброс продуктов газификации (ПГ) по достижении заданного давления, например, в газовый ракетный двигатель.

Применение указанного технического решения для обеспечения взрывобезопасности отработавшей орбитальной ступени РН затруднено по следующим основным причинам:

- сброс ПГ необходимо осуществлять через дренажную систему, а не через газовый ракетный двигатель, путем сжигания, т.к. это требует существенной модернизации;

- при истечении ПГ из топливного бака в окружающее космическое пространство через дренажный клапан и дренажную магистраль вследствие резкого падения давления и температуры смесь паров КРТ и теплоносителя могут выпадать в конденсат с последующим замерзанием во внутренней полости дренажной магистрали. Периодические сбросы ПГ приведут к полной «закупорке» дренажной магистрали, что может привести к взрыву топливного бака из-за повышения давления внутри бака до величины, превышающей критическое давление, при котором происходит его разрушение; в настоящее время на орбитах в околоземном космическом пространстве по данным отдела NASA по слежению за искусственными космическими объектами количество взорвавшихся отработанных ступеней с маршевыми ЖРД достигло свыше 200 шт.;

- теплота, остающаяся в автономном газогенераторе, не утилизируется; к примеру, использование твердотопливных газогенерирующих составов, оставляет в шлаке до 60% теплоты от фактической, реализуемой при полном сгорании газогенерирующего состава.

Целью предлагаемого технического решения является повышение взрывобезопасности топливного бака орбитальной ступени РН после выключения маршевого ЖРД за счет газификации остатков КРТ, исключающей переход КРТ из состояния газовой фазы в жидкую и твердую фазу при движении в дренажной системе при сбросе ПГ из топливного бака.

Указанный технический результат достигается за счет того, что твердотопливные газогенерирующие составы (ТГС) выбирают из условий химической нейтральности между продуктами сгорания ТГС и газифицируемым компонентом топлива, а состав продуктов сгорания ТГС не содержит веществ, превращающихся в твердую или жидкую фазу, при температуре кипения компонента топлива, а твердая фаза продуктов сгорания ТГС содержит минимальное количество остаточного тепла и массы шлака и остается в автономном газогенераторе (АГГ).

Реализация предлагаемого технического решения поясняется фиг. 1-3, где:

на фиг. 1 приведена дренажная система, состоящая из дренажного клапана (ДК) и дренажной магистрали (ДМ);

на фиг. 2 приведено изменение фазового состояния ПГ при их сбросе из бака в координатах давления р и температуры Т;

на фиг. 3 приведен элемент топливного бака с дренажной системой, состоящей из дренажного клапана и дренажной магистрали, теплового моста, соединяющего автономный газогенератор и дренажную систему.

Выбор газогенерирующих составов

К ТГС предъявляются следующие требования:

- продукты сгорания ТГС не должны вступать в химические реакции с газифицируемым КРТ (Шишков А.А., Румянцев Б.В. Газогенераторы ракетных систем. М.: Машиностроение. - 1981. - 152 С. [3]);

- продукты сгорания ТГС не должен иметь в своем составе веществ, превращающихся в твердую или жидкую фазу, при температуре кипения КРТ, например, кислорода (90-120 K, в зависимости от давления в баке);

- в результате сгорания ТГС твердая фаза продуктов сгорания (шлаки) в газогенераторе должна содержать минимальное количество остаточной теплоты и массы шлака, и оставаться в автономном газогенераторе (АГГ);

- скорость горения ТГС на установившемся режиме выбирается из условия сохранения фиксированного давления в топливном баке, определяемом его прочностью, при открытой дренажной системе.

В табл. 1 приведены результаты расчетов температуры и состава продуктов сгорания для различных вариантов ТГС. В качестве газифицируемого КРТ для примера взят жидкий кислород. Расчеты проводились с использованием программного комплекса Терра (Trusov В. G. // The XIV Int. Symp. on Chemical Thermodynamics, St. Petersburg, Russia, 2-5 July 2002 [4]).

Как следует из приведенных результатов (табл. 1) для рассматриваемых ТГС с №1-4 состав продуктов сгорания следующий: газовая фаза - азот 32-43%, твердая фаза - шлак 57-68%; для №5-8 состав продуктов сгорания: газовая фаза - кислород 28-42%, твердая фаза - шлак 58-78%.

В табл. 2 приведены общие термодинамические характеристики при сжигании рассмотренных ТГС.

В последнем столбце показаны оценки остаточной теплоты в твердой фазе ТГС, из которых следует, что наибольшие потери соответствуют варианту №8, именно в его продуктах сгорания наибольшая доля тепла, оставшаяся в твердом шлаке после сгорания ТГС.

Количество теплоты, подводимое к дренажной системе, позволяет поднять ее температуру до величины, обеспечивающей исключение выпадение жидкой фазы из ПГ, ее замерзание на внутренней поверхности дренажной системы (дренажный клапан + дренажная магистраль), что:

- повышает вероятность незамерзания дренажной магистрали;

- снижает затраты на потребное количество ТГС для обеспечения пребывания текущего фазового состояния ПГ в зоне требуемого фазового состояния, т.е. газа.

В табл. 3 приведены результаты расчетов (расчеты проводились с использованием программного комплекса Терра, [5]) передачи остаточной теплоты от твердой фазы ТГС, находящейся в АГГ, к дренажной магистрали через тепловой мост (потери тепла не учитывались). В расчетах использовались среднестатистические данные дренажной системы: масса дренажной системы - 2 кг, материал - сплав АМг6. Для расчета теплового моста выбран материал - АМг6, геометрические размеры взяты по сортаменту Профиль ГОСТ 8617-81.

Как следует из результатов, приведенных в табл. 3, использование теплового моста приводит к повышению температуры системы «тепловой мост-дренажная система» на значительные величины от 85 до 206 градусов, что приведет к испарению выпавшего твердого осадка КРТ и, соответственно, открытию проходного сечения дренажной магистрали.

Для примера реализуемости предлагаемого способа взяты параметры топливного бака окислителя (жидкий кислород) второй ступени РН "Зенит". Рассматриваемый топливный бак был выбран исключительно из-за большого количества имеющейся информации в открытых источниках о его взрывах на орбите [1] в результате замерзания дренажной магистрали конденсированными парами жидкого кислорода.

Оценка фазового состояния паров кислорода проводилась при следующих начальных условиях: давление - 2,5 атм; температура газовой фазы - 90 К; объемная доля гелия / кислорода - 0,8 / 0,2.

На начало процесса сброса продуктов газификации из бака отработавшей ступени РН рассматривается термодинамическая система, соответствующая 2 состояниям:

- для исходного, когда происходит тепло- и массообмен в топливном баке, вызванный тепловым нагружением конструкции топливного бака отработанной ступени РН излучением от Солнца и Земли при орбитальном движении. Повышение внутреннего давления в баке обусловлено ростом температуры парогазовой смеси (пары жидкого кислорода + газ наддува гелий) и интенсивностью испарения жидкого кислорода.

На фиг. 2 кривая 1 показывает линию равновесия в координатах давление р - температура Т между жидкой и газообразной фазой кислорода, кривая 2 показывает линию равновесия в координатах давление р - температура Т между твердой и жидкой фазами кислорода.

Как следует из результатов, приведенных на фиг. 2, при давлениях и температурах, соответствующих выше кривой 1, пары кислорода, находящиеся в продуктах газификации, при дренаже будут конденсироваться, а при давлении и температуре, находящихся левее кривой 2, пары кислорода будут кристаллизоваться и, соответственно, возникает возможность замерзания дренажной системы с последующим взрывом топливного бака.

Кривая 3 показывает изменение парциального давления кислорода в результате теплового нагружения топливного бака излучением от Солнца и Земли при орбитальном движении, повышение парциального давления кислорода в баке обусловлено ростом температуры парогазовой смеси (паров кислорода + газ наддува гелия).

После выключения маршевого ЖРД запускается АГГ с ТГС, в результате сгорания ТГС в топливный бак подается азот со средней температурой 1500 K. Рост внутреннего давления происходит в результате смешивания смеси паров кислорода и гелия с продуктами сгорания ТГС и испарения жидкого кислорода. На фиг. 2 кривая 4 показывает изменение парциального давления кислорода в результате подачи продуктов сгорания ТГС в топливный бак, по мере прогрева (увеличения температуры) парогазовой смеси происходит рост парциального давления кислорода.

Процесс сброса продуктов газификации из бака кислорода (испарившийся кислород + остатки газа наддува гелия + продукты сгорания ТГС) представлен 2 состояниями:

- при сбросе паров кислорода + газ наддува гелия (парогазовой смеси), фазовое состояние паров кислорода таково, что оно соответствует появлению жидкой фазы. На фазовой диаграмме кислорода (фиг. 2, кривая 5) это соответствует положению точек, соответственно, начальное положение сброса газа - G2 и конечное положение - L1, при изменении величин температуры и парциального давления выше значений описанных кривой 1 на фиг. 2 происходит изменение фазового состояния кислорода;

- для случая сброса продуктов газификации, видно, что фазовое состояние паров кислорода соответствует газовой фазе (фиг. 2, кривая 6), соответственно, начально сброса - точка G3 и конец сброса - точка G4.

Из приведенных на фиг. 2 результатов следует, что существует принципиальная возможность подбора ТГС, которые при сжигании и подачи в бак позволяют обеспечить сброс паров кислорода без замерзания дренажной магистрали.

Устройство для реализации способа

В качестве прототипа рассматривается устройство по патенту РФ №2522536 B64G 1/00, включающее в свой состав топливные баки окислителя и горючего, систему наддува баков, систему газификации, магистрали подачи теплоносителя, систему сброса продуктов газификации.

К недостаткам этого устройства относится возможность замерзания дренажной системы при сбросе газифицированных продуктов и, соответственно, взрыв топливного бака.

Целью предлагаемого технического устройства является обеспечение безаварийной работы дренажной системы (вентилирования) топливного бака, которая достигается тем, что в известное устройство, включающее в свой состав топливный бак, АГГ для получения горячих газов (теплоносителя), магистрали ввода теплоносителя, дренажную систему - дополнительно вводят тепловой мост между АГГ и дренажной системой, а расположение АГГ выбирают в непосредственной близости от дренажной системы.

Для реализации заявляемого способа предложено устройство, состоящее из топливного бака 1, АГГ 2 для получения горячих газов (теплоносителя), магистрали ввода теплоносителя 3, дренажную систему 4 в которое дополнительно вводят тепловой мост 5 между АГГ 2 и дренажной системой, а расположение АГГ 2 относительно дренажной системы выбирают из условия минимального расстояния между ними (Фиг. 3).

Работа теплового моста осуществляется следующим образом: теплота выделяющаяся в процессе горения ТГС в АГГ, а также остающийся огарок (шлак) нагревают корпус АГГ 2 до высокой температуры (1000 K и выше) и передается за счет теплопроводности материала теплового моста 5 к дренажной системе 4. По предварительным оценкам (таблица 3) это позволяет повысить температуру корпуса дренажной системы на AT от 85 до 206 градусов.


Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Способ газификации остатков жидкого компонента топлива в баке отработавшей ступени ракеты-носителя и устройство для его реализации
Источник поступления информации: Роспатент

Показаны записи 11-20 из 109.
25.08.2017
№217.015.d1fe

Поршневой компрессор

Изобретение относится к поршневым компрессорам с охлаждением, работающим без смазки рабочей полости и предназначенным для сжатия и перемещения газов. Поршневой компрессор содержит цилиндр, крышку с всасывающим и нагнетательным клапанами. В цилиндре расположен поршень с поршневыми кольцами,...
Тип: Изобретение
Номер охранного документа: 0002621454
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.d3af

Способ регулирования деформационных свойств несвязного дисперсного грунта

Изобретение относится к строительству и может быть использовано при исследовании деформационных свойств несвязного дисперсного грунта при устройстве оснований зданий и сооружений из несвязного дисперсного грунта с требуемыми деформационными свойствами. Способ регулирования деформационных...
Тип: Изобретение
Номер охранного документа: 0002621799
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d53d

Способ для определения давления насоса с электродвигателем

Изобретение относится к измерительной технике и может быть использовано для определения выходных характеристик электродвигателя. При реализации способа измеряют давление на подающем трубопроводе, измеряют мгновенные величины токов и напряжений статора асинхронного двигателя, преобразуют...
Тип: Изобретение
Номер охранного документа: 0002623195
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.dad9

Способ определения электромагнитных параметров асинхронных электродвигателей

Изобретение относится к измерительной технике и может быть использовано для определения электромагнитных параметров наземных и погружных асинхронных электродвигателей на предприятиях по ремонту электрооборудования и на площадках нефтедобывающих скважин. В известном способе определения...
Тип: Изобретение
Номер охранного документа: 0002623834
Дата охранного документа: 29.06.2017
26.08.2017
№217.015.e138

Способ утилизации нефтешлама в качестве грунта основания вертикального резервуара

Способ утилизации нефтесодержащих отходов включает перемешивание нефтесодержащих отходов с обезвреживающей композицией, с последующим введением расчетного количества воды до образования однородного гидрофобного порошка. Полученный капсулированный нефтешлам в виде однородного гидрофобного...
Тип: Изобретение
Номер охранного документа: 0002625498
Дата охранного документа: 14.07.2017
26.08.2017
№217.015.e604

Способ минимизации зон отчуждения отделяемых частей ракет-носителей

Изобретение относится к ракетно-космической технике. В способе минимизации зон отчуждения для отделяемых частей (ОЧ) ракеты-носителя (РН) на этапе предполетной подготовки РН производят расчет параметров движения ОЧ до момента падения их на землю. По результатам расчетов определяют участки на...
Тип: Изобретение
Номер охранного документа: 0002626797
Дата охранного документа: 01.08.2017
26.08.2017
№217.015.e60d

Способ доставки полезного груза в грунт небесного тела, обеспечения исследований грунта и небесного тела и устройство его реализации (варианты)

Изобретение относится к ракетно-космической технике, а именно к способам доставки полезного груза - комплекса научной аппаратуры к небесным телам (планетам, астероидам, кометам и др.) для их исследования и пенетраторам - устройствам с полезным грузом, отделяемым от основного космического...
Тип: Изобретение
Номер охранного документа: 0002626792
Дата охранного документа: 01.08.2017
29.12.2017
№217.015.f430

Способ испытания гидромеханической части электронно-гидромеханической системы автоматического управления вспомогательного газотурбинного двигателя

Способ испытания заключается в задании режима работы гидромеханической части (ГМЧ) САУ ВГТД, измерении расхода топлива, формировании по нему с помощью модели турбокомпрессора частоты вращения рессоры всережимного регулятора, формировании с помощью модели электронного регулятора выходного...
Тип: Изобретение
Номер охранного документа: 0002637272
Дата охранного документа: 01.12.2017
29.12.2017
№217.015.f4fe

Способ производства кисломолочного продукта

Изобретение относится к молочной промышленности. Способ реализуют следующим образом. Нормализуют молоко и вносят лактитол в объеме 7,6-9,5% от объема нормализованного молока, предварительно растворив его в 1/5-1/6 части объема нормализованного молока, нагретого до температуры 40-60°С, затем...
Тип: Изобретение
Номер охранного документа: 0002637387
Дата охранного документа: 04.12.2017
29.12.2017
№217.015.f570

Способ моделирования процесса газификации остатков жидкого компонента ракетного топлива и устройство для его реализации

Группа изобретений относится к методам и средствам исследования процесса газификации ракетного топлива в баках изделия. Способ включает введение в экспериментальную установку (ЭУ) теплоносителя в диапазоне углов ввода, обеспечивающих заданные углы натекания теплоносителя на стенки ЭУ и...
Тип: Изобретение
Номер охранного документа: 0002637140
Дата охранного документа: 30.11.2017
Показаны записи 11-20 из 52.
27.06.2014
№216.012.d808

Способ стыковки космических аппаратов

Изобретение относится к автоматической стыковке активных космических аппаратов (АКА) с некооперируемыми пассивными космическими аппаратами (ПКА). АКА включает в свой состав самонаводящийся космический микробуксир (КМБ) для доставки троса, выпускаемого с АКА, и оснащен стыковочным штырем....
Тип: Изобретение
Номер охранного документа: 0002521082
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.ddae

Способ газификации жидкого ракетного топлива в баке ракеты и устройство для его реализации

Изобретение относится к ракетно-космической технике и может быть использовано для увода отделяющихся частей ступеней ракет космического назначения. Получают импульс путем выброса газифицированных жидких остатков невыработанных компонентов ракетного топлива (РТ), обеспечивают импульс за счет...
Тип: Изобретение
Номер охранного документа: 0002522536
Дата охранного документа: 20.07.2014
27.10.2014
№216.013.0119

Способ очистки орбит от космического мусора

Изобретение относится к ракетно-космической технике и может быть использовано для увода с рабочих орбит объектов космического мусора (ОКМ) на орбиты утилизации. Способ включает выведение космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных...
Тип: Изобретение
Номер охранного документа: 0002531679
Дата охранного документа: 27.10.2014
10.12.2014
№216.013.0cb3

Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации

Группа изобретений относится к ракетно-космической технике и может быть использована при проведении физического моделирования процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступени ракет-носителей (РН) в условиях малой гравитации с использованием...
Тип: Изобретение
Номер охранного документа: 0002534668
Дата охранного документа: 10.12.2014
27.08.2015
№216.013.7493

Устройство для управления выведением ракеты космического назначения

Изобретение относится к ракетно-космической технике и может быть использовано для управления выведением ракеты космического назначения. Устройство для управления выведением ракеты космического назначения содержит систему управления и навигации, газореактивные сопла, систему газификации с...
Тип: Изобретение
Номер охранного документа: 0002561418
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.749c

Способ моделирования процесса газификации остатков жидкого ракетного топлива и устройство для его реализации

Изобретение относится к моделирующим устройствам и может быть использовано при построении процессов газификации остатков жидкого топлива в баках отделяющихся частей (ОЧ) ступени ракет-носителей (РН). Устройство для моделирования процесса газификации остатков жидкого компонента ракетного топлива...
Тип: Изобретение
Номер охранного документа: 0002561427
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.7a05

Способ повышения эффективности ракеты космического назначения с маршевым жрд

Изобретение относится к ракетно-космической технике. Способ повышения эффективности ракет космического назначения (РКН) с маршевыми жидкостными ракетными двигателями (ЖРД) основан на использовании невыработанных жидких остатков компонентов ракетного топлива (КРТ) в баках отделяющихся частей...
Тип: Изобретение
Номер охранного документа: 0002562826
Дата охранного документа: 10.09.2015
20.02.2016
№216.014.cf9e

Способ регенерации молибденсодержащего катализатора гидроконверсии

Изобретение относится к способу регенерации молибденсодержащего катализатора из остатков гидроконверсии тяжелого нефтяного сырья. Способ включает термообработку непревращенного остатка гидроконверсии, выкипающего при температуре выше 520°С и содержащего распределенный ультрадисперсный...
Тип: Изобретение
Номер охранного документа: 0002575175
Дата охранного документа: 20.02.2016
20.04.2016
№216.015.346d

Способ спуска отделяющейся части ступени ракеты космического назначения и устройство для его реализации

Изобретение относится к ракетно-космической технике и может быть использовано при спуске отделяющейся части ступени ракеты космического назначения (ОЧ РКН). ОЧ РКН содержит систему управления и навигации, топливный отсек, систему газификации жидких остатков топлива, 2 противоположно...
Тип: Изобретение
Номер охранного документа: 0002581894
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3601

Головной обтекатель ракеты

Изобретение относится к ракетно-космической технике и может быть использовано в головных обтекателях (ГО) ракет космического назначения (РКН). ГО для РКН представляет собой трехслойную конструкцию из полимерных композиционных материалов в виде двухстворчатой оболочки переменной кривизны,...
Тип: Изобретение
Номер охранного документа: 0002581636
Дата охранного документа: 20.04.2016
+ добавить свой РИД