×
08.07.2018
218.016.6d97

Результат интеллектуальной деятельности: Способ упрочнения гидрогелей

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к тканевой инженерии и регенеративной медицине, и предназначено для восстановления различных дефектов ткани. Для упрочнения гидрогелей осуществляют обработку гидрогелевого скаффолда в реакторе в среде сверхкритического диоксида углерода при температуре выше комнатной с последующим понижением температуры и постепенным снижением давления в реакторе до атмосферного. Обработку в реакторе ведут в течение 1-2 часов при температуре 40-50°С и давлении 5-15 МПа. Постепенное снижение давления диоксида углерода после обработки производят в течение 0,5-2 часов, при этом скорость потока диоксида углерода, обтекающего скаффолд, поддерживают в диапазоне 0,05-1 мм/с. Использование изобретения позволяет повысить прочность гидрогелевого скаффолда. 1 ил., 1 пр.

Предлагаемое изобретение относится к медицине, а именно к тканевой инженерии и регенеративной медицине, и может быть использовано для создания имплантированных в организм скаффолдов для восстановления различных дефектов ткани.

Скаффолд - трехмерная пористая или волокнистая матрица, применяемая для восстановления дефектов тканей и органов, основная функция которой состоит в обеспечении механического каркаса для клеток и поддержки тканевого дефекта [Stella J.A., D'Amore A., Wagner W.R., Sacks M.S. On the biomechanical function of scaffolds for engineering load-bearing soft tissues. Acta Biomater, 2010. V. 6 N. 7. P. 2365-2381, doi: 10.1016/j.actbio. 2010.01.001]. Механические свойства скаффолда должны быть схожи с механическими свойствами окружающей ткани. Это важно, во-первых, для дифференцировки в нужном направлении клеток, помещенных на поверхность скаффолда, во-вторых, для ослабления тканевого ответа при их имплантации, в-третьих, для регулирования скорости биодеградации скаффолдов (она должна соответствовать скорости восстановления ткани пациента).

Гидрогели являются перспективным материалом для создания скаффолдов (Zhu J., Marchant R.E. Design properties of hydrogel tissue-engineering scaffolds // Expert review of medical devices. 2011. V. 8. №5. P. 607-626). Основной особенностью, ограничивающей применение гидрогелевых скаффолдов, является их механическая прочность (низкие значения модуля Юнга). Сами по себе гидрогели являются мягкими и хрупкими, не могут долгое время выдерживать большие деформации, что происходит, главным образом из-за наличия в полимерной сетке несшитых компонентов. В связи с этим важно делать гидрогели более прочными (повысить модуль Юнга).

Известен способ упрочнения гидрогелей (заявка США 20060134050, МПК А61K 8/80, опубл. 22 июня 2006), основанный на химическом взаимодействии и заключающийся в добавлении в материал гидрогеля для получения дополнительных сшивок биоактивных веществ с молекулярной массой от 2000 до 1000000.

Основной недостаток данного способа заключается в том, что из подобного гидрогеля невозможно сформировать структуру скаффолда заданной архитектоники, например, используя лазерные технологии трехмерного принтинга.

Известен также способ упрочнения гидрогелей, основанный на использовании наноразмерных материалов, которые вводят в структуру гидрогеля. Например, при введении в гидрогель неорганических частиц наноглины его механические характеристики могут увеличиться в несколько раз в сравнении с исходным гидрогелем (K. Haraguchi, Т. Takehisa, Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties // Adv. Mater. 2002. V. 14. P. 1120-1124, doi: 10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9).

Однако известный способ имеет ряд недостатков. Один из них заключается в том, что наноразмерный наполнитель в структуре гидрогеля при его введении распределяется не достаточно равномерно, поэтому повышение механических свойств по всему объему происходит неравномерно. Помимо этого, введение наноразмерного наполнителя может вызывать токсическое действие на клетки (Carrola, J., Bastos, V., Jarak, I., Oliveira-Silva, R., Malheiro, E., Daniel-da-Silva, A.L., et al. Metabolomics of silver nanoparticles toxicity in HaCaT cells: structure-activity relationships and role of ionic silver and oxidative stress // Nanotoxicology. 2016. V. 10, N. 8. P. 1105-1117).

Указанных недостатков лишен наиболее близкий к предлагаемому способ упрочнения гидрогелей, принятый за прототип (Тимашев П.С, Бардакова К.Н., Чурбанов С.Н., Кротова Л.И., Григорьев A.M., Новиков М.М., Лакеев С.Г., Севастьянов В.И., Баграташвили В.Н. Сверхкритическая флюидная обработка трехмерных гидрогелевых матриксов, полученных из производных хитозана // Вестник трансплантологии и искусственных органов. 2016. Т. 18. №3. С. 85-93. doi: 10.15825/1995-1191-2016-3-85-93). Способ заключается в обработке гидрогеля в среде сверхкритического диоксида углерода с температурой 40°С и давлением 12 МПа в течение 1.5 часов, после чего нагревательный элемент выключается, а давление в реакторе постепенно снижается до атмосферного в течение 1 часа. Известный способ позволяет практически на порядок повысить модуль Юнга для гидрогелей, за счет эффективного удаления из материала гидрогеля несшитых компонентов. Важно, что известный способ не изменяет химическую структуру материала и не влияет на его токсичность. Недостаток известного способа заключается в низкой эффективности, поскольку повышение прочности материала в среднем на один порядок недостаточно для создания гидрогелевых скаффолдов для регенерации хрящевой ткани с модулем Юнга 0,45-0,80 МПа (в кн. Mansour J.М. Biomechanics of cartilage // Kinesiology: the mechanics and pathomechanics of human movement. 2003. C. 66-79). Невозможность увеличить модуль Юнга существенно больше, чем на порядок, связано с низкой эффективностью удаления несшитых компонентов из материала.

Технической задачей предлагаемого изобретения является разработка эффективного способа упрочнения гидрогелей.

Техническим результатом является повышение модуля Юнга (увеличение прочности) гидрогелевых скаффолдов на два и более порядка в сравнении с необработанным скаффолдом.

Такие скаффолды могут успешно использоваться для регенерации тканей с высокими значениями модуля Юнга, например хрящевых тканей.

Поставленная техническая задача, обеспечивающая получение заданного результата, достигается тем, что в способе упрочнения гидрогелей, заключающемся в обработке гидрогелевого скаффолда в реакторе в среде сверхкритического диоксида углерода при температуре выше комнатной с последующим понижением температуры и постепенным снижением давления в реакторе до атмосферного, обработку в реакторе ведут в течение 1-2 часов при температуре 40-50°С и давлении 5-15 МПа, а постепенное снижение давления диоксида углерода после обработки производят в течение 0.5-2 часов, при этом скорость потока диоксида углерода, обтекающего скаффолд, поддерживают в диапазоне 0.05-1 мм/с.

Результаты испытаний образцов, полученных при реализации предложенного способа, представлены на чертеже, на котором показаны графики распределения модуля Юнга по поверхности образцов необработанного (а) и обработанного (б) гидрогелевого скаффолда.

Пример осуществления способа

Для экспериментов использовали образцы, полученные на основе фоточувствительных гидрогелей методом лазерной стереолитографии (Тимашев П.С., Бардакова К.Н., Чурбанов С.Н., Кротова Л.И., Григорьев A.M., Новиков М.М., Лакеев С.Г., Севастьянов В.И., Баграташвили В.Н. Сверхкритическая флюидная обработка трехмерных гидрогелевых матриксов, полученных из производных хитозана //Вестник трансплантологии и искусственных органов. 2016. Т. 18. №3. С. 85-93. doi: 10.15825/1995-1191-2016-3-85-93). Измерение модуля Юнга образцов проводилось с помощью наноиндентера Piuma Nanoindenter (Opticsll, Нидерланды) (Ernst Breel. Characterizing the micro-mechanical properties of immersed hydrogels by nanoindentation. Technical Report. 2015. DOI: 10.13140/2.1.3580.9606).

Образцы помещали в реактор из нержавеющей стали объемом 25 мл внутрь термостата. Образец, параметры которого представлены на фиг. 1, обрабатывался следующим образом. В термостате устанавливали температуру 40-50°С и по достижении заданных температур начинали подавать в реактор углекислый газ из баллона до давления ~5 МПа. Затем включали плунжерный насос с давлением 15 МПа. Когда давление в реакторе достигало заданных величин, постепенно открывали вентиль тонкой регулировки таким образом, чтобы давление в системе не падало, а поток минимально отклонялся от заданного и составлял 5-7 мл/мин, что соответствовало скорости перемещения СО2 в реакторе 0.08-0.12 мм/с. Обработку проводили в течение 1.5 часов, после чего спускали давление в системе до атмосферного в течение 1.5 часов.

Как видно из фиг. 1, после обработки образцов предлагаемым способом модуль Юнга материала образца по сравнению с исходными показателями увеличился более чем на два порядка.

Проведенные эксперименты показали, что обработка скаффолдов сверхкритическим СО2 значительно увеличивает прочность материала по сравнению с необработанными образцами и образцами, обработанными способом, который был принят за аналог. Средние значения модуля Юнга составили: для исходных гидрогелевых скаффолдов - 3,3±0,9 кПа; для обработанных аналогом - 54±18 кПа; для обработанных предлагаемым способом - 600±220 кПа.

Полученный технический результат обусловлен тем, что в процессе обработки гидрогелевых скаффолдов в проточном реакторе с постоянным потоком сверхкритического диоксида углерода интенсифицируются массообменные процессы и происходит эффективный отвод из полимерной сетки несшитых компонентов, которые в большей степени определяют низкие значения модуля Юнга (низкую прочность) необработанного гидрогеля.

Таким образом, поставленная задача полностью решена, а именно разработан эффективный способ упрочнения гидрогелей.

Способ упрочнения гидрогелей, заключающийся в обработке гидрогелевого скаффолда в реакторе в среде сверхкритического диоксида углерода при температуре выше комнатной с последующим понижением температуры и постепенным снижением давления в реакторе до атмосферного, отличающийся тем, что обработку в реакторе ведут в течение 1-2 часов при температуре 40-50°C и давлении 5-15 МПа, а постепенное снижение давления диоксида углерода после обработки производят в течение 0.5-2 часов, при этом скорость потока диоксида углерода, обтекающего скаффолд, поддерживают в диапазоне 0.05-1 мм/с.
Способ упрочнения гидрогелей
Источник поступления информации: Роспатент

Показаны записи 11-20 из 39.
30.08.2018
№218.016.8184

Фтор-проводящий стеклообразный твердый электролит

Изобретение относится к области фтор-проводящих твердых электролитов, обладающих высокой анионной электропроводностью по ионам фтора. Фтор-проводящий твердый электролит на основе фторидного стекла PbF+InF+BaF имеет состав, мол. %: PbF 7-54, InF 11-49, BaF 7-32, AlF 2-20 и LiF 10-20. Электролиты...
Тип: Изобретение
Номер охранного документа: 0002665314
Дата охранного документа: 29.08.2018
07.09.2018
№218.016.8472

Способ создания механолюминесцентных сенсоров для визуализации и регистрации механических воздействий

Изобретение относится к контрольно-измерительной технике и может быть использовано для создания элементов визуализации, записи и исследования механических воздействий сложной пространственной формы в зависимости от времени. Заявленный способ создания механолюминесцирующих сенсорных элементов...
Тип: Изобретение
Номер охранного документа: 0002666162
Дата охранного документа: 06.09.2018
15.11.2018
№218.016.9da9

Способ получения упорядоченных пленок лизоцима на твердых подложках в ленгмюровской ванне

Изобретение относится к биотехнологии, в частности к способу получения упорядоченных пленок лизоцима на твердых подложках. Готовят маточный раствор лизоцима в буфере с концентрацией, соответствующей началу кристаллизации лизоцима. Фильтруют раствор лизоцима и центрифугируют. Параллельно готовят...
Тип: Изобретение
Номер охранного документа: 0002672410
Дата охранного документа: 14.11.2018
05.12.2018
№218.016.a330

Магниторезистивный сплав на основе висмута

Изобретение относится к сплавам на основе висмута, которые могут быть использованы для изготовления датчиков контрольно-измерительной аппаратуры, например датчиков Холла. Сплав на основе висмута содержит, мас. %: сурьма 5,1437216-5,7737629, теллур 0,0000006-0,0003188, висмут – остальное. Сплав...
Тип: Изобретение
Номер охранного документа: 0002673870
Дата охранного документа: 30.11.2018
13.12.2018
№218.016.a61e

Установка для топо-томографических исследований образцов

Использование: для исследования совершенства монокристаллических слоев. Сущность изобретения заключается в том, что установка для исследования образцов содержит источник рентгеновского излучения и установленные по ходу рентгеновского луча блок с кристаллом-монохроматором, гониометр с...
Тип: Изобретение
Номер охранного документа: 0002674584
Дата охранного документа: 11.12.2018
08.02.2019
№219.016.b846

Неконкурентный ингибитор тимидинфосфорилаз

Изобретение относится к области биохимии. Предложен неконкурентный ингибитор тимидинфосфорилаз пептидной природы H-Trp-Met(О)-Phe-NH. Изобретение обеспечивает получение неконкурентного ингибитора тимидинфосфорилаз пептидной природы, который потенциально можно использовать для лечения...
Тип: Изобретение
Номер охранного документа: 0002679148
Дата охранного документа: 06.02.2019
29.03.2019
№219.016.ee52

Способ лазероиндуцированного возбуждения сверхинтенсивного пузырькового кипения

Изобретение относится к технологиям передачи тепла, а именно к передаче тепла от сосредоточенного источника в жидкость, и может быть использовано, например, в биотехнологии и медицине, в частности для эффективного нагрева тканей с целью деструкции патологических образований. Заявленный способ...
Тип: Изобретение
Номер охранного документа: 0002682848
Дата охранного документа: 21.03.2019
19.04.2019
№219.017.294e

Жидкая фотополимеризующаяся композиция для лазерной стереолитографии

Изобретение относится к жидкой фотополимеризующейся композиции (ФПК) для лазерной стереолитографии. Композиция содержит 96-98 вес.% смеси ди(мет)-акриловых олигомеров и (мет)акрилового мономера и 2-4 вес.% фотоинициатора 2,2′-диметокси-2-фенилацетофенона. Указанная смесь содержит 16-33 вес.%...
Тип: Изобретение
Номер охранного документа: 0002685211
Дата охранного документа: 16.04.2019
01.05.2019
№219.017.47c3

Магниторезистивный сплав на основе висмута

Изобретение относится к металлургии, а именно к сплавам на основе висмута, предназначенным для изготовления датчиков контрольно-измерительной аппаратуры. Магниторезистивный сплав на основе висмута содержит, мас.%: сурьма 5,1437216 - 5,7737629, олово 0,000006 - 0,0001, висмут – остальное. Сплав...
Тип: Изобретение
Номер охранного документа: 0002686493
Дата охранного документа: 29.04.2019
07.06.2019
№219.017.750e

Беспроводное устройство для измерения температуры

Изобретение относится к области кристаллографии, а более конкретно к беспроводным устройствам для контроля температуры в вакуумных ростовых камерах, а также при отжиге кристаллов, выращенных из расплава. Беспроводное устройство для измерения температуры, содержащее термодатчик, блок питания и...
Тип: Изобретение
Номер охранного документа: 0002690719
Дата охранного документа: 05.06.2019
Показаны записи 11-20 из 25.
05.07.2018
№218.016.6bb3

Носитель для трансплантируемых клеток для замещения дефекта, полученного при черепно-мозговой травме

Изобретение относится к нейрохиругии. Носитель для трансплантируемых клеток для замещения дефекта, полученного при черепно-мозговой травме, выполнен в виде 3D биодеградируемого скаффолда, состоящего из каркаса, выполненного с применением хитозана, связанного гидрогелем из гиалуроновой кислоты с...
Тип: Изобретение
Номер охранного документа: 0002659842
Дата охранного документа: 04.07.2018
14.09.2018
№218.016.8787

Способ селективного разделения рацемической смеси сальбутамола

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ селективного разделения рацемической смеси сальбутамола методом сверхкритической флюидной хроматографии, заключающийся в том, что проводят разделение рацемической смеси сальбутамола элюированием с помощью...
Тип: Изобретение
Номер охранного документа: 0002667002
Дата охранного документа: 13.09.2018
23.11.2018
№218.016.9fa9

Способ чрескожного доступа при лазерном пункционном лечении дегенеративных заболеваний дисков

Изобретение относится к медицине, а именно к травматологии и нейрохирургии, и направлено на повышение эффективности лазерного пункционного лечения дегенеративно-дистрофических заболеваний позвоночника. Для этого чрескожный доступ к межпозвонковому диску L5-S1 выполняют путем чрескожной пункции...
Тип: Изобретение
Номер охранного документа: 0002673149
Дата охранного документа: 22.11.2018
30.12.2018
№218.016.ad96

Способ кросслинкинга роговичного коллагена с помощью фемтосекундного лазера в эксперименте

Изобретение относится к области медицины, а именно к офтальмологии. Для проведения кросслинкинга роговичного коллагена в эксперименте проводят обработку роговицы раствором 0,1% рибофлавина в течение 30 минут, облучение роговицы и смачивание ее поверхности в процессе облучения указанным...
Тип: Изобретение
Номер охранного документа: 0002676451
Дата охранного документа: 28.12.2018
29.03.2019
№219.016.ee52

Способ лазероиндуцированного возбуждения сверхинтенсивного пузырькового кипения

Изобретение относится к технологиям передачи тепла, а именно к передаче тепла от сосредоточенного источника в жидкость, и может быть использовано, например, в биотехнологии и медицине, в частности для эффективного нагрева тканей с целью деструкции патологических образований. Заявленный способ...
Тип: Изобретение
Номер охранного документа: 0002682848
Дата охранного документа: 21.03.2019
04.04.2019
№219.016.fc4b

Способ поиска газогидратов (варианты)

Изобретение относится к геофизическим методам поиска минерального сырья на дне моря и может быть использовано для поиска залежей газогидратов в приповерхностном слое. Согласно изобретению осуществляют излучение акустического сигнала в направлении морского дна, прием и обработку сигнала...
Тип: Изобретение
Номер охранного документа: 0002354996
Дата охранного документа: 10.05.2009
10.04.2019
№219.016.fefe

Фотополимерная композиция для изготовления термостойких объектов методом лазерной стереолитографии

Изобретение относится к фотополимеризующимся композициям для использования в технологиях быстрого получения термостойких изделий методом лазерной стереолитографии. Описывается фотополимерная композиция, включающая акриламидные компоненты, фотоинициатор -...
Тип: Изобретение
Номер охранного документа: 0002684387
Дата охранного документа: 08.04.2019
27.04.2019
№219.017.3c6a

Способ упрочнения полимерных скаффолдов из полилактида

Изобретение относится к области медицины и может быть использовано для изготовления полимерных скаффолдов, предназначенных для регенерации дефектов костных и хрящевых тканей. Предложен способ упрочнения полимерных скаффолдов из полилактида путем химической сшивки, согласно которому образец...
Тип: Изобретение
Номер охранного документа: 0002686106
Дата охранного документа: 24.04.2019
01.09.2019
№219.017.c59f

Способ оценки потока метана в атмосферу, переносимого всплывающими пузырьками, выходящими из верхнего слоя осадочных пород на дне водоема, и устройство для его осуществления

Изобретение относится к средствам для оценки потока метана в атмосферу, переносимого всплывающими пузырьками, выходящими из верхнего слоя осадочных пород на дне водоема. Сущность: отбирают образец осадочной породы и помещают его на дно закрытого вертикального резервуара. Заполняют...
Тип: Изобретение
Номер охранного документа: 0002698552
Дата охранного документа: 28.08.2019
18.10.2019
№219.017.d76e

Бактерицидное противоожоговое биодеградируемое средство на основе фармацевтической композиции коллагена с лактоферрином, способы получения (варианты) и свойства

Изобретение относится к фармацевтической композиции, способу ее получения, средству в форме раневого покрытия на основе фармацевтической композиции и применению такого средства в качестве ранозаживляющего средства. Фармацевтическая композиция для аппликативного применения обладает...
Тип: Изобретение
Номер охранного документа: 0002703284
Дата охранного документа: 16.10.2019
+ добавить свой РИД