×
06.07.2018
218.016.6d48

Результат интеллектуальной деятельности: Способ измерения частотного спектра комплексной диэлектрической проницаемости

Вид РИД

Изобретение

№ охранного документа
0002660284
Дата охранного документа
05.07.2018
Аннотация: Использование: для проведения измерений частотных спектров комплексной диэлектрической проницаемости веществ в диапазоне частот от 0,01 до 15 ГГц. Сущность изобретения заключается в том, что способ измерения частотного спектра комплексной диэлектрической проницаемости в диапазоне частот от 0,01 до 15 ГГц основан на измерении и вычислении частотных спектров каскадно-специфических матриц рассеяния, включает: измерение характеристик коаксиальной измерительной ячейки, заполненной эталонным веществом с известным частотным спектром комплексной диэлектрической проницаемости; нахождение характеристик отрезков ячейки, расположенных слева и справа от отрезка, предназначенного для заполнения исследуемым веществом; измерение характеристик коаксиальной измерительной ячейки, заполненной исследуемым веществом; вычисление характеристик отрезка измерительной ячейки, заполненного исследуемым веществом; вычисление диэлектрической проницаемости заполняющего ячейку диэлектрика, при этом используют коаксиальную измерительную ячейку, обладающую симметричной матрицей рассеяния. Технический результат - обеспечение возможности более точного измерения частотных спектров комплексной диэлектрической проницаемости веществ в диапазоне частот от 0,01 до 15 ГГц. 1 ил.

Изобретение относится к области измерительной техники, а также техники сверхвысоких частот, и предназначено для проведения измерений частотных спектров комплексной диэлектрической проницаемости веществ в диапазоне частот от 0,01 до 15 ГГц, необходимых в дистанционном зондировании Земли из космоса, физико-химическом анализе материалов и во многих других областях науки и техники.

Известно множество методов измерения комплексной диэлектрической проницаемости в диапазоне сверхвысоких частот, среди которых можно выделить резонансные методы, методы открытого конца волновода, методы открытого пространства и коаксиально-волноводные методы. По совокупности таких характеристик, как возможность проведения измерений в широком диапазоне частот, диапазон измерения реальной и мнимой части комплексной диэлектрической проницаемости, точность измерений и стоимость необходимого для проведения измерений оборудования, наилучшим вариантом являются коаксиально-волноводные методы. Суть данных методов заключается в помещении исследуемого вещества в отрезок коаксиального волновода, с последующим измерением параметров рассеяния данного отрезка волновода и вычислением комплексной диэлектрической проницаемости с помощью известных формул, связывающих эти величины. На практике не удается напрямую измерить параметры рассеяния волны на исследуемом веществе, так как в тракте всегда присутствуют кабели и переходные устройства, служащие для соединения отрезка, заполненного исследуемым веществом, с измерительным прибором (например, векторным анализатором цепей). Совокупность переходных устройств и отрезка коаксиальной линии, заполненного исследуемым веществом, называется коаксиальной измерительной ячейкой. Для устранения влияния переходных устройств приходится проводить дополнительную процедуру калибровки.

Известен способ измерения комплексной диэлектрической проницаемости [ K. Bilinear calibration of coaxial transmission/reflection cells for permittivity measurement of low-loss liquids //Measurement Science and Technology. - 1996. - T. 7. - №. 9. - C. 1260], заключающийся в измерении трех эталонных жидкостей с заранее известными значениями комплексной диэлектрической проницаемости, последующем нахождении калибровочных коэффициентов, измерении параметров рассеяния исследуемого вещества и вычислении комплексной диэлектрической проницаемости с использованием полученных ранее калибровочных коэффициентов. Недостатками этого способа является необходимость использования большого числа калибровочных жидкостей, что усложняет проведение эксперимента. При этом данный способ требует, чтобы значения диэлектрической проницаемости эталонных жидкостей были близки к диэлектрической проницаемости исследуемого вещества, что труднодостижимо во многих практически интересных случаях.

Наиболее близким по совокупности существенных признаков способом является способ [Миронов В.Л. и др. Методика измерения частотного спектра комплексной диэлектрической проницаемости почв //Радиотехника и электроника. - 2010. - Т. 55. - №. 12. - С. 1465-1470], заключающийся в измерении параметров рассеяния двух пустых коаксиальных измерительных ячеек идентичной конструкции, но с разными длинами отрезков коаксиальной линии, предназначенных для заполнения исследуемым веществом. С использованием этих данных находятся калибровочные коэффициенты, затем проводится измерение исследуемого образца с использованием одной из ячеек и производится вычисление комплексной диэлектрической проницаемости исследуемого образца с использованием полученных ранее калибровочных коэффициентов. К достоинствам этого метода можно отнести то, что он предоставляет простую методику калибровки измерительной ячейки, не требующую использования эталонных диэлектриков. Недостатком этого метода является то, что он дает серьезные ошибки в окрестностях группы частот, пропорциональных модулю разницы длин измерительных ячеек, использованных для калибровки.

Предлагаемое изобретение направленно на то, чтобы измерения комплексной диэлектрической проницаемости проводились в как можно более широком диапазоне частот, с минимальными погрешностями, затратами реактивов (эталонных диэлектриков) и труда оператора.

Техническим результатом при использовании изобретения является исключение потребности в использовании большого числа эталонных диэлектриков при проведении измерений, а также отсутствие областей с большой ошибкой в измеренном частотном спектре комплексной диэлектрической проницаемости.

Предлагаемый способ измерения частотного спектра комплексной диэлектрической проницаемости предполагает использование коаксиальной измерительной ячейки, обладающей симметричной конструкцией и, соответственно, симметричной матрицей рассеяния. Волновое сопротивление всех участков ячейки, не заполненной калибровочным или исследуемым веществом, равно волновому сопротивлению выходных разъемов измерительного прибора. При этом фидер, соединяющий коаксиальную измерительную ячейку с измерительным прибором, имеет то же значение волнового сопротивления.

Существенные признаки, отличающие предлагаемый способ от прототипа, заключаются в том, что предлагаемый способ предполагает использование измерительной ячейки, обладающей симметричной матрицей рассеяния, что позволяет производить более точную калибровку без внесения значительной ошибки в диапазоне частот от 0,01 до 15 ГГц.

На фиг. 1 представлена предлагаемая коаксиальная измерительная ячейка. Она состоит из области для размещения исследуемого образца поз. 1, трех разъемных поз. 2, 3 и одной сплошной поз. 4 диэлектрических шайб, жилы измерительной поз. 5 и жилы концевой поз. 6, соединяющихся в месте соприкосновения шайбы поз. 3 и рабочего объема поз. 1, капсулы измерительной поз. 7, двух втулок концевых поз. 9, 11, двух втулок промежуточных поз. 8, 10, гаек разъема поз. 12, 13 и одной гайки фиксации поз. 14. Шайбы поз. 2, 3, 4 служат для предотвращения продольных и поперечных смещений жил поз. 5, 6, а также для удержания. Без заполнения образцом, линия передачи, образуемая данной конструкцией, имеет одинаковое волновое сопротивление по всей длине.

Коаксиальную измерительную ячейку можно представить в виде трех последовательно соединенных четырехполюсников. Каскадно-специфическая матрица рассеяния для такой системы имеет вид:

где Т - каскадно-специфическая матрица рассеяния коаксиальной измерительной ячейки; Ts - каскадно-специфическая матрица рассеяния, характеризующая участок волновода, заполненного исследуемым образцом; T1 - каскадно-специфическая матрица рассеяния, характеризующая участок слева от участка, заполненного образцом; Т2 - каскадно-специфическая матрица рассеяния, характеризующая участок справа от участка, заполненного образцом.

Выражая из (1) Ts, получим выражение, связывающие каскадно-специфическую матрицу рассеяния коаксиальной измерительной ячейки, заполненной образцом с каскадно-специфической матрицей рассеяния исследуемого образца:

Ввиду того что предлагаемая коаксиальная измерительная ячейка образует симметричную линию передачи:

При выполнении измерений сначала измеряется частотный спектр каскадно-специфической матрицы рассеяния коаксиальной измерительной ячейки, заполненной эталонным диэлектриком с известным частотным спектром диэлектрической проницаемости.

Затем, решая уравнение (1) с учетом (3) и данных измерений ячейки, заполненной эталонным диэлектриком, можно найти частотные спектры T1 и Т2.

Затем, используя выражение (2), вычисляется частотный спектр каскадно-специфической матрицы рассеяния Ts участка волновода, заполненного исследуемым образцом.

В завершение процесса измерений, используя известные формулы, связывающие каскадно-специфическую матрицу рассеяния исследуемого образца с его диэлектрической проницаемостью, производится вычисление ее частотного спектра.

Таким образом, благодаря всей совокупности признаков заявляемого технического решения обеспечивается измерение комплексной диэлектрической проницаемости в диапазоне частот от 0,01 до 15 ГГц, как и в прототипе, но с меньшей погрешностью.

Способ измерения частотного спектра комплексной диэлектрической проницаемости в диапазоне частот от 0,01 до 15 ГГц, основанный на измерении и вычислении частотных спектров каскадно-специфических матриц рассеяния, включающий: измерение характеристик коаксиальной измерительной ячейки, заполненной эталонным веществом с известным частотным спектром комплексной диэлектрической проницаемости; нахождение характеристик отрезков ячейки, расположенных слева и справа от отрезка, предназначенного для заполнения исследуемым веществом; измерение характеристик коаксиальной измерительной ячейки, заполненной исследуемым веществом; вычисление характеристик отрезка измерительной ячейки, заполненного исследуемым веществом; вычисление диэлектрической проницаемости заполняющего ячейку диэлектрика, отличающийся тем, что используют коаксиальную измерительную ячейку, обладающую симметричной матрицей рассеяния.
Способ измерения частотного спектра комплексной диэлектрической проницаемости
Способ измерения частотного спектра комплексной диэлектрической проницаемости
Источник поступления информации: Роспатент

Показаны записи 31-40 из 78.
08.03.2019
№219.016.d3e9

Берегозащитное боносетевое заграждение

Изобретение относится к берегозащитным и заградительным сооружениям, позволяющим гасить энергию волн, в том числе таких разрушительных, как цунами (включая и искусственно вызванные). Также, устройство может быть использовано, как средство пассивной защиты портовых зон, военно-морских баз и...
Тип: Изобретение
Номер охранного документа: 0002681149
Дата охранного документа: 04.03.2019
22.03.2019
№219.016.ec44

Высокоманевренный самолет

Изобретение относится к области авиации. Высокоманевренный самолет представляет интегральный продольный биплан, включающий фюзеляж, крылья, снабженные корневыми наплывами, на которых расположено переднее горизонтальное оперение, двухкилевое вертикальное оперение, двигатели с изменяемым вектором...
Тип: Изобретение
Номер охранного документа: 0002682700
Дата охранного документа: 20.03.2019
06.04.2019
№219.016.fe15

Способ экстрагирования неорганических форм цинка, кадмия, свинца и меди из твердых образцов природных объектов

Изобретение относится к аналитической химии компонентов экосистем. Способ экстрагирования неорганических форм цинка, кадмия, свинца и меди из твердых образцов, заключающийся в извлечении неорганических форм цинка, кадмия, свинца и меди из твердой фазы природного объекта в жидкую фазу ионной...
Тип: Изобретение
Номер охранного документа: 0002684091
Дата охранного документа: 03.04.2019
23.04.2019
№219.017.368a

Экстракционно-атомно-абсорбционный способ определения микропримесей золота в технических и рудных твердых образцах

Изобретение относится к химической технологии экстракционного разделения сложных по химическому составу природных и технических компонентов смесей твердых порошков в горно-рудной промышленности. Способ отличается применением в качестве коллектора золота сульфидов нефти с последующим анализом...
Тип: Изобретение
Номер охранного документа: 0002685562
Дата охранного документа: 22.04.2019
23.04.2019
№219.017.36ef

Способ формирования покрытия, содержащего интерметаллические соединения системы ni-al, на подложке из алюминия или его сплава

Изобретение относится к области упрочнения поверхности металлов и сплавов и может быть использовано в различных областях промышленности и науки для формирования защитных и упрочняющих покрытий. Способ формирования покрытия, содержащего интерметаллические соединения системы Ni-Al, на подложке из...
Тип: Изобретение
Номер охранного документа: 0002685613
Дата охранного документа: 22.04.2019
25.04.2019
№219.017.3b21

Способ получения коллоидных квантовых точек селенида цинка в оболочке хитозана

Изобретение относится к получению квантовых точек, используемых в качестве биологических маркеров. Способ получения коллоидных полупроводниковых квантовых точек селенида цинка в оболочке хитозана включает взаимодействие хлорида цинка с селенид-ионами в присутствии аммиака и покрывающего агента....
Тип: Изобретение
Номер охранного документа: 0002685669
Дата охранного документа: 22.04.2019
25.04.2019
№219.017.3b5b

Способ получения тонких алмазных пленок

Изобретение относится к способу получения тонких алмазных пленок и может быть использовано в различных областях промышленности и науки для получения тонкопленочных упрочняющих покрытий и активных слоев тонкопленочных наноструктур. Предлагается способ получения тонких алмазных пленок на подложке...
Тип: Изобретение
Номер охранного документа: 0002685665
Дата охранного документа: 22.04.2019
24.05.2019
№219.017.5efe

Способ получения индатов редкоземельных элементов p3эino

Изобретение относится к химии твердофазных превращений неорганических соединений, а именно к синтезу тройных соединений индатов редкоземельных элементов (РЗЭ) со структурой перовскита, и может быть использовано как в химической промышленности, так и в оптоэлектронике и микроэлектронике. Cпособ...
Тип: Изобретение
Номер охранного документа: 0002688606
Дата охранного документа: 21.05.2019
07.06.2019
№219.017.7517

Аккумулирующая воду теплица

Изобретение относится к сельскому хозяйству, в частности к конструкции теплиц. Устройство может быть использовано для выращивания растений в условиях засушливого климата со значительными суточными амплитудами колебания температур, малым количеством выпадающих осадков и большой испаряемостью...
Тип: Изобретение
Номер охранного документа: 0002690599
Дата охранного документа: 05.06.2019
05.07.2019
№219.017.a633

Штамм бактерий bacillus toyonensis вкпм в-13249, обладающий выраженным антагонизмом по отношению к микроорганизмам escherichia coli, candida albicans, staphylococcus aureus, st. epidermidis, salmonella typhimurium, shigella sonnei, pseudomonas aeruginosa

Изобретение относится к биотехнологии. Предложенный штамм бактерий Bacillus toyonensis 15, обладающий широким спектром антагонистической активности в отношении Escherichia coli, Candida albicans, Staphylococcus aureus, St. epidermidis, Salmonella typhimurium, Shigella sonnei, Pseudomonas...
Тип: Изобретение
Номер охранного документа: 0002693439
Дата охранного документа: 02.07.2019
Показаны записи 1-1 из 1.
27.05.2023
№223.018.707f

Способ косвенного измерения теплопроводности по данным диэлькометрических измерений

Изобретение относится к измерительной технике и радиотехнике сверхвысоких частот и может использоваться для одновременного измерения теплофизических и диэлектрических параметров образцов. Для определения теплопроводности образец помещают в коаксиальную измерительную ячейку, которую помещают в...
Тип: Изобретение
Номер охранного документа: 0002789020
Дата охранного документа: 27.01.2023
+ добавить свой РИД