×
05.07.2018
218.016.6b33

Результат интеллектуальной деятельности: Способ оперативного контроля качества стыковки

Вид РИД

Изобретение

№ охранного документа
0002660020
Дата охранного документа
04.07.2018
Аннотация: Изобретение относится к области полупроводниковой микроэлектроники, а именно к технологии сборки полупроводниковых приборов, и может быть использовано для гибридизации кристаллов БИС считывания и матрицы фоточувствительных элементов (МФЧЭ) методом перевернутого монтажа. Изобретение обеспечивает повышение качества оперативного контроля стыковки кристаллов. Для определения качества стыковки проводят расчет допустимого зазора между кристаллами, измерение реального зазора между ними и их сравнение. При этом если измеренный зазор больше расчетного, то кристаллы направляют на дополнительный дожим для уменьшения величины зазора, если измеренный зазор меньше расчетного, то стыковку считают удовлетворительной. 4 ил.
D≥0.4 D, если не выполняется левая часть неравенства, то кристаллы направляют на дополнительный дожим для уменьшения величины зазора, если не выполняется правая часть неравенства, то состыкованные кристаллы направляют на дополнительный электрический контроль." class = "blcSndTextValline">

Изобретение относится к области полупроводниковой микроэлектроники, а именно к технологии сборки полупроводниковых приборов, и может быть использовано для гибридизации матричных фотоприемных устройств (МФПУ) методом перевернутого монтажа.

В технологическом маршруте изготовления МФПУ должна присутствовать операция оперативного контроля надежности стыковки двух кристаллов - БИС считывания и матрицы фоточувствительных элементов (МФЧЭ), с помощью которой можно было бы определять качество стыковки кристаллов для проведения при необходимости корректирующих действий по улучшению надежности стыковки.

Известны способы контроля качества стыковок, использующие методы сдвига [Jap. Journ. Appl. Phys. 2004, 43. N 8B] или отрыва [Nucl. Instrum. and Meth. Phys. Reseach. A.2005.540] кристаллов БИС считывания и МФЧЭ. Методы использовались для определения причин нарушения механической прочности и выявления областей с низкой адгезией индия к никелевым контактным площадкам и определения усилия на разрыв кристаллов.

Основным недостатком описанных способов является использование разрушающего метода контроля, что дает безвозвратные потери кристаллов, дальнейшее их использование для создания ФПУ исключено. В связи с этим, рассмотренные способы не могут быть применены для оперативного контроля качества стыковки кристаллов во время их производства.

Наиболее близким к предлагаемому способу является электрический способ контроля качества стыковки кристаллов, являющийся неразрушающим методом контроля. Метод фиксирует разрыв связи между индиевыми микроконтактами БИС считывания и ФЧЭ в диапазоне температур 77-300 К на измерительном стенде [Новоселов А.Р., Косулина И.Г. "Оперативный метод контроля сборок flip-flop", Автометрия, 2009, Т. 45, №6, 119-1]. При этом качество стыковки кристаллов определяется визуально по экрану видеомонитора, на вход которого подается видеосигнал с БИС считывания. Если в поле матрицы есть области недостыковки индиевых микроконтактов, то производится дожим кристаллов для получения полной стыковки кристаллов.

Одним из основных недостатков рассмотренного способа является его ненадежность при определении качества проведенной стыковки. Это связано с тем, что при электрическом контроле качества стыковки нет критерия оптимальной стыковки. То есть наличие состыкованных микроконтактов не означает надежной стыковки. Связь между микроконтактами кристаллов может быть слабой, что при термоциклировании может привести к отстыковке как отдельных микроконтактов, так и целых областей матрицы. Или, наоборот, из-за перекоса кристаллов при стыковке отдельные области кристаллов могут быть пережаты до смыкания соседних микроконтактов.

Кроме того, способ контроля качества стыковки должен быть оперативным, не занимающим много времени, во избежание окисления индия на недостыкованных микроконтактах, что может создать проблемы при слипании индиевых микроконтактов на кристаллах при их дожиме.

Задача изобретения состоит в повышении качества контроля стыковки кристаллов.

Технический результат достигается тем, что с целью контроля надежности стыковки до объединения кристаллов проводят измерение суммарной высоты индиевых микроконтактов исходных кристаллов БИС считывания и МФЧЭ Dp=h1+h2, где Dp - величина зазора между кристаллами, h1 - высота индиевого микроконтакта БИС считывания, h2 - высота индиевого микроконтакта МФЧЭ, после стыковки модуль устанавливают в держатель под небольшим углом к оптической оси объектива микроскопа так, чтобы в поле зрения микроскопа появились сфокусированные действительное изображение края МФЧЭ и мнимое изображение того же края МФЧЭ, зеркально отображенное от плоскости БИС считывания, измеряют расстояние между действительным и мнимым изображениями края кристалла МФЧЭ, составляющее двойную ширину зазора (2DИ) между состыкованными кристаллами, при этом соотношение между Dp и DИ при надежной стыковке должно удовлетворять неравенству 0,7 Dp ≥ DИ ≥ 0.4 Dp, если не выполняется левая часть неравенства, то кристаллы направляют на дополнительный дожим для уменьшения величины зазора, если не выполняется правая часть неравенства, то состыкованные кристаллы направляют на дополнительный электрический контроль, по которому визуально определяют наличие или отсутствие закороток между индиевыми микроконтактами.

Измерение зазоров между кристаллами проводят под микроскопом по четырем сторонам МФЧЭ и сравнивают их с рассчитанной величиной. При превышении измеренной величины над расчетной производят общий или локальный дожим кристаллов. Контроль зазоров производят обычно в пяти точках каждой стороны кристалла МФЧЭ, т.е. в 20 точках кристалла, что, как правило, достаточно для определения надежности стыковки кристаллов. Так, например, при суммарной высоте индиевых микроконтактов обоих кристаллов 10 мкм для получения надежной стыковки кристаллов величина зазора между ними не должна превышать 7 мкм, т.е. измеренная величина зазора равна Dи ≤ 7 мкм. С другой стороны, при сильном давлении при стыковке возможно пережатие микроконтактов вплоть до их касания. Например, при шаге элементов в матрице - 20 мкм, размере индиевого микроконтакта 10×10 мкм и высоте микроконтакта 5 мкм, касание микроконтактов произойдет при зазоре в 2,5 мкм, берем с запасом - 4 мкм, т.е. разрешенная величина зазора при стыковке составляет от 4 до 7 мкм или 0,7 Dp ≥ Dи ≥ 0.4 Dp.Следует отметить, что приведенные данные для расчета зазоров между кристаллами основаны на большом числе статистических данных, полученных при исследовании качества стыковки кристаллов с приведенными выше размерами.

При использовании предлагаемого способа достигается следующий результат:

1. Исключается разрушение кристаллов во время контроля стыковки.

2. Значительно снижается время, необходимое для проведения измерений.

3. Повышается достоверность контроля надежности стыковки.

4. Вводится расчетный числовой критерий оптимальной стыковки (диапазон разрешенных значений зазора между кристаллами).

На фиг. 1 дана блок-схема измерения зазора между кристаллами. Состыкованный модуль 1 устанавливают в держателе 2 под небольшим углом к оптической оси объектива микроскопа 3 так, чтобы в поле зрения микроскопа появился сфокусированный край кристалла МФЧЭ. В качестве держателя может быть использован подпружиненный пинцет с мягкими губками, закрепленный на предметном столике 4.

На фиг. 2 показан ход лучей при измерении зазора между кристаллами МФЧЭ 5 и БИС 6. В поле зрения микроскопа 3 видны два изображения края матрицы МФЧЭ: - действительное изображение 7 и его зеркальное отображение за плоскостью кристалла БИС считывания - мнимое изображение 8.

На фиг. 3 представлен результат совмещения действительного 7 и мнимого изображений 8, видимый на экране видеомонитора, где 9 - фрагмент БИС, 10 - плоскость кристалла БИС. Расстояние между двумя изображениями в плоскости микроскопа составляет 2Dи.

На фиг. 4 показана фотография реального зазора между кристаллами БИС считывания и ФЧЭ.

Измерение величины зазора может производиться с помощью измерительной шкалы окуляра или электронным методом (микроскоп типа Lenovo). Ошибка измерения величины зазора предлагаемым способом, связанная с наклоном плоскостей кристаллов к оптической оси объектива микроскопа, равная δ=Dи⋅cos ϕ и при ϕ ~ 8° (угол измерения) составляет менее 1%. При зазоре величиной 10 мкм ошибка измерения не превышает 0,1 мкм.

Способ контроля качества стыковки кристаллов БИС считывания и МФЧЭ, отличающийся тем, что с целью контроля надежности стыковки до объединения кристаллов проводят измерение суммарной высоты индиевых микроконтактов исходных кристаллов БИС считывания и МФЧЭ D=h+h, где D - величина зазора между кристаллами, h - высота индиевого микроконтакта БИС считывания, h - высота индиевого микроконтакта МФЧЭ, после стыковки модуль устанавливают в держатель под небольшим углом к оптической оси объектива микроскопа так, чтобы в поле зрения микроскопа появились сфокусированные действительное изображение края МФЧЭ и мнимое изображение того же края МФЧЭ, зеркально отображенное от плоскости БИС считывания, измеряют расстояние между действительным и мнимым изображениями края кристалла МФЧЭ, составляющее двойную ширину зазора (2D) между состыкованными кристаллами, к надежной стыковке кристаллов относят стыковку, когда выполняется неравенство 0,7 D>D≥0.4 D, если не выполняется левая часть неравенства, то кристаллы направляют на дополнительный дожим для уменьшения величины зазора, если не выполняется правая часть неравенства, то состыкованные кристаллы направляют на дополнительный электрический контроль.
Способ оперативного контроля качества стыковки
Источник поступления информации: Роспатент

Показаны записи 31-40 из 43.
26.12.2018
№218.016.aaf9

Способ изготовления утоньшенной двухспектральной фоточувствительной сборки

Изобретение относится к технологии изготовления полупроводниковых двухспектральных гибридизированных сборок и может использоваться для создания матричных фотоприемников (МФП) различного назначения. Изобретение решает задачу изготовления утоньшенной двухспектральной фоточувствительной сборки (УД...
Тип: Изобретение
Номер охранного документа: 0002676052
Дата охранного документа: 25.12.2018
29.12.2018
№218.016.acab

Способ улучшения адгезии индиевых микроконтактов с помощью ультразвуковой обработки

Использование: для изготовления индиевых микроконтактов в матричных фотоприемниках. Сущность изобретения заключается в том, что способ улучшения адгезии индиевых микроконтактов с помощью ультразвуковой обработки на полупроводниковых пластинах с матрицами БИС считывания или фотодиодными...
Тип: Изобретение
Номер охранного документа: 0002676222
Дата охранного документа: 26.12.2018
31.01.2019
№219.016.b54c

Способ изготовления двухспектрального матричного фотоприемника

Изобретение относится к области оптического приборостроения и касается способа изготовления многоэлементного двухспектрального матричного фотоприемника. Фотоприемник включает в себя корпус с входным окном, матрицу фоточувствительных элементов (МФЧЭ) с тонким поглощающим слоем из однородного...
Тип: Изобретение
Номер охранного документа: 0002678519
Дата охранного документа: 29.01.2019
20.02.2019
№219.016.c096

Способ сборки фотоприемного устройства

Изобретение относится к технологии сборки фотоприемных устройств ИК-диапазона и кремниевой БИС считывания, где актуальной проблемой является получение надежного гальванического соединения элементов фотоприемной матрицы и матрицы считывания. Сущность изобретения: в способе сборки фотоприемного...
Тип: Изобретение
Номер охранного документа: 0002308787
Дата охранного документа: 20.10.2007
11.03.2019
№219.016.d92c

Способ обнаружения скрытых дефектов матричных или линейных моп мультиплексоров

Изобретение относится к области тестирования МОП мультиплексоров. Сущность изобретения: в способе обнаружения скрытых дефектов матричных или линейных МОП мультиплексоров на кремниевой пластине с годными МОП мультиплексорами вскрываются окна в защитном слое окисла к металлизированным площадкам...
Тип: Изобретение
Номер охранного документа: 0002388110
Дата охранного документа: 27.04.2010
19.04.2019
№219.017.2f71

Способ изготовления индиевых столбиков

Изобретение относится к технологии получения индиевых столбиков для микросборок интегральных схем или ИК-фотодиодных матриц методом перевернутого кристалла. Сущность изобретения: для изготовления индиевых столбиков на временную кремниевую подложку наносят слой фоторезиста и слой индия. Проводят...
Тип: Изобретение
Номер охранного документа: 0002371808
Дата охранного документа: 27.10.2009
08.05.2019
№219.017.48f7

Способ повышения точности контроля качества стыковки

Изобретение может быть использовано для гибридизации матричных фотоприемных устройств (МФПУ) методом перевернутого монтажа. Способ повышения точности контроля качества стыковки БИС считывания и матрицы фоточувствительных элементов (МФЧЭ) включает установку состыкованного модуля в держатель под...
Тип: Изобретение
Номер охранного документа: 0002686882
Дата охранного документа: 06.05.2019
18.05.2019
№219.017.5ba3

Способ изготовления матричного фотоприемника (варианты)

Изобретения относится к технологии изготовления полупроводниковых фотоприемников и могут использоваться для создания матричных фотоприемников различного назначения. Способ изготовления матричного фотоприемника заключается в том, что фоточувствительный элемент гибридизируют с БИС мультиплексора...
Тип: Изобретение
Номер охранного документа: 0002460174
Дата охранного документа: 27.08.2012
01.06.2019
№219.017.71f8

Способ изготовления кремниевого фотодиода

Изобретение относится к технологии изготовления кремниевых фотодиодов (ФД), чувствительных к излучению с длинами волн 0,3-1,06 мкм, которые могут быть использованы в электронно-оптической аппаратуре. Одним из основных параметров таких ФД является величина темнового тока при рабочем напряжении,...
Тип: Изобретение
Номер охранного документа: 0002689972
Дата охранного документа: 29.05.2019
19.06.2019
№219.017.8631

Способ испытания безотказности ик многоэлементного фотоприемного устройства

Изобретение предназначено для испытания безотказности инфракрасных многоэлементных фотоприемных устройств (ИК МФПУ), в которых матрица фоточувствительных элементов установлена внутри герметизированного корпуса, стыкуется с мультиплексором или растром с помощью проводящих индиевых...
Тип: Изобретение
Номер охранного документа: 0002399987
Дата охранного документа: 20.09.2010
+ добавить свой РИД