×
04.07.2018
218.016.6abc

Результат интеллектуальной деятельности: ТЕРМОСТОЙКИЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии алюминиевых сплавов и может быть использовано при получении изделий, работающих при повышенных температурах. Алюминиевый сплав, содержащий цирконий и по меньшей мере один элемент, выбранный из группы, содержащей железо и никель, имеет структуру, представляющую собой алюминиевую матрицу с распределенными в ней частицами вторично выделенной фазы AlZr с кристаллической решеткой L1 и с размером не более 20 нм и частицами фаз эвтектического происхождения в количестве от 0,5 до 3,0 мас.%, содержащих железо и/или никель, при этом алюминиевая матрица содержит по массе не более 1/3 циркония от общего содержания циркония в сплаве. При этом сплав содержит элементы в следующем соотношении, мас.%: цирконий 0,22-0,70, железо 0,20-0,80, никель 0,005-0,4, алюминий и неизбежные примеси - остальное. Сплав обладает повышенной термостойкостью и характеризуется совокупностью высокого уровня физико-механических характеристик и технологичности. 12 з.п. ф-лы, 5 пр., 7 табл.

Область техники

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих при повышенных температурах, к которым предъявляются высокие требования электропроводности, теплопроводности и высокой технологичности при обработке давлением. Из материала могут быть выполнены изделия теплообменников системы терморегулирования и изделия электротехнического назначения, в частности радиаторы охлаждения, бортовые и высоковольтные провода, провода устройств нефтегазового комплекса. Максимальная рабочая температура изделий из сплава 400°С.

Предшествующий уровень техники

Благодаря высокой тепло- и электропроводности, низкой плотности и хорошей коррозионной стойкости технический алюминий и низколегированные алюминиевые сплавы (сплавы 1xxx, 3ххх, 8ххх и 6ххх серий) широко применяются в изделиях электролитического назначения и системах теплообмена. Для изделий систем терморегулирования обычно применяются сплавы 1xxx и 3ххх серии. Сплавы этих систем характеризуются высокой коррозионной стойкостью, хорошей (для сплавов 1xxx серии) и удовлетворительной теплопроводностью. К недостаткам сплавов этих систем следует отнести низкие показатели термостойкости, что ограничивает их эксплуатацию температурой 100°С, ввиду существенного разупрочнения. Сплавы 1xxx, 6ххх и 8ххх серии (например, типа 1350, 6101 и 8176) широко используются для применения в электротехнике для изготовления проводов, шин и других изделий. В нагартованном состоянии эти сплавы обеспечивают удачное сочетание прочностных характеристик, теплопроводности, удельного электросопротивления. Однако низкий уровень термической стойкости этих сплавов (обычно не превышающий 90°С) также не позволяет их использовать при нагревах выше 150°С, ввиду их существенного разупрочнения.

Одним из подходов, позволяющих достичь сочетания термостойкости и электропроводности, является создание материалов с минимально легированной алюминиевой матрицей и одновременно высокой объемной долей эвтектики. Так существенное повышение термической стабильности (до 300°С) было достигнуто на сплавах системы Al-Ce типа 1419 (Добаткин В.И., Елагин В.И., Федоров В.М. Быстрозакристаллизованные алюминиевые сплавы, ВИЛС, 1995), где повышенное количество эвтектической составляющей (Al+Al4Ce) обеспечивало высокую термостойкость за счет термической стабильности фазы Al4Ce, а сочетание низкой растворимости церия в алюминиевом растворе - удовлетворительную электропроводность. К недостаткам сплавов типа 1419 следует отнести высокую чувствительность сплава к содержанию примесей, в частности кремния, что приводит к формированию грубой эвтектики и снижению технологичности при волочении тонких сечений проволоки. Кроме того, относительно высокая объемная доля эвтектических фаз (по сравнению с техническим алюминием) в сплавах типа 1419 не позволяет достичь удельного электрического сопротивления ниже 32 мкОм/мм и высоких значений теплопроводности, которая у сплава 1419 на 10% ниже технического алюминия.

Известен алюминиевый никельсодержащий материал, раскрытый в изобретении US 3830635 компании Southwire. Материал характеризуется проводимостью на уровне 57% IACS и содержит (масс. %) 0,20-1,60 никеля, 0,30-1,30 кобальта, остальное алюминий и примеси. В частном исполнении материал может содержать 0,001-1,0% железа и магния. В частном исполнении способ получения расплава предусматривает введение дополнительных элементов (масс. %), в частности миш-металла, ниобия, тантала и циркония. К недостаткам данного изобретения следует отнести достижение относительно невысоких значений удельной электрической проводимости (на уровне 57% IACS) и относительно высокую стоимость кобальта, что ограничивает использование данного материала в массовом производстве, например для высоковольтных проводов.

Существенного повышения термической стабильности при повышенных температурах без значимого повышения удельного сопротивления алюминиевой проволоки можно добиться за счет введения небольших добавок переходных металлов, в частности скандия и циркония.

Известен коррозионностойкий Zr-содержащий алюминиевый сплав, отраженный в изобретении ЕР 0893512 (А1) компании Hydro. Сплав содержит (масс. %) 0,10-0,40% железа, 0,05-0,25% кремния, 0,05-0,20% Zr, основа - алюминий и примеси. В частном исполнении сплав может содержать 0,05-0,40% марганца и 0,05-0,30% хрома. К недостаткам данного материала следует отнести недостаточную термическую стойкость при повышенных температурах ввиду относительно низкого содержания циркония, кроме того, при содержании хрома и марганца материал будет характеризоваться низкими значениями удельного электрического сопротивления и теплопроводности.

Известен материал и способ получения для применения в электротехнике, предложенный компанией Nexans и отраженный в публикации WO 2013057415 A1. Сплав содержит 250-1200 ppm скандия и остальное примеси. В частном исполнении сплав может содержать до 0,1 масс. % циркония. К недостаткам предложенного изобретения следует отнести высокую конечную стоимость полученного продукта из-за содержания скандия и ограниченности ресурсной базы по скандию. Кроме того, в описании не приведен абсолютный уровень прочностных характеристик полученной проволоки из Sc-содержащего алюминиевого сплава.

Известен алюминиевый сплав, отраженный в патенте US 5087301 для высокотемпературного применения, содержащий растворенный элемент и раствор, где раствор и растворенный в нем элемент образует матрицу, имеющей субзеренную структуру, сформированную границами субзерен и частицами дисперсоидов на границах и в пределах субзерен, причем размер вторичных выделений дисперсоидов в пределах матрицы меньше, чем на границе. В частном исполнении максимальная равновесная растворимость элемента в растворе (при атмосферном давлении) менее чем 1 масс. %, размер субзерен менее 5 мкм, два типа частиц имеют твердость выше твердости матрицы, сплав определяется формулой Al-Х, где X выбирают из группы, состоящей из Er, Sc, Yb, Tm и U, по крайней мере 15% объемной доли фазы приходится на стабильное соединение фазы Al3X. Среди недостатков данного изобретения следует выделить повышенное количество дисперсидов вторичной фазы, что требует применения повышенных температур плавки, литья, при этом гранульная технология (PM/RS) получения изделий из этого сплава характеризуется низкой производительностью и высокими затратами.

Наиболее близким к предложенному является изобретение, раскрытое в патенте United Technologies ЕР 1439239 А1, где предложен алюминиевый сплав, содержащий Sc и по крайней мере один элемент из группы Gd и Zr. В частном исполнении структура сплава характеризуется алюминиевой матрицей и дисперсоидами фазы Al3X с решеткой типа L12, где X содержит Sc и по меньшей мере один элемент из Gd и Zr, алюминиевый сплав содержит (масс. %): Sc 0,1-2,9; Gd 0,1-20; Zr 0,1-1,9. Сплав дополнительно может содержать Mg в количестве 1-7%. Среди недостатков данного сплава следует отнести содержание в сплаве дорогостоящего скандия, высокая цена на который сдерживает широкое применение таких сплавов, при этом в случае содержания магния сплав будет характеризоваться низкими значениями теплопроводности.

Раскрытие изобретения

Задачей изобретения является создание нового термостойкого алюминиевого сплава, характеризующегося совокупностью высокого уровня физико-механических характеристик и технологичности, в частности высокого уровня теплопроводности (не ниже 220 Вт/(м⋅К)), электропроводности (не ниже 59% IACS), механических свойств, в том числе сохранение прочностных свойств после высокотемпературных нагревов вплоть до 400°С, высокой технологичности при деформационной обработке, например прессовании и волочении, в том числе тонкой проволоки до 100 мкм.

Техническим результатом является повышение термостойкости сплава при сохранении высоких значений теплопроводности и электропроводности сплава за счет образования компактных частиц фаз эвтектического происхождения и вторичного выделения Zr-содержащей фазы с кристаллической решеткой типа L12. Кроме того, за счет отсутствия в сплаве дорогостоящих элементов, таких как скандий, обеспечивается снижение стоимости сплава.

Достижение указанного технического результата обеспечивается тем, что предложен сплав, содержащий цирконий и, по меньшей мере, один элемент, выбранный из группы, включающей железо и никель, при этом структура сплава представляет собой алюминиевую матрицу с распределенными в ней частицами вторично выделенной фазы Al3Zr с кристаллической решеткой L12 и с размером не более 20 нм и частицами фаз эвтектического происхождения в количестве от 0,5 до 3,0% масс, содержащих железо и/или никель, при этом алюминиевая матрица содержит по массе не более 1/3 циркония от общего содержания циркония в сплаве. Алюминий может содержать неизбежные примеси.

В частном исполнении сплав содержит элементы в следующем соотношении (масс. %):

Цирконий 0,22-0,78
Железо 0,20-0,8
Никель 0,005-0,4
Алюминий и неизбежные примеси остальное

Согласно предложенным вариантам содержание циркония в сплаве может составлять 0,22-0,78% масс, предпочтительно 0,22-0,3% масс, предпочтительно 0,22-0,28% масс, предпочтительно 0,22-0,26% масс, предпочтительно 0,26-0,28% масс, предпочтительно 0,25-0,28% масс, предпочтительно 0,3-045% масс.

Согласно предложенным вариантам содержание железа в сплаве может составлять 0,20-0,8% масс, предпочтительно 0,2-0,4% масс, предпочтительно 0,4-0,6% масс, предпочтительно 0,6-0,8% масс.

Согласно предложенным вариантам содержание никеля в сплаве может составлять 0,005-0,4% масс, предпочтительно 0,005-0,01% масс, предпочтительно 0,01-0,11% масс, предпочтительно 0,11-0,22% масс, предпочтительно 0,22-0,4% масс.

Согласно предложенным вариантам алюминиевая матрица содержит по массе не более 1/3 циркония от общего содержания циркония в сплаве. При этом предпочтительно, чтобы содержание циркония в алюминиевой матрице (алюминиевом растворе) было как можно ниже.

Согласно предложенным вариантам размер частиц вторично выделенной фазы Al3Zr с кристаллической решеткой L12 не превышает 20 нм, предпочтительно до 5-10 нм.

Сущность изобретения

Для обеспечения достижения высокого уровня механических свойств, в том числе после высокотемпературных нагревов и низкого уровня значений удельного электрического сопротивления, структура проводникового материала должна содержать минимально легированный алюминиевый раствор, компактные частицы эвтектических фаз и вторичных выделений Zr-содержащей фазы с размером до 20 нм. Эффект повышенной термостойкости в этом случае достигается от совокупного положительного влияния эвтектических фаз, содержащих железо и/или никель, и вторичных выделений циркониевой фазы, стойких к высокотемпературному нагреву. Высокий уровень теплопроводности и электропроводности определяется минимальной содержанием легирующих компонентов в алюминиевом растворе.

Обоснование заявляемых количеств легирующих компонентов, обеспечивающих достижение заданной структуры, в данном сплаве приведено ниже.

Железо в количестве 0,20-0,8% масс. необходимо для повышения общего уровня механических свойств технического алюминия без значимого снижения удельного электрического сопротивления. При содержании железа выше заявленного влияние этого элемента будет оказывать значимое негативное влияние на удельное электрическое сопротивление сплава за счет снижения объемной доли алюминиевого раствора. Минимальное содержание соответствует достижению минимального уровня прочностных характеристик.

Цирконий в количестве 0,22-0,70% масс. необходим для образования вторичных выделений метастабильной фазы Al3(Zr) с кристаллической решеткой L12. В общем виде цирконий перераспределяется между алюминиевым раствором и вторичными выделениями метастабильной фазы Al3(Zr) L12. Высокое содержание циркония в алюминиевом растворе приводит к снижению теплопроводности и повышению электросопротивления. При концентрациях циркония в сплаве ниже 0,22% количество вторичных выделений метастабильной фазы Al3(Zr) с решеткой типа L12 будет недостаточным для достижения заданных прочностных характеристик и термостойкости, а при больших количествах потребуется повышение температуры литья выше 800°С, в противном случае возможно формирование в структуре первичных кристаллов фазы с решеткой типа DO23.

Никель в количестве 0,005-0,4% масс. необходим для повышения общего уровня механических свойств технического алюминия без значимого снижения удельного электрического сопротивления ввиду незначительно растворения в алюминиевом растворе. При совместном легировании сплава никелем или совместно железом и никелем будет получена структура с благоприятной морфологией эвтектических фаз, в частности фаз Al3Ni и/или Al9FeNi. Такая структура с благоприятной морфологией никелевой и/или железоникелевой фазы будет обеспечивать высокую технологичность при деформационной обработке (прокатке, прессовании, волочении и других). При меньших концентрациях никеля его влияние будет недостаточным для обеспечения требуемой структуры, а повышение выше верхнего предела не окажет значимого влияния на повышение технологичности при обработке давлением.

Примеры конкретного исполнения

ПРИМЕР 1

Для подтверждения концентрационного диапазона, при котором структура сплава представлена в виде алюминиевой матрицы с распределенными в ней вторичными выделениями фазы Al3Zr L12 и фаз кристаллизационного происхождения в лабораторных условиях были приготовлены 7 составов сплавов (табл. 1). Сплавы готовили в печи сопротивления в графитовых тиглях из алюминия (99,95) и лигатур Al-20Ni, Al-10Fe, Al-15Zr. Сплавы были получены в виде плоских слитков сечением 200×40 мм, далее слитки были прокатаны в листы толщиной 2 мм при комнатной температуре, с использованием промежуточной термической обработки с максимальной температурой нагрева 460°С, обеспечивающей распад алюминиевой матрицы с образованием вторичных частиц фазы Al3Zr L12. Плавку и литье сплавов проводили при температуре 800°С для сплавов 1-4 и при температуре 850°С для сплавов 5-7. Прокатку с толщины 40 мм до 10 мм проводили при 400°С, с толщины 10 мм до 2 мм прокатка проведена при комнатной температуре.

Потерю прочностных свойств (Δσ) оценивали по отношению Δσ=(σ0т)/σ0, где σ0 - временное сопротивление разрыву проволоки в нагартованном состояния, σт - временное сопротивление разрыву проволоки в отожженном состояния. Параметры структуры, в частности наличие первичных кристаллов циркониевой фазы, оценивали металлографическим способом. Размер частиц вторичных выделений оценивали с использованием метода просвечивающей электронной металлографии (ТЕМ). Содержание циркония в алюминиевой матрице оценивали расчетно-экспериментальным методом с использованием программы Thermocalc (база данных TTAL5) и по значениям удельного электрического сопротивления, принимая во внимание, что значения, прежде всего, зависят от содержания легирующих элементов в алюминиевой матрице.

Из таблиц 1 и 2 видно, что только заявляемый сплав (составы 2-6) обеспечивают требуемые параметры структуры, значений удельной электрической проводимости и термостойкости. Сплав состава 1 не удовлетворяет по термостойкости (ввиду падения значений Δσ более 10%), что связано с относительно невысокими значениями массовой доли частиц кристаллизационного происхождения, содержащих железо и никель (Qкрm) и недостаточным содержанием циркония в сплаве. В структуре сплава состава 7 присутствовали первичные кристаллы фазы Al3Zr с решеткой типа D023 с размером до 10 мкм. Присутствие первичных кристаллов является недопустимым ввиду их отрицательного влияния на технологичность при волочении проволоки тонкого сечения и снижения термостойкости. При этом увеличение массовой доли эвтектической фазы, в частности у сплава состава 7, приводит к значимому снижению удельной электрической проводимости.

где QЭBTm - массовая доля эвтектических частиц, содержащих железо и никель.

* - значения не определялись

1 - составы сплавов см. табл. 1

ПРИМЕР 2

Из заявленного сплава составов 3, 6 и 5 (табл. 1) были получены образцы с различными параметрами структуры, в частности алюминиевая матрица сплава содержала переменную массовую концентрацию циркония. Остальной цирконий присутствовал в виде вторичных выделений фазы Al3Zr Ll2. Переменная концентрация циркония достигалась варьированием температуры отжига листов в интервале 350 и 460°С, а для «1» (100% Zr) в алюминиевом растворе соответствовали значения литого состояния.

Из таблицы 3 видно, что только при снижении доли циркония в алюминиевом растворе на уровень 1/3 и ниже от общего массового содержания циркония в сплаве заявленные составы сплавов достигают требуемого уровня значений удельного электрического сопротивления (не ниже 59,1% IACS и теплопроводности не ниже 220 Вт/(м⋅К)).

1 - составы сплавов см. табл. 1

ПРИМЕР 3

Из заявленного сплава состава 3 (табл. 1) были получены образцы с различными параметрами структуры, в частности варьировался размер вторичных выделений фазы Al3Zr L12. Переменное значение размера вторичных выделений фазы Al3Zr L12 достигалось применением различных режимов термической обработки. Относительный уровень потери прочностных свойств Δσ=(σ0т)/σ0 оценивали после термической обработки при 400°С, в течение 1 часа.

Из таблицы 4 видно, что только при размере частиц фазы Al3Zr Ll2 менее 16 нм снижение временного сопротивления разрыву не более 10%.

1 - состав сплава см. табл. 1

ПРИМЕР 4

Для оценки технологичности волочением (при получении тонкой проволоки) из заявленного сплава была получена проволока с сечением 200 мкм. Удельную электрическую проводимость и относительный уровень потери значений прочностных свойств Δσ=(σ0т)/σ0 оценивали после термической обработки при 400°С, в течение 1 часа. Химический состав сплавов и результаты измерений приведены в таблице 5.

Qэвтm - массовая доля эвтектических частиц, содержащих железо

Из результатов таблицы 5 видно, что экспериментальные сплавы соответствуют требованиям по удельной электрической проводимости, теплопроводности и термостойкости, что определяется совокупным вкладом эвтектических частиц, содержащих железо, и вторичных выделений фазы Al3Zr и минимальным содержанием легирующих элементов в алюминиевом растворе. Анализ тонкой структуры сплава 10 показал, что с размер вторичных выделений фазы Al3Zr L12 не превышал 20 нм.

ПРИМЕР 5

Из заявляемого сплава были получены прессованные прутки сечением 10 мм. Удельную электрическую проводимость и теплопроводность оценивали после термической обработки при 400°С, в течение 1 часа. Химический состав сплавов и результаты измерений приведены в таблице 6.

Qэвтm - массовая доля эвтектических частиц, содержащих никель

1 - состав сплава см. табл. 6

Из таблицы 7 видно, что экспериментальные сплавы состава 12 и 13 соответствуют требованиям по термостойкости, что определяется потерей не более 8% в отличие от сплава состава 11. Большая потеря механических свойств обусловлена меньшей долей эвтектической составляющей, количество которой составляло 0,24 масс. %.

Источник поступления информации: Роспатент

Показаны записи 71-80 из 230.
27.04.2016
№216.015.37c2

Способ получения связующего для изготовления углеродных материалов и изделий из них

Изобретение относится к области металлургии, в частности к способам получения и подготовки электродного пека, предназначенного для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов, и может найти применение в коксохимической или...
Тип: Изобретение
Номер охранного документа: 0002582411
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3804

Способ извлечения скандия из скандийсодержащего материала

Изобретение относится к технологии извлечения скандия из различных видов сырья и техногенных отходов и может быть использовано для избирательного извлечения скандия из отходов производства алюминия (красные шламы), титана (отработанные расплавы), диоксида титана (гидролизная серная кислота или...
Тип: Изобретение
Номер охранного документа: 0002582425
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.3826

Устройство чистки фланцевого листа алюминиевого электролизера

Изобретение относится к устройству чистки фланцевого листа алюминиевого электролизера от застывшего электролита, размещенного на самоходной машине для технологической обработки электролизеров для производства алюминия. Устройство содержит установленные на самоходной машине гидравлический привод...
Тип: Изобретение
Номер охранного документа: 0002582420
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.38bc

Укрытие электролизера для производства алюминия

Изобретение относится к элементу конструкции укрытия пространства над расплавом электролизера для производства алюминия электролизом криолит-глиноземных расплавов. В укрытии электролизера для производства алюминия, контактирующем с парогазовой фазой в процессе работы электролизера, содержащем...
Тип: Изобретение
Номер охранного документа: 0002582421
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.39d1

Способ обескремнивания алюминатных растворов

Изобретение может быть использовано в производстве глинозема из нефелинового или бокситового сырья методом спекания. Способ обескремнивания алюминатных растворов включает обработку растворов кальцийсодержащим реагентом в батареях, состоящих из последовательно соединенных реакторов с мешалками....
Тип: Изобретение
Номер охранного документа: 0002582416
Дата охранного документа: 27.04.2016
10.06.2016
№216.015.4544

Способ получения связующего для изготовления углеродных материалов и изделий из них

Изобретение относится к области металлургии, в частности к способам получения и подготовки электродного пека, предназначенного для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов, и может найти применение в коксохимической...
Тип: Изобретение
Номер охранного документа: 0002586139
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.45fc

Установка для кристаллизации гидроксида алюминия из алюминатных растворов или суспензий

Изобретение относится к оборудованию гидрометаллургических производств и может быть использовано при получении гидроксида алюминия из насыщенных алюминатных растворов. Установка для кристаллизации гидроксида алюминия из алюминатных растворов или суспензий включает аппарат для кристаллизации 7 с...
Тип: Изобретение
Номер охранного документа: 0002586134
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4648

Способ производства анодной массы

Изобретение относится к способу изготовления анодной массы для анодов алюминиевых электролизеров. Способ включает приготовление анодной массы смешением зерновых фракций углеродного наполнителя в виде кокса с предварительно подготовленной связующей матрицей (СМ) на основе пылевой фракции кокса...
Тип: Изобретение
Номер охранного документа: 0002586195
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.46a1

Способ получения связующего пека

Изобретение относится к коксохимической промышленности, в частности к способу получения связующего пека, который может быть использован в качестве замены каменноугольного пека для производства анодной массы, угольной и графитированной продукции, конструкционных углеграфитовых материалов. Способ...
Тип: Изобретение
Номер охранного документа: 0002586135
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.5498

Способ получения биметаллической заготовки

Изобретение может быть использовано для получения биметалла из меди и низкоуглеродистой стали при изготовлении деталей, применяемых в конструкциях установок для электролиза алюминия. Перед диффузионной сваркой проводят сжатие поверхностей заготовок при комнатной температуре с приложением к ним...
Тип: Изобретение
Номер охранного документа: 0002593242
Дата охранного документа: 10.08.2016
Показаны записи 71-80 из 92.
13.12.2019
№219.017.eceb

Литейный алюминиевый сплав

Изобретение относится к области металлургии и может быть использовано для получения фасонных отливок гравитационным литьем в кокиль, литьем под давлением, кристаллизацией под давлением, используемых в автомобилестроении, для корпусов электронных устройств, а также в качестве деталей...
Тип: Изобретение
Номер охранного документа: 0002708729
Дата охранного документа: 11.12.2019
19.12.2019
№219.017.ef46

Установка для горизонтального непрерывного литья и прессования металла методом конформ

Изобретение относится к литью металла методом конформ. Установка содержит кристаллизатор (2), выполненный в виде диска с кольцевой канавкой (3), неподвижный дугообразный сегмент (4) с матрицей (5) и выступом (6), перекрывающим поперечное сечение кольцевой канавки, и промежуточную неподвижную...
Тип: Изобретение
Номер охранного документа: 0002709309
Дата охранного документа: 17.12.2019
01.02.2020
№220.017.fc4f

Кристаллизатор для непрерывного литья заготовки

Изобретение относится к непрерывному литью металла. Кристаллизатор содержит литейное колесо (6) с открытым каналом на наружной поверхности, прилегающую к нему непрерывную ленту (4), закрывающую открытый канал, и систему охлаждения. Поперечное сечение открытого канала – равнобедренная трапеция с...
Тип: Изобретение
Номер охранного документа: 0002712683
Дата охранного документа: 30.01.2020
20.02.2020
№220.018.0431

Установка для полунепрерывного литья плоских слитков

Изобретение относится к области литейного производства и может быть использовано для изготовления плоских слитков из алюминиевых сплавов методом полунепрерывного литья. Установка содержит устройство (1) для подачи расплавленного металла (2) в водоохлаждаемый кристаллизатор (3) с тепловой...
Тип: Изобретение
Номер охранного документа: 0002714453
Дата охранного документа: 17.02.2020
20.02.2020
№220.018.0453

Литейный алюминиевый сплав

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении тонкостенных отливок сложной формы, преимущественно литьем под давлением, и может быть использовано для литья деталей для автомобилестроения, корпусов электронных...
Тип: Изобретение
Номер охранного документа: 0002714564
Дата охранного документа: 18.02.2020
25.03.2020
№220.018.0f78

Алюминиевый сплав для аддитивных технологий

Изобретение относится к области металлургии, а именно к составу и технологии получения заготовок и деталей из сплавов на основе алюминия, в том числе с использованием технологий селективного лазерного сплавления. Способ получения порошка из сплава на основе алюминия включает получение расплава...
Тип: Изобретение
Номер охранного документа: 0002717441
Дата охранного документа: 23.03.2020
25.03.2020
№220.018.0fa2

Сплав на основе алюминия, изделие из него и способ получения изделия

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам системы алюминий-магний-кремний и изделиям из него. Cплав на основе алюминия содержит магний, кремний, марганец, медь, железо, титан и бор при следующем соотношении компонентов, мас. %:...
Тип: Изобретение
Номер охранного документа: 0002717437
Дата охранного документа: 23.03.2020
07.06.2020
№220.018.251d

Сплав на основе алюминия и способ получения изделия из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-магний-кремний, используемым в различных областях промышленности. Cплав на основе алюминия содержит, мас.%: магний 0,80-1,10, кремний 0,85-1,20, марганец...
Тип: Изобретение
Номер охранного документа: 0002722950
Дата охранного документа: 05.06.2020
07.07.2020
№220.018.3084

Установка для модифицирования алюминиевого расплава

Предлагаемое изобретение относится к области литейного производства, в частности к технологии внепечного модифицирования, и может быть использовано для изготовления слитков из алюминиевых сплавов. Установка для модифицирования расплава, содержащая устройство для подачи модифицирующего прутка в...
Тип: Изобретение
Номер охранного документа: 0002725820
Дата охранного документа: 06.07.2020
12.04.2023
№223.018.43c7

Литейный алюминиевый сплав

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении тонкостенных отливок сложной формы, преимущественно литьем под давлением, применяемых в автомобилестроении, для корпусов электронных устройств, для деталей ответственного...
Тип: Изобретение
Номер охранного документа: 0002793657
Дата охранного документа: 04.04.2023
+ добавить свой РИД