×
04.07.2018
218.016.6a73

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ

Вид РИД

Изобретение

№ охранного документа
0002659569
Дата охранного документа
03.07.2018
Аннотация: Изобретение относится к области электротехники и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам. Техническим результатом изобретения является расширение функциональных возможностей способа измерения за счет повышения точности измерения. В способе измерения влагосодержания диэлектрической жидкости в первом такте измерений возбуждают электромагнитные волны первой фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, дополнительно во втором такте измерений возбуждают в волноводе электромагнитные волны второй фиксированной частоты, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, при этом хотя бы одну из частот выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды и на этой частоте производят совместное функциональное преобразование амплитуд, измеренных в первом и во втором тактах измерений, по результату которого судят о влагосодержании жидкости. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения влагосодержания различных диэлектрических жидкостей, находящихся в емкостях (технологических емкостях, измерительных ячейках и т.п.) или перемещаемых по трубопроводам.

Известны различные способы и устройства для измерения влагосодержания жидкостей, основанные на измерении электрофизических параметров (диэлектрической проницаемости или(и) тангенса угла диэлектрических потерь) жидкостей с применением радиоволновых ВЧ и СВЧ резонаторов, содержащих контролируемую жидкость (монографии: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. 403 с. С. 37-144; Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука. 1989. 208 с. С. 168-177). Недостатком таких способов и реализующих эти способы измерительных устройств является их ограниченная область применения, обусловленная невозможностью контроля малых изменений влагосодержания жидкостей ввиду невысокой точности измерения соответствующих малых изменений информативных параметров (резонансной частоты, добротности резонатора и др.). Для обеспечения возможности проведения таких измерений применяют двухканальные измерительные схемы с независимыми измерительным и эталонным каналами. В эталонном канале чувствительный элемент содержит жидкость с известными физическими свойствами (монография: Брандт А.А. Исследование диэлектриков на сверхвысоких частотах. М.: Физматгиз. 1963. 403 с. С. 258-268).

Известно также техническое решение (RU №2626409 С1, 27.07.2017), которое содержит описание способа, по технической сущности наиболее близкого к предлагаемому способу и принятого в качестве прототипа. Согласно этому способу-прототипу измерение влагосодержания жидкости производят при возбуждении электромагнитных волн фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля. Недостатком данного способа измерения является ограниченность его функциональных возможностей, обусловленная невысокой точностью измерений при изменении диэлектрической проницаемости влагосодержащей жидкости, что имеет место, например, при изменении сорта жидкого топлива (нефтепродукта).

Техническим результатом настоящего изобретения является расширение функциональных возможностей способа измерения за счет повышения точности измерения.

Технический результат достигается тем, что в предлагаемом способе измерения влагосодержания диэлектрической жидкости, при котором в первом такте измерений возбуждают электромагнитные волны первой фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, дополнительно во втором такте измерений возбуждают в волноводе электромагнитные волны второй фиксированной частоты, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, при этом хотя бы одну из частот выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды на этой частоте, производят совместное функциональное преобразование амплитуд, измеренных в первом и во втором тактах измерений, по результату которого судят о влагосодержании жидкости.

Предлагаемый способ поясняется чертежом. На фиг. 1 приведена схема устройства, поясняющая принцип измерения с применением способа.

Здесь показаны волновод 1, генераторы 2 и 3, коммутатор 4, элементы связи 5 и 6, детектор 7, функциональный преобразователь 8, регистратор 9.

Способ реализуется следующим образом.

В данном способе реализуют структурный подход к достижению инвариантности к диэлектрической проницаемости εн контролируемой жидкости, в частности, к ее сортности, изменения которой имеют место, в частности, при контроле нефти и нефтепродуктов в какой-либо емкости или в процессе их транспортирования по трубопроводу. Этот подход связан с организацией двух измерительных каналов (двух последовательных тактов измерений на двух разных фиксированных частотах ƒ1 и ƒ2) и совместным функциональным преобразованием их выходных величин с целью получения результата этого преобразования, который не зависит от возмущающего фактора, в данном случае - от величины диэлектрической проницаемости εн контролируемой жидкости и изменений εн.

Предлагаемый способ заключается в возбуждении электромагнитных волн в волноводе, используемом в качестве измерительной ячейки (при измерениях в стационарных условиях) или в качестве отрезка измерительного волновода, встроенного в трубопровод с перекачиваемой жидкостью (при измерениях в трубопроводах). Электромагнитные волны в волноводе возбуждают последовательно на двух разных фиксированных частотах ƒ1 и ƒ2, каждая из которых ниже критической частоты ƒкр для волны низшего типа. При этом на каждой из этих частот вдоль волновода существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента у одного из торцов емкости. Электромагнитные волны принимают после их распространения вдоль данного волновода на другом его торце и измеряют на каждой из частот ƒ1 и ƒ2 амплитуду напряженности электрического поля. По результату совместного преобразования измеренных амплитуд судят о влагосодержании жидкости.

Условием распространения электромагнитных волн по любому волноводу является выполнение неравенства: ƒ>ƒкр, которому должны удовлетворять рабочая частота ƒ и критическая частота ƒкр для волны низшего типа, например, для волны Н11 в круглом волноводе. При ƒ<ƒкр имеет место режим, при котором распространения волн по волноводу не происходит, а существует только ослабевающее реактивное поле, убывающее при удалении от возбуждающего элемента (Лебедев И.В. Техника и приборы СВЧ. Т.1. М.: Высшая школа. 1970. 440 с. С. 132-136).

При этом электрическое поле (как и магнитное поле) изменяется вдоль координаты z (оси волновода) по закону:

а постоянная ослабления α есть

В этих формулах Е0 - амплитуда напряженности электрического поля при z=0; ε - диэлектрическая проницаемость диэлектрической жидкости в волноводе, с - скорость света. Выбирая соотношение между ƒ и ƒкр, можно управлять величиной ослабления α.

Если частота ƒ генератора меньше критической частоты ƒкр данного волновода, то амплитуда напряженности Е электрического поля, являющаяся информативным параметром, в точке приема есть

где , Е0 - амплитуда напряженности поля в области возбуждения электромагнитных волн в рассматриваемом волноводе (т.е. в области расположения связи 3), λкр - критическая длина волны для данного волновода, - длина измерительного участка, т.е. расстояние вдоль волновода между элементами возбуждения и съема электромагнитных колебаний. Напряженность электрического поля Е при удалении от элемента связи, служащего для возбуждения и приема электромагнитных колебаний, спадает в соответствии с соотношением (3). При этом значение Е зависит от влагосодержания контролируемой жидкости в волноводе.

Для волн низшего типа Н11 имеем λкр=3,41d/2 и, соответственно, , где d - внутренний диаметр волновода (Лебедев И.В. Техника и приборы СВЧ. Т.1. М.: Высшая школа. 1970. 440 с. С. 132-136). Например, при d=30 мм для волн типа Н11 будем иметь λкр=3,41d/2=5,115 см; тогда ƒкр=5,865/√ε ГГц. Если, например, ε=2,0, то должно быть ƒ<ƒкр=5,865/√ε ГГц=4,148 ГГц.

Длина измерительного участка, частота ƒ генератора выбираются с учетом диаметра волновода, электрофизических параметров контролируемой жидкости и диапазона их изменения.

Согласно данному способу, определение влагосодержания производят при проведении двух последовательных тактов измерений на фиксированных частотах ƒ1 и ƒ2, каждая из которых меньше критической частоты ƒкр волновода.

В первом такте измерений, при возбуждении в волноводе на одном из его торцов электромагнитных волн на фиксированной частоте ƒ1, меньшей критической частоты ƒкр волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду Е1 напряженности электрического поля:

где , E10 - амплитуда напряженности поля в области возбуждения электромагнитных волн в рассматриваемом волноводе, - длина измерительного участка, т.е. расстояние вдоль волновода между элементами возбуждения и съема электромагнитных колебаний, λкр - критическая длина волны в волноводе, ε(ƒ1) - диэлектрическая проницаемость жидкости на частоте ƒ1.

Во втором такте измерений, при возбуждении в волноводе на одном из его торцов электромагнитных волн на фиксированной частоте ƒ2, меньшей той же критической частоты ƒкр волновода (или иной критической частоты для какого-либо другого рабочего типа волн, если его выбирают для измерений), принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду Е2 напряженности электрического поля:

где , Е20 - амплитуда напряженности поля в области возбуждения электромагнитных волн в рассматриваемом волноводе, - длина измерительного участка, т.е. расстояние вдоль волновода между элементами возбуждения и съема электромагнитных колебаний, λкр - критическая длина волны в волноводе, ε(ƒ2) - диэлектрическая проницаемость жидкости на частоте ƒ2.

Величина диэлектрической проницаемости ε влагосодержащего диэлектрика, имеющего диэлектрическую проницаемость εн и влагосодержание W, описывается при малых W формулой Винера (Теория и практика экспрессного контроля влажности твердых и жидких материалов / Кричевский Е.С., Бензарь В.К., Венедиктов М.В. Под общ. ред. Кричевского Е.С. М.: Энергия. 1980. 240 с. С. 55-66):

где , εв(ƒ) - диэлектрическую проницаемость воды, являющаяся функцией частоты ƒ в СВЧ-диапазоне частот.

Например, если производить измерения на частоте ƒ1=10 ГГц, то D(ƒ1)=1,095, а на частоте ƒ2=37,5 ГГц, то D(ƒ2)=1,383, если считать εн=2.

Выражения для D(ƒ1), D(ƒ2) в формулах (4) и (5) можно упростить, если положить D(ƒ1)-W≈D(ƒ1), D(ƒ2)-W≈D(ƒ2) и не зависят от εн, что допустимо при малых значениях влагосодержания (до ~5%) и реальных пределах изменения εн.

Постоянство величин D(ƒ1) и D(ƒ2) для соответствующих частот ƒ1 и ƒ2 вытекает из постоянства величин εн и εв, входящих в формулу для D(ƒ1) и D(ƒ2). Величина εн постоянна в широком диапазоне изменения частоты ƒ, величина εв постоянна на недисперсионном участке кривой εв(ƒ) и принимается постоянной на дисперсионном участке этой кривой. Это справедливо при проведении изменений с помощью измерительных устройств, работающих на фиксированных частотах.

Покажем теперь на реальном примере, что D(ƒ1)-W и D(ƒ2)-W, а, точнее, величины 3/(D(ƒ1)-W) и 3/(D(ƒ2)-W), входящие общем виде (при произвольном значении частоты ƒ) в формулу (1), не зависят (с некоторой допустимой погрешностью) от εн. Так, при реальном изменении εв на 10% по сравнению с первоначальным значением εн=2, т.е. до значения 2,2, при значениях частот ƒ1=10 ГГц и ƒ2=37,5 ГГц будем иметь:

при εн=2: D(ƒ1)=1,095, D(ƒ2)=1,383;

при εн=2,2: D(ƒ1)=1,105, D(ƒ2)=1,337.

Отсюда следует, что относительное изменение D(ƒ1) есть ~0,9%, а относительное изменение D(ƒ2) есть ~2,6%.

Оценим, как влияют эти изменения D(ƒ1) и D(ƒ2) на коэффициенты при W в формуле (1) при ƒ=ƒ1 и ƒ=ƒ2, а именно на коэффициент k1=3/(D(ƒ1)-W) и коэффициент k2=3/(D(ƒ2)-W):

при εн=2 имеем: k1≈2,752, k2≈2,31;

при εн=2,2 имеем: k1≈2,727, k2≈2,33.

Отсюда следует, что относительное изменение как k1, так и k2 есть ~0,9%, что в ~100 раз меньше относительного изменения εн, т.е. реальное изменение εн не влияет практически на k1 и k2. В формулах для D(ƒ1) и D(ƒ2) можно использовать для выражения εн значение - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.

Отметим, что для реализации данного способа измерений достаточно, если рассматриваемой частотной дисперсией обладает вода только на одном из двух рабочих частот (ƒ1 или ƒ2).

При проведении измерений в первом такте на частоте ƒ1 будем иметь:

где , εв1) - диэлектрическая проницаемость воды, являющаяся функцией частоты ƒ1 в СВЧ-диапазоне частот, - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.

При проведении измерений во втором такте на частоте ƒ2 будем иметь:

где , εв2) - диэлектрическая проницаемость воды, являющаяся функцией частоты ƒ2 в СВЧ-диапазоне частот, - номинальное значение диэлектрической проницаемости обезвоженной диэлектрической жидкости.

При достаточно больших значениях W следует использовать другие известные выражения для ε (Теория и практика экспрессного контроля влажности твердых и жидких материалов / Кричевский Е.С., Бензарь В.К., Венедиктов М.В. Под общ. ред. Кричевского Е.С. М.: Энергия. 1980. 240 с.).

При рассмотрении (7) и (8) как системы уравнений и ее решении относительно искомого влагосодержания W получим

С учетом формул (4) и (5) выражение (9) принимает следующий вид:

Формулу (10) запишем в следующем виде:

где k1, k2, k3, k4, k5, k6 - постоянные величины, причем

; ; ; ; ; .

Таким образом, осуществляя совместное преобразование измеряемых значений амплитуд Е1 и Е2 согласно соотношению (11), получаем значение влагосодержания W, которое не зависит от диэлектрической проницаемости εн контролируемой жидкости и ее возможных изменений.

На фиг. 1 приведена схема устройства для реализации данного способа.

Возбуждение электромагнитных волн в волноводе 1 осуществляется последовательно, в первом и втором тактах измерений, на частотах ƒ1 и ƒ2, меньших критической частоты ƒкр для этого волновода с помощью, соответственно, генератора 2 и генератора 3 через коммутатор 4 и элемент связи 5. Другой элемент связи (приема) 6 электромагнитных волн расположен на расстоянии вдоль волновода 1. Принимаемые элементом связи 6 волны поступают на детектор 7 и затем продетектированные сигналы подаются в функциональный преобразователь 8, подсоединенный выходом к регистратору 9 для определения искомого влагосодержания, которое не зависит от диэлектрической проницаемости εн контролируемой жидкости.

Для волноводов конкретных размеров выбором частот ƒ1 и ƒ2 генераторов 2 и 3 можно оптимизировать чувствительность такого устройства для измерения влагосодержания жидкости в рабочем диапазоне его изменения. При этом имеет место монотонность зависимости информативных параметров - значений амплитуд Е1 и Е1 напряженности электрического поля - от значений соответственно ε1 и ε2, функционально связанных с измеряемым влагосодержанием жидкости.

Таким образом, данный способ позволяет достаточно просто и с высокой точностью измерять влагосодержание различных диэлектрических жидкостей с высокой точностью, независимо от диэлектрической проницаемости контролируемой жидкости. Предлагаемый способ может быть реализован как при работе с образцами контролируемой влагосодержащей жидкости в стационарных условиях, так и при ее движении - при перемещении жидкости по трубопроводу.

Способ измерения влагосодержания диэлектрической жидкости, при котором в первом такте измерений возбуждают электромагнитные волны первой фиксированной частоты в волноводе с контролируемой жидкостью на одном из его торцов, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, отличающийся тем, что дополнительно во втором такте измерений возбуждают в волноводе электромагнитные волны второй фиксированной частоты, при этом частоту возбуждаемых электромагнитных волн выбирают ниже критической частоты волновода, принимают электромагнитные волны после их распространения вдоль волновода на другом его торце и измеряют амплитуду напряженности электрического поля, при этом хотя бы одну из частот выбирают в области наличия частотной дисперсии диэлектрической проницаемости воды на этой частоте, производят совместное функциональное преобразование амплитуд, измеренных в первом и во втором тактах измерений, по результату которого судят о влагосодержании жидкости.
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ
СПОСОБ ИЗМЕРЕНИЯ ВЛАГОСОДЕРЖАНИЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ
Источник поступления информации: Роспатент

Показаны записи 211-220 из 276.
26.10.2018
№218.016.965a

Устройство для измерения угла поворота дроссельной заслонки

Изобретение относится к метрологии, в частности к устройствам для измерения угла поворота дроссельной заслонки. Устройство содержит генератор электромагнитных колебаний, соединенный первым плечом с источником питания, и измеритель, волноводный циркулятор, отрезок прямоугольного волновода,...
Тип: Изобретение
Номер охранного документа: 0002670701
Дата охранного документа: 24.10.2018
26.10.2018
№218.016.965f

Способ кратковременного спектрального анализа квазистационарных сигналов

Изобретение относится к измерительной технике и предназначено для определения частот и амплитуд многокомпонентных нестационарных сигналов. Заявлен способ кратковременного спектрального анализа, в котором ошибки, возникающие из-за перекрытия характеристик полосовых фильтров (ПФ) при...
Тип: Изобретение
Номер охранного документа: 0002670702
Дата охранного документа: 24.10.2018
26.10.2018
№218.016.968c

Привязной коптер

Изобретение относится к области авиации, в частности к конструкциям привязных беспилотных многовинтовых летательных аппаратов. Привязной коптер содержит каркас с размещенными на нем электродвигателями с автоматами перекоса винтов, системой управления с гироскопом и радиоэлектронной...
Тип: Изобретение
Номер охранного документа: 0002670738
Дата охранного документа: 24.10.2018
26.10.2018
№218.016.969e

Способ измерения скорости потока диэлектрического вещества

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения скорости потока и расхода диэлектрического вещества (жидкости, газа, сыпучего вещества), перемещаемого по трубопроводу. Техническим результатом настоящего изобретения является повышение точности...
Тип: Изобретение
Номер охранного документа: 0002670707
Дата охранного документа: 24.10.2018
27.10.2018
№218.016.973d

Способ измерения расхода текучей среды

Изобретение относится к измерительной технике и может быть использовано для контроля расхода различных газов и жидкостей. Способ измерения расхода заключается в том, что поток пропускают последовательно через вращающийся его напором привод с дроссельным регулированием в байпасе и через...
Тип: Изобретение
Номер охранного документа: 0002670705
Дата охранного документа: 24.10.2018
01.11.2018
№218.016.97b6

Способ автоматического полива растительных плантаций

Изобретение относится к области полива растений в закрытом грунте и может быть использовано для полива комнатных растений. При осуществлении способа автоматического полива предварительно накапливают воду в емкости. Устанавливают горшок с растением на плечо рычага. На другом плече рычага...
Тип: Изобретение
Номер охранного документа: 0002671109
Дата охранного документа: 29.10.2018
04.11.2018
№218.016.9a49

Способ управления обновлениями программного обеспечения в системах с каскадной структурой

Изобретение относится к области вычислительной техники. Техническим результатом является возможность управления обновлениями программного обеспечения в системах с каскадной структурой. Раскрыт способ управления обновлениями программного обеспечения в системах с каскадной структурой, включающий...
Тип: Изобретение
Номер охранного документа: 0002671624
Дата охранного документа: 02.11.2018
09.11.2018
№218.016.9b55

Способ измерения количества каждой компоненты двухкомпонентной жидкости в металлической емкости

Изобретение относится к измерительной технике и может быть использовано для измерения количества (объема, массы) каждой компоненты двухкомпонентной диэлектрической жидкости в металлической емкости произвольной конфигурации. Технический результат: повышение точности измерения каждой компоненты....
Тип: Изобретение
Номер охранного документа: 0002672038
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9b62

Измеритель воздушной скорости

Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред. Измеритель воздушной скорости содержит проточный корпус с расположенной, перпендикулярно потоку, внутри пластиной, на которой размещены по ее разные стороны в потоке струйные...
Тип: Изобретение
Номер охранного документа: 0002672037
Дата охранного документа: 08.11.2018
09.11.2018
№218.016.9bf5

Способ измерения уровня вещества в емкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим...
Тип: Изобретение
Номер охранного документа: 0002671936
Дата охранного документа: 07.11.2018
Показаны записи 81-86 из 86.
20.04.2023
№223.018.4c18

Способ измерения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного измерения длины металлических труб. Техническим результатом изобретения является упрощение процесса измерения. Технический результат достигается тем, что в способе измерения длины металлической трубы, при...
Тип: Изобретение
Номер охранного документа: 0002765897
Дата охранного документа: 04.02.2022
15.05.2023
№223.018.57ec

Способ измерения физических свойств диэлектрической жидкости

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения различных физических свойств (концентрации, смеси веществ, влагосодержания, плотности и др.) жидкостей, находящихся в емкостях (технологических резервуарах, измерительных ячейках и т.п.)....
Тип: Изобретение
Номер охранного документа: 0002767585
Дата охранного документа: 17.03.2022
15.05.2023
№223.018.57ee

Устройство для измерения внутреннего диаметра металлической трубы

Изобретение относится к измерительной технике, в частности к устройствам для бесконтактного измерения внутреннего диаметра металлических труб. Техническим результатом является расширение функциональных возможностей устройства. Технический результат достигается тем, что устройство, содержащее...
Тип: Изобретение
Номер охранного документа: 0002767586
Дата охранного документа: 17.03.2022
21.05.2023
№223.018.6913

Устройство для измерения уровня диэлектрической жидкости в емкости

Изобретение относится к измерительной технике и служит для высокоточного определения уровня диэлектрической жидкости, находящейся в какой-либо емкости. Технический результат - повышение точности измерений. Результат достигается тем, что в устройстве для измерения уровня диэлектрической жидкости...
Тип: Изобретение
Номер охранного документа: 0002794447
Дата охранного документа: 18.04.2023
29.05.2023
№223.018.7271

Способ определения длины металлической трубы

Изобретение относится к измерительной технике и может быть использовано для бесконтактного определения длины металлических труб как готовых изделий, так и при их производстве на металлургических, машиностроительных предприятиях. Технический результат – повышение точности определения длины...
Тип: Изобретение
Номер охранного документа: 0002796388
Дата охранного документа: 22.05.2023
05.06.2023
№223.018.76c3

Способ измерения физической величины

Изобретение относится к области электротехники, а именно к волноводному резонатору для измерения диэлектрической проницаемости жидкости. Повышение точности измерений является техническим результатом, который достигается за счет того, что предварительно определяют номинальное значение...
Тип: Изобретение
Номер охранного документа: 0002786526
Дата охранного документа: 21.12.2022
+ добавить свой РИД