×
03.07.2018
218.016.6a18

Результат интеллектуальной деятельности: СПОСОБ ИССЛЕДОВАНИЯ НЕФТЕДОБЫВАЮЩЕЙ СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазовой промышленности, а именно к способам расчета забойного давления по промысловым измерениям в остановленных нефтедобывающих скважинах. Технический результат заключается в повышении достоверности способа путем расчета объемного соотношения газовой и нефтяной фаз по столбу многофазной газожидкостной смеси (ГЖС) в эксплуатируемой скважине и построения ее гидродинамической модели. Технический результат получают за счет того, что в способе исследования нефтедобывающей скважины, включающем определение забойного давления на основе устьевых измерений показателей эксплуатации скважины, согласно изобретению осуществляют промысловые измерения, на основе которых строят гидродинамическую модель нефтедобывающей скважины, заполненной многофазным флюидом, и рассчитывают забойное давление для каждого момента времени после остановки скважины с учетом интенсивности протекания процесса разгазирования ГЖС, для чего осуществляют подбор кривой разгазирования, соответствующий фактическим промысловым измерениям.

Изобретение относится к нефтегазовой промышленности, а именно к способам расчета забойного давления по промысловым измерениям в остановленных нефтедобывающих скважинах.

Современные методы расчета забойного давления основаны на статистической интерполяции величин средней плотности газожидкостной смеси (ГЖС) от глубины погружения насоса под динамический уровень. При этом они не учитывают относительное движение газовой и жидкой фаз и термобарические условия в добывающей скважине, что обусловливает значительные погрешности при расчете забойного давления в скважинах с высоким содержанием газа в ГЖС (Скважинная добыча нефти, И.Т. Мищенко, Москва. 2003 г., стр. 450).

Известен способ исследования нефтедобывающей скважины, который заключается в измерении уровня жидкости в скважине методом волнометрирования и вычислении забойного давления с учетом плотности жидкости и давления затрубного газа. Однако данный расчет дает высокие погрешности, что связано с неточностью определения среднего удельного веса ГЖС в скважине (RU 2052092, опубл. 07.09.1993 г.).

Наиболее близким к заявляемому является способ исследования нефтедобывающей скважины, заключающийся в определении забойного давления, основанном на измерении максимальной глубины динамического уровня однородной по плотности жидкости при выводе скважины на режим после глушения (RU 2515666, опубл. 20.05.2014 г.).

Недостатком данного способа является его недостаточная достоверность из-за низкой точности определения забойного давления в скважине с высоким содержанием газа в ГЖС в промысловых условиях, т.к. способ не учитывает влияния растворенного и выделившегося газа на плотность многофазной ГЖС.

Технический результат заключается в повышении достоверности способа путем расчета объемного соотношения газовой и нефтяной фаз по столбу многофазной ГЖС в эксплуатируемой скважине и построения ее гидродинамической модели.

Технический результат получают за счет того, что в способе исследования нефтедобывающей скважины, включающем определение забойного давления на основе устьевых измерений показателей эксплуатации скважины, согласно изобретению осуществляют промысловые измерения, на основе которых строят гидродинамическую модель нефтедобывающей скважины, заполненной многофазным флюидом, и рассчитывают забойное давление для каждого момента времени после остановки скважины с учетом интенсивности протекания процесса разгазирования ГЖС, для чего осуществляют подбор кривой разгазирования, соответствующий фактическим промысловым измерениям.

Полученный при осуществлении изобретения результат достигается совокупностью расчетов термобарических условий, характерных для скважин, путем обобщения промысловых устьевых и глубинных замеров, а также оценки интенсивности протекания разгазирования ГЖС в этих скважинах. Построение газодинамической модели нефтедобывающей скважины адаптируют под конкретный объект, что приводит к минимизации погрешностей в расчетах.

Гидродинамическая модель нефтедобывающей скважины подразумевает принятие двух допущений:

- весь газ, способный выделиться из элементарного объема ГЖС, выделяется моментально;

- вся вода откачивается насосом, и величина обводненности не влияет на аддитивную плотность ГЖС в интервале от динамического уровня до приема насоса.

Заявляемый способ осуществляется следующим образом.

Для расчета необходимы следующие фактические промысловые измерения по нефтедобывающей скважине и продуктивному пласту и исходные данные:

- глубина скважины (по высоте) Нскв, м;

- динамический уровень (по высоте) Ндин, м;

- газовый фактор в скважине Гф, м3/т;

- давление насыщения нефти газом Рнас, МПа;

- давление затрубное Рзатр, МПа;

- плотность пластовой нефти ρпл.н, кг/м3;

- плотность газа, выделяющегося из нефти ρг, кг/м3;

- относительная плотность газа по воздуху , д.ед.

Осуществляют расчет распределения объемного соотношения газовой и нефтяной фаз по столбу ГЖС в работающей скважине, которое характеризуется величиной объема газа Г, выделившегося из элементарного объема при данном давлении.

Давление насыщения Рнас достаточно точно определяют в лабораторных условиях, а газовый фактор Гф - прямым замером. Из-за различных скоростей движения газа и воды возникает «эффект скольжения», поэтому выделившийся в любом элементарном сечении газ с высокой скоростью будет стремиться в область пониженного давления (к динамическому уровню). По этой причине объем газа будет непременно увеличиваться, двигаясь из области давления насыщения к области давления на динамическом уровне. В связи с этим такая неубывающая зависимость объема газа от давления может быть описана экспоненциальной функцией, а все кривые разгазирования, полученные в результате лабораторных исследований, можно интерполировать экспоненциальной функцией.

Для оценки распределения объемного соотношения газовой и нефтяной фаз предложено подбирать расчетную кривую разгазирования, которая описана уравнением экспоненты:

,

где Г - объем газа, выделившийся из элементарного объема при заданном давлении, м3/т;

Гф - газовый фактор скважины, м3/т;

Ргжс - давление, создаваемое столбом жидкости над элементарным объемом, МПа;

В - коэффициент, характеризующий степень выпуклости экспоненты к оси Ох, В>0.

Чем больше коэффициент В по модулю, тем раньше начинается процесс разгазирования ГЖС.

На основе устьевых и глубинных замеров строят график зависимости глубины погружения насоса под динамический уровень (Нпогр) от давления, создаваемого столбом ГЖС над насосом (Рстолба). Он имеет линейный вид. По указанной зависимости рассчитывают давление столба ГЖС (Рстолба) на каждой его глубине (отчет ведется от динамического уровня), а затем по предполагаемой кривой разгазирования определяют объем газа, существующий при данном давлении столба.

Далее полученный объем газа пересчитывают с учетом термобарических условий на данной глубине столба ГЖС по формуле и получают Греал:

,

где z - коэффициент сверхсжимаемости газа, рассчитанный исходя из компонентного состава газа;

Р0 - атмосферное давление, равное 0,1 МПа;

Т0 - температура при нормальных условиях, равная 293 К,

Т - текущая температура, К;

Ргжс - текущее давление столба ГЖС, МПа;

ρпов.усл - плотность нефти в поверхностных условиях, кг/м3.

Расходное газосодержание β рассчитывают по формуле:

Истинное газосодержание ϕ рассчитывают по соотношению: ϕ=0,833⋅β.

Плотность ГЖС ρгжс при заданном давлении рассчитывают по формуле аддитивности:

, где

ρг - плотность газа, выделяющегося из ГЖС, кг/м3.

Затем рассчитывают давление на каждой i-шаговой глубине по формуле гидростатики:

,

где h - принятый шаг по глубине столба ГЖС, м;

ρгжс.i - плотность ГЖС на i-й глубине столба ГЖС, кг/м3;

Pi-1 - давление, создаваемое на (i-1)-шаговой глубине столба ГЖС, Па.

Следующим этапом является построение распределения давлений по столбу жидкости на основе расчетной кривой разгазирования. Полученное распределение накладывают на график зависимости Нпогр от Ргжс,, построенный по промысловым измерениям. Если графики совпадают, то такое распределение плотностей по столбу ГЖС для скважин с данным газовым фактором считается достоверным, и коэффициент В для кривой разгазирования подобран верно.

В случае, если полученное распределение давлений выходит за границы доверительного интервала величиной 97% на указанном графике, то необходимо увеличить или уменьшить коэффициент В по модулю и провести перерасчет распределения давлений по столбу ГЖС до максимально близкой сходимости графиков.

Далее рассчитывают высоту столба ГЖС Нстолба в скважине по формуле:

,

где Нскв - глубина скважины, м;

Ндин - динамический уровень в скважине, м.

По полученной кривой разгазирования определяют давление Рстолба, создаваемое столбом высотой Нстолба, а забойное давление Рзаб вычисляют по формуле:

,

где Рстолба - давление, рассчитанное по кривой, МПа;

Рур - давление газа на динамическом уровне, МПа,

при этом давление на динамическом уровне Рур рассчитывают по формуле:

,

где Рзатр - давление затрубное, МПа;

- относительная плотность газа, выделяющегося из ГЖС, по воздуху, д.ед.

Предлагаемый способ исследования нефтедобывающей скважины характеризуется высокой сходимостью результатов расчетов с фактическими промысловыми измерениями, что позволяет сделать вывод о его достоверности.

Способ исследования нефтедобывающей скважины, включающий определение забойного давления на основе устьевых измерений показателей эксплуатации скважины, отличающийся тем, что осуществляют промысловые измерения, на основе которых строят гидродинамическую модель нефтедобывающей скважины, заполненной многофазной газожидкостной смесью, и рассчитывают забойное давление для каждого момента времени после остановки скважины с учетом интенсивности протекания процесса разгазирования газожидкостной смеси, для чего осуществляют подбор кривой разгазирования, соответствующий фактическим промысловым измерениям.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 122.
19.01.2018
№218.016.09af

Способ проветривания тупиковой выработки

Изобретение относится к вентиляции горных выработок и может использоваться при проветривании тупиковых выработок. Эффективность проветривания тупиковой выработки повышается за счет выполнения регулирующего устройства в виде трубопровода с развилкой, на входе которого установлен вентилятор....
Тип: Изобретение
Номер охранного документа: 0002631946
Дата охранного документа: 29.09.2017
19.01.2018
№218.016.09b3

Гидропескоструйный перфоратор

Изобретение относится к устройствам для создания щелевых отверстий в обсадных колоннах, цементном камне и горной породе. Гидропескоструйный перфоратор содержит корпус с отверстиями, в которых установлены струйные насадки, размещенную в корпусе подвижную втулку, связанную с запорным элементом,...
Тип: Изобретение
Номер охранного документа: 0002631947
Дата охранного документа: 29.09.2017
20.01.2018
№218.016.11b7

Способ получения алмазной плёнки на твердосплавных изделиях из карбида вольфрама

Изобретение относится к технологии неорганических веществ и материалов, а именно к способу получения алмазной пленки на твердосплавных изделиях из карбида вольфрама с содержанием в качестве связующего 6% кобальта. Осуществляют подготовку поверхности упомянутого твердого сплава и газофазное...
Тип: Изобретение
Номер охранного документа: 0002634098
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.12cd

Способ сварки трением с перемешиванием алюминиевых деформируемых сплавов

Изобретение относится к способу сварки трением с перемешиванием стыковых соединений из алюминиевых деформируемых сплавов. Используют сварочный инструмент с пином, выполненным длиной 5,8…11,8 мм цилиндрической формы с левосторонней резьбой и опорным буртом диаметром 18…28 мм. Перед сваркой...
Тип: Изобретение
Номер охранного документа: 0002634402
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.1308

Способ сварки трением с перемешиванием алюминиевых сплавов

Изобретение может быть использовано для выполнения стыковых соединений деталей из алюминиевых жаропрочных сплавов толщиной 2…6 мм. Используют сварочный инструмент с пином, выполненным в форме усеченного конуса длиной 1,8…5,7 мм с тремя «левыми» резьбовыми канавками, и опорным буртом диаметром...
Тип: Изобретение
Номер охранного документа: 0002634389
Дата охранного документа: 26.10.2017
20.01.2018
№218.016.1324

Способ получения высокопористого материала из нитрида кремния с волокнистой структурой и установка для его осуществления

Изобретения относятся к высокопористым материалам, в частности к получению высокопористого материала из нитрида кремния с волокнистой структурой, предназначенного для эксплуатации при повышенных температурах в агрессивных средах, например в фильтрах для очистки расплавов металлов, в носителях...
Тип: Изобретение
Номер охранного документа: 0002634443
Дата охранного документа: 30.10.2017
20.01.2018
№218.016.13bb

Анальгезирующее средство

Изобретение относится к анальгезирующему средству, действующим веществом в котором могут являться индивидуальные замещенные хинолин-4(1H)-оны общей формулы 1, их соли или композиции на их основе и которое может найти применение для лечения людей и животных в качестве обезболивающего средства,...
Тип: Изобретение
Номер охранного документа: 0002634618
Дата охранного документа: 02.11.2017
20.01.2018
№218.016.13bf

Способ отбелки лиственной сульфатной целлюлозы

Изобретение относится к целлюлозно-бумажной промышленности и может быть использовано для получения лиственной беленой сульфатной целлюлозы, предназначенной для изготовления бумаги и картона. Способ включает стадии делигнификации пероксидом водорода с последующей щелочной обработкой и добелки с...
Тип: Изобретение
Номер охранного документа: 0002634586
Дата охранного документа: 31.10.2017
20.01.2018
№218.016.1627

Способ изготовления высокопористого диоксида циркония

Изобретение относится к способам изготовления высокопористых керамических изделий и может быть использовано в машиностроении, химической промышленности и медицине для получения носителей катализаторов, фильтрующих элементов, биоимплантатов. Способ изготовления высокопористого диоксида циркония...
Тип: Изобретение
Номер охранного документа: 0002635161
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1925

Пьезоактюатор изгибного типа

Изобретение относится к пьезоактюаторам изгибного типа и предназначено для использования в электронике, управляемой оптике, микромеханике, медицине, машиностроении. Пьезоактюатор изгибного типа представляет собой многослойный пакет, состоящий из элементарных слоев, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002636255
Дата охранного документа: 21.11.2017
Показаны записи 11-12 из 12.
30.05.2023
№223.018.7442

Блочная установка кустовой сепарации

Изобретение относится к нефтяной промышленности и может быть применено для разделения продукции скважин на нефтяных месторождениях поздней стадии разработки. Блочная установка кустовой сепарации включает систему подачи водонефтяной эмульсии (ВНЭ) из сборного коллектора скважин или АГЗУ, блок...
Тип: Изобретение
Номер охранного документа: 0002741296
Дата охранного документа: 25.01.2021
17.06.2023
№223.018.7eb1

Способ определения дисперсности водонефтяной эмульсии

Изобретение относится к нефтегазовой промышленности. Раскрыт способ определения дисперсности водонефтяной эмульсии, включающий прямую визуализацию изображения, формирующегося при микроскопическом наблюдении, с дальнейшей компьютерной обработкой данных и определением дисперсности эмульсии по...
Тип: Изобретение
Номер охранного документа: 0002775550
Дата охранного документа: 04.07.2022
+ добавить свой РИД