×
03.07.2018
218.016.6a14

Результат интеллектуальной деятельности: БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в различных быстродействующих интерфейсах, устройствах преобразования сигналов. Технический результат: повышение на 1-2 порядка максимальной скорости нарастания выходного напряжения при работе входных транзисторов ОУ с микроамперными статическими токами, 1÷10 мкА. Быстродействующий дифференциальный операционный усилитель, содержащий входной дифференциальный каскад (1) с первым (2) и вторым (3) входами, первым (4) и вторым (5) противофазными токовыми выходами, первый источник опорного тока (6), включенный между входом (7) входного дифференциального каскада (1) для установления его статического режима по току и первой (8) шиной источника питания, первое токовое зеркало (9), согласованное со второй (10) шиной источника питания, вход которого соединен с первым (4) токовом выходом входного дифференциального каскада (1), а выход подключен ко второму (5) токовому выходу входного дифференциального каскада (1) и связан со входом буферного усилителя (11), первый (12) корректирующий конденсатор, связанный со входом буферного усилителя (11), отличающийся тем, что в схему введен дополнительный дифференциальный каскад (13), содержащий первый (14) и второй (15) дифференциальные входы, первый (16) и второй (17) противофазные токовые выходы, согласованные с первой (8) шиной источника питания, вход (18) дополнительного дифференциального каскада (13) для установления его статического режима по току, причем первый (14) вход дополнительного дифференциального каскада (13) связан с первым (2) входом входного дифференциального каскада (1), второй (15) вход дополнительного дифференциального каскада (13) связан со вторым (3) входом входного дифференциального каскада (1), между входом (18) дополнительного дифференциального каскада (13) для установления его статического режима по току и второй (10) шиной источника питания включен второй (19) источник опорного тока, между входом (7) входного дифференциального каскада (1) для установления его статического режима по току и входом (18) дополнительного дифференциального каскада (13) для установления его статического режима по току включен второй (20) корректирующий конденсатор. 4 з.п. ф-лы, 6 табл., 13 ил.

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в различных быстродействующих интерфейсах, устройствах преобразования сигналов, инструментальных усилителях и т.п.

Быстродействие операционных усилителей (ОУ), которое характеризуется максимальной скоростью нарастания выходного напряжения (ϑвых.) и временем установления переходного процесса (tуст.), определяет динамические параметры многих аналоговых интерфейсов датчиков, буферных каскадов, АЦП, драйверов линий связи и т.п.

В современной радиоэлектронной аппаратуре находят применение ОУ, реализованные по классической архитектуре на биполярных (или полевых) транзисторах с одним токовым зеркалом и буферным усилителем [1-20]. Благодаря простоте такое схемотехническое решение наиболее популярно как в зарубежных, так и в российских аналоговых микросхемах. На основе ОУ данного класса возможно построение прецизионных усилителей, имеющих малое напряжение смещения нуля и повышенный коэффициент ослабления входного синфазного сигнала.

Ближайшим прототипом (фиг. 1) заявляемого устройства является дифференциальный операционный усилитель по патенту US 6.249.153 (fig. 4). Он содержит (фиг. 1) входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, первым 4 и вторым 5 противофазными токовыми выходами, первый источник опорного тока 6, включенный между входом 7 входного дифференциального каскада 1 для установления его статического режима по току и первой 8 шиной источника питания, первое токовое зеркало 9, согласованное со второй 10 шиной источника питания, вход которого соединен с первым 4 токовом выходом входного дифференциального каскада 1, а выход подключен ко второму 5 токовому выходу входного дифференциального каскада 1 и связан со входом буферного усилителя 11, первый 12 корректирующий конденсатор, связанный со входом буферного усилителя 11.

Существенный недостаток известного ОУ состоит в том, что при работе его входного каскада в режиме микротоков (1÷10 мкА) его максимальная скорость нарастания выходного напряжения получается небольшой (1÷3 В/мкс).

Основная задача предлагаемого изобретения состоит в повышении (на 1-2 порядка) максимальной скорости нарастания выходного напряжения при работе входных транзисторов ОУ с микроамперными статическими токами (1÷10 мкА).

Поставленная задача достигается тем, что в операционном усилителе фиг. 1, содержащем входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, первым 4 и вторым 5 противофазными токовыми выходами, первый источник опорного тока 6, включенный между входом 7 входного дифференциального каскада 1 для установления его статического режима по току и первой 8 шиной источника питания, первое токовое зеркало 9, согласованное со второй 10 шиной источника питания, вход которого соединен с первым 4 токовом выходом входного дифференциального каскада 1, а выход подключен ко второму 5 токовому выходу входного дифференциального каскада 1 и связан со входом буферного усилителя 11, первый 12 корректирующий конденсатор, связанный со входом буферного усилителя 11, предусмотрены новые элементы и связи - в схему введен дополнительный дифференциальный каскад 13, содержащий первый 14 и второй 15 входы, первый 16 и второй 17 противофазные токовые выходы, согласованные с первой 8 шиной источника питания, вход 18 дополнительного дифференциального каскада 13 для установления его статического режима по току, причем первый 14 вход дополнительного дифференциального каскада 13 связан с первым 2 входом входного дифференциального каскада 1, второй 15 вход дополнительного дифференциального каскада 13 связан со вторым 3 входом входного дифференциального каскада 1, между входом 18 дополнительного дифференциального каскада 13 для установления его статического режима по току и второй 10 шиной источника питания включен второй 19 источник опорного тока, между входом 7 входного дифференциального каскада 1 для установления его статического режима по току и входом 18 дополнительного дифференциального каскада 13 для установления его статического режима по току включен второй 20 корректирующий конденсатор.

На фиг. 1 показана схема ОУ-прототипа, а на фиг. 2 - схема заявляемого устройства в соответствии с п. 1, п. 2 и п. 3 формулы изобретения.

На фиг. 3 приведена схема заявляемого устройства фиг. 2, для случая, когда входной дифференциальный каскад (1) и дополнительный дифференциальный каскад (13) реализованы на основе BiJFet радиационного-стойкого технологического процесса 3КБТ ОАО «Интеграл» (г. Минск), обеспечивающего также работу активных элементов при достаточно низких, в том числе криогенных температурах.

На фиг. 4 приведена схема заявляемого устройства фиг. 2 в соответствии с п. 4 формулы изобретения.

На фиг. 5, в качестве примера, приведена схема быстродействующего КМОП ОУ, соответствующего фиг. 2 с конкретным выполнением буферного усилителя (11).

На фиг. 6 приведена схема ОУ фиг. 2 в среде Orcad на моделях КМОП транзисторов техпроцесса tsmc_035_t65.

На фиг. 7 представлены осциллограмма входного и выходного напряжений КМОП ОУ фиг. 6 (передний фронт) при разных значениях емкости конденсатора С2= Cvar, при I1=I2=10 мкА, С1=1пФ (ширина импульса 1 мкс, амплитуда входного напряжения 3 В, комнатная температура t=27°C).

На фиг. 8 приведена осциллограмма входного и выходного напряжений КМОП ОУ фиг. 6 (задний фронт) при разных значениях емкости конденсатора С2=Cvar, при I1=I2=10 мкА, С1=1пФ (ширина импульса 1 мкс, амплитуда входного напряжения 3 В, комнатная температура t=27°C).

На фиг. 9 показана осциллограмма входного и выходного напряжений КМОП ОУ фиг. 6 (передний фронт) при разных значениях емкости конденсатора C2=Cvar, при I1=I2=10 мкА и С1=100фФ (ширина импульса 1 мкс, амплитуда входного напряжения 3 В, комнатная температура t=27°C).

На фиг. 10 приведена осциллограмма входного и выходного напряжений КМОП ОУ фиг. 6 (задний фронт) при разных значениях емкости конденсатора С2=Cvar, при I1=I2=10 мкА и С1=100фФ.

На фиг. 11 показана схема BiJFet ОУ фиг. 3 в среде LTSpice для моделирования его характеристик при низких температурах.

На фиг. 12 представлена осциллограмма выходного напряжения ОУ фиг. 11 (передний и задние фронты) при емкости конденсатора С2=0/5п/9.07пФ (амплитуда входного напряжения 3В, ширина импульса 1 мкс, t=27°C).

На фиг. 13 приведена осциллограмма выходного напряжения ОУ (передний и задние фронты) при емкости конденсатора С2=0/5п/9.07пФ (амплитуда входного напряжения 3В, ширина импульса 1 мкс, отрицательная температура t=-197°C).

Быстродействующий дифференциальный операционный усилитель фиг. 2 содержит входной дифференциальный каскад 1 с первым 2 и вторым 3 входами, первым 4 и вторым 5 противофазными токовыми выходами, первый источник опорного тока 6, включенный между входом 7 входного дифференциального каскада 1 для установления его статического режима по току и первой 8 шиной источника питания, первое токовое зеркало 9, согласованное со второй 10 шиной источника питания, вход которого соединен с первым 4 токовом выходом входного дифференциального каскада 1, а выход подключен ко второму 5 токовому выходу входного дифференциального каскада 1 и связан со входом буферного усилителя 11, первый 12 корректирующий конденсатор, связанный со входом буферного усилителя 11. В схему введен дополнительный дифференциальный каскад 13, содержащий первый 14 и второй 15 входы, первый 16 и второй 17 противофазные токовые выходы, согласованные с первой 8 шиной источника питания, вход 18 дополнительного дифференциального каскада 13 для установления его статического режима по току, причем первый 14 вход дополнительного дифференциального каскада 13 связан с первым 2 входом входного дифференциального каскада 1, второй 15 вход дополнительного дифференциального каскада 13 связан со вторым 3 входом входного дифференциального каскада 1, между входом 18 дополнительного дифференциального каскада 13 для установления его статического режима по току и второй 10 шиной источника питания включен второй 19 источник опорного тока, между входом 7 входного дифференциального каскада 1 для установления его статического режима по току и входом 18 дополнительного дифференциального каскада 13 для установления его статического режима по току включен второй 20 корректирующий конденсатор. На фиг. 2 буферный усилитель 11 имеет потенциальный (низкоомный) выход 21.

Кроме этого на фиг. 2, в соответствии с п. 2 формулы изобретения, входной дифференциальный каскад 1 содержит первый 22 и второй 23 полевые транзисторы, объединенные истоки которых подключены ко входу 7 входного дифференциального каскада 1 для установления его статического режима по току, затвор первого 22 полевого транзистора соединен с первым 2 входом входного дифференциального каскада 1, затвор второго 23 полевого транзистора соединен с вторым 3 входом входного дифференциального каскада 1, сток первого 22 полевого транзистора соединен с первым 4 токовом выходом входного дифференциального каскада 1, сток второго 23 полевого транзистора соединен со вторым 5 токовым выходом входного дифференциального каскада 1.

На фиг. 2 в соответствии с п. 3 формулы изобретения дополнительный дифференциальный каскад 13 содержит третий 24 и четвертый 25 полевые транзисторы, объединенные истоки которых подключены ко входу 18 дополнительного дифференциального каскада 13 для установления его статического режима по току, затвор третьего 24 полевого транзистора соединен с первым 14 входом дополнительного дифференциального каскада 13, затвор четвертого 25 полевого транзистора соединен со вторым 15 входом дополнительного дифференциального каскада 13, сток третьего 24 полевого транзистора соединен с первым 16 токовом выходом дополнительного дифференциального каскада 13, сток четвертого 25 полевого транзистора соединен со вторым 17 токовом выходом дополнительного дифференциального каскада 13.

На фиг. 3 входной дифференциальный каскад 1 содержит пятый 26 и шестой 27 биполярные транзисторы, объединенные эмиттеры которых подключены к входу 7 входного дифференциального каскада 1 для установления его статического режима по току, коллектор пятого 26 биполярного транзистора соединен с первым 4 токовом выходом дифференциального каскада 1, коллектор шестого 27 биполярного транзистора соединен со вторым 5 токовым выходом входного дифференциального каскада 1, база пятого 26 биполярного транзистора соединена с первым 2 входом входного дифференциального каскада 1, база шестого 27 биполярного транзистора соединена со вторым 3 входом входного дифференциального каскада 1.

На фиг. 4 приведена схема заявляемого устройства в соответствии с п. 5 формулы изобретения, в которой выход первого 9 токового зеркала связан со входом буферного усилителя 11 через первый 28 неинвертирующий усилитель тока, первый 16 токовый выход дополнительного дифференциального каскада 13 соединен со входом дополнительного токового зеркала 29, согласованного с первой 8 шиной источника питания, выход которого подключен ко второму 17 токовому выходу дополнительного дифференциального каскада 13 и через второй 30 неинвертирующий усилитель тока связан со входом буферного усилителя 11.

Кроме этого, в схеме фиг. 4 первый 28 неинвертирующий усилитель тока реализован на транзисторе 31, включенном по схеме с общим затвором, и токостабилизирующем двухполюснике 32, а второй 30 неинвертирующий усилитель тока выполнен на основе транзистора 33, включенного по схеме с общим затвором, и токостабилизирующем двухполюснике 34.

На фиг. 5 представлено (в качестве примера) конкретное выполнение буферного усилителя 11, который содержит входной полевой транзистор 35, цепь смещения статического потенциала 36, конденсатор нагрузки 38 и источник опорного тока 37, устанавливающий статический режим буферного усилителя 11 по току. В частном случае, для ускорения процесса перезаряда конденсатора нагрузки 38, первый 16 токовый выход дополнительного дифференциального каскада 13 может подключаться к управляющему входу токостабилизирующего двухполюсника 37.

Рассмотрим работу предлагаемого ОУ на примере анализа схемы фиг. 5 при 100% отрицательной обратной связи на инвертирующий вход 3.

Максимальная скорость нарастания выходного напряжения ОУ фиг. 5 определяется скоростью перезаряда емкости первого 12 корректирующего конденсатора [18-20]. Так как ток первого 6 источника опорного тока измеряется микроамперами, то и скорость перезаряда первого 12 корректирующего конденсатора будет крайне мала.

При введении дополнительных элементов, в соответствии с п. 1 формулы изобретения, скорость перезаряда первого 12 корректирующего конденсатора существенно возрастает. Это объясняется тем, что при скачке входного напряжения ОУ, поданного на первый 2 неинвертирующих вход входного дифференциального каскада 1, через второй 20 корректирующий конденсатор появляется сравнительно большой импульс тока, который передается через транзистор 22 и токовое зеркало 9 в первый 12 корректирующий конденсатор. Как следствие, скорость перезаряда первого 12 корректирующего конденсатора существенно возрастает, что и приводит к увеличению ϑвых. ОУ на 2÷3 порядка.

Аналогично, при отрицательном импульсном сигнале на первом 2 неинвертирующем входе входного дифференциального каскада 1 через второй 20 корректирующий конденсатор формируется большой импульс тока, который через транзистор 23 поступает в высокоимпедансный узел Σ1 (на вход буферного усилителя 11) и форсирует процесс перезаряда первого 12 корректирующего конденсатора. В конечном итоге, в предлагаемом ОУ существенно (на 1÷2 порядка) повышается максимальная скорость выходного напряжения (фиг. 7 - фиг. 10, фиг. 12, фиг. 13).

В таблицах 1 и 2 приведены результаты компьютерного моделирования (фиг. 7, фиг. 8) влияния емкости второго 20 корректирующего конденсатора КМОП ОУ фиг. 6 (техпроцесс tsmc_035_t65) на максимальную скорость нарастания входного напряжения при I1=I16=I2=I19=10 мкА, C1=C12=1пФ, при t=27°C для переднего (табл. 1) и заднего (табл. 2) фронтов.

При этом среднее значение максимальной скорости нарастания выходного напряжения ОУ определялось по формуле:

.

где t0, t1 - время при амплитуде выходного сигнала 0.9⋅Uвых.max и 0.1⋅Uвых.max соответственно; Δtуст.=t0-t1.

Из таблиц 1, 2 следует, что для КМОП варианта ОУ фиг. 6 при С1=1 пФ выигрыш по быстродействию составляет 15-20 раз.

В таблицах 3 и 4 приведены результаты компьютерного моделирования (фиг. 9, фиг. 10) влияния емкости второго 20 корректирующего конденсатора КМОП ОУ фиг. 6 (техпроцесс tsmc_035_t65) на максимальную скорость нарастания входного напряжения при I1=I16=I2=I19=10 мкА при t=27°C для переднего (табл. 3) и заднего (табл. 4) фронтов и уменьшенной емкости коррекции С112=100фФ.

Из таблиц 3, 4 следует, что для КМОП варианта ОУ (техпроцесс tsmc_035_t65) при С1=100 фФ выигрыш по быстродействию также составляет более 20 раз.

В таблицах 5-6 приведены результаты компьютерного моделирования BiJFet ОУ фиг. 11 (техпроцесс 3КБТ ОАО «Интеграл», г. Минск) влияния емкости второго 20 корректирующего конденсатора ОУ фиг. 6 на максимальную скорость нарастания входного напряжения при I1=I16=I2=I19=10 мкА, C1=C12=1 пФ, для переднего фронта при комнатной температуре t=27°C (табл. 5) и низких температурах t=-197°C (табл. 6).

Из таблицы 5 следует, что при комнатной температуре для BiJFet варианта ОУ при С 1=1 пФ выигрыш по быстродействию составляет более 250 раз.

Из таблицы 6 следует, что для BiJFet варианта ОУ при С1=1 пФ выигрыш по быстродействию при низких температурах составляет более 240 раз.

Из таблиц 1-6 следует, что быстродействие заявляемого ОУ при работе его входных транзисторов в микрорежиме повышается, в зависимости от используемого технологического процесса, на 1-2 порядка.

Причем, для BiJFet ОУ низкие температуры (-190°C) не оказывают существенного влияния на ϑвых, что обусловлено особенностями схемотехники BiJFet ОУ фиг. 3 и свойствами BiJFet технологического процесса ОАО «Интеграл» (г. Минск).

Таким образом, заявляемое устройство обладает существенными преимуществами по сравнению с прототипом.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 5,343,164.

2. Патент US 6,822, 505.

3. Патент US 4,335,355.

4. Патент US 4, 912,425.

5. Патент US 6,794,840, фиг. 3.

6. Патент US 7, 167,052.

7. Патент US 5,289,058.

8. Патент US 6,822,505, фиг. 4.

9. Патент US 4,524,329, фиг. 1 - фиг. 4.

10. Заявка на патент US 2010/0085344.

11. Заявка на патент ЕР 2007/054914.

12. Заявка на патент WO 2007/135139.

13. Патент US 4,464, 588.

14. Патент US 7,646,247.

15. Патент US 5,990,742, фиг. 2.

16. Патент US 6,774,722, фиг. 2.

17. О.V. Dvornikov, V.L. Dziatlau, N.N. Prokopenko, K.О. Petrosiants, N.V. Kozhukhov and V.A. Tchekhovski, "The accounting of the simultaneous exposure of the low temperatures and the penetrating radiation at the circuit simulation of the BiJFET analog interfaces of the sensors," 2017 International Siberian Conference on Control and Communications (SIBCON), Astana, 2017, pp. 1-6. DOT. 10.1109/SIBCON.2017.7998507.

18. Анисимов В.И., Капитонов M.B., Соколов Ю.М., Прокопенко Н.Н. Операционные усилители с непосредственной связью каскадов (монография) // Л.: «Энергия», 1979. - 148 с.

19. Прокопенко Н.Н., Будяков А.С. Архитектура и схемотехника быстродействующих операционных усилителей (монография) // Шахты: ЮРГУЭС, 2006. - 232 с.

20. Прокопенко Н.Н. Нелинейная активная коррекция в прецизионных аналоговых микросхемах (монография) // Ростов-на-Дону: Изд-во Северо-Кавказского научного центра высшей школы, 2000. 222 с.


БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
БЫСТРОДЕЙСТВУЮЩИЙ ДИФФЕРЕНЦИАЛЬНЫЙ ОПЕРАЦИОННЫЙ УСИЛИТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 141-150 из 186.
31.01.2020
№220.017.fbbc

Промежуточный каскад cjfet операционного усилителя с парафазным токовым выходом

Изобретение относится к области радиотехники и микроэлектроники и может быть использовано в аналоговых микросхемах (АМ) и аналого-цифровых интерфейсах датчиков. Технический результат заключается в повышении крутизны преобразования входного дифференциального напряжения в токи первого и второго...
Тип: Изобретение
Номер охранного документа: 0002712411
Дата охранного документа: 28.01.2020
09.02.2020
№220.018.010e

Многорежимное устройство синхронизации с адаптацией

Изобретение относится к области радиоавтоматики и может быть использовано в радиотехнических устройствах и системах связи различного назначения для повышения стабильности частот и синхронизации приемной и передающей аппаратуры. Техническим результатом изобретения является снижение энергозатрат...
Тип: Изобретение
Номер охранного документа: 0002713726
Дата охранного документа: 07.02.2020
20.02.2020
№220.018.0401

Пулепоглощающий материал (фибропенобетон) и способ его изготовления

Изобретение относится к средствам обеспечения безопасности при проведении учебно-тренировочных спортивных и боевых стрельб, а именно к средствам для улавливания метаемых элементов (пуль, дробовых снарядов) и их фрагментов, а также предотвращения рикошетов при стрельбах из стрелкового оружия....
Тип: Изобретение
Номер охранного документа: 0002714541
Дата охранного документа: 18.02.2020
20.02.2020
№220.018.049d

Устройство 3d визуализации деформационного состояния поверхности материала в области упругих деформаций

Изобретение относится к устройствам определения упругих свойств материалов путем вдавливания микроиндентора в поверхность образца на заданную глубину в области упругих деформаций. Устройство 3D визуализации содержит точечный источник рентгеновского излучения, вращающийся гониометрический...
Тип: Изобретение
Номер охранного документа: 0002714515
Дата охранного документа: 18.02.2020
23.02.2020
№220.018.053a

Способ приготовления бетонной смеси

В способе приготовления бетонной смеси, включающем перемешивание цемента, заполнителей, суперпластификатора и воды затворения, в бетоносмеситель сначала загружают мелкий заполнитель, представляющий собой смесь природного кварцевого песка с модулем крупности до 1,5 и отсева камнедробления...
Тип: Изобретение
Номер охранного документа: 0002714895
Дата охранного документа: 20.02.2020
05.03.2020
№220.018.08e4

Способ снижения структурной погрешности традиционного цифрового датчика физической величины в аналого-цифровой системе автоматического управления или контроля

Предлагаемое изобретение относится к области автоматики и управления (G05), вычислительной (G06) и измерительной (G01) техники и может быть реализовано в виде новой последовательности и структуры операций преобразования сигналов датчиков различных физических величин, предназначенных для работы...
Тип: Изобретение
Номер охранного документа: 0002715835
Дата охранного документа: 03.03.2020
06.03.2020
№220.018.09e5

Способ фиксации кадаверного цельного глазного яблока и его секционных фрагментов при рентгеновской компьютерной микро- и нанотомографии и устройство для его осуществления

Изобретение относится к области исследования посредством рентгеновской компьютерной микро- и нанотомографии биологических объектов, в частности кадаверного цельного глазного яблока и его секционных фрагментов. Способ фиксации объекта сканирования заключается в том, что объект помещают перед...
Тип: Изобретение
Номер охранного документа: 0002715926
Дата охранного документа: 04.03.2020
14.03.2020
№220.018.0bb1

Устройство для восстановления карты глубины с поиском похожих блоков на основе нейронной сети

Изобретение относится к устройству для восстановления карты глубины с поиском похожих блоков на основе нейронной сети. Технический результат заключается в уменьшении погрешности восстановления карты глубины за счет предварительно обученной нейронной сети. Устройство содержит связанные между...
Тип: Изобретение
Номер охранного документа: 0002716311
Дата охранного документа: 12.03.2020
02.04.2020
№220.018.12bb

Активный rc-фильтр нижних частот с одноэлементной перестройкой частоты полюса на дифференциальных и мультидифференциальном операционных усилителях

Изобретение относится к средствам ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения. Технический результат заключается в обеспечении условий, при которых при перестройке частоты среза коэффициент передачи ФНЧ на нулевой частоте остается без...
Тип: Изобретение
Номер охранного документа: 0002718210
Дата охранного документа: 31.03.2020
02.04.2020
№220.018.12c9

Устройство объединения инфракрасных изображений

Изобретение относится к области вычислительной техники. Технический результат заключается в повышении скорости принятия решения и уменьшении вычислительных затрат за счёт формирования комбинированных данных из пары изображений, фиксируемых в инфракрасном диапазоне. Технический результат...
Тип: Изобретение
Номер охранного документа: 0002718211
Дата охранного документа: 31.03.2020
Показаны записи 141-150 из 217.
29.05.2019
№219.017.62d9

Быстродействующий дифференциальный операционный усилитель

Изобретение относится к области аналоговой микроэлектроники и может быть использовано в аналоговых интерфейсах и устройствах преобразования сигналов. Технический результат заключается в повышении максимальной скорости нарастания выходного напряжения ДОУ. Быстродействующий дифференциальный...
Тип: Изобретение
Номер охранного документа: 0002688227
Дата охранного документа: 21.05.2019
29.05.2019
№219.017.62ee

Дифференциальный операционный усилитель

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков. Технический результат заключается в повышении разомкнутого коэффициента усиления по напряжению дифференциального...
Тип: Изобретение
Номер охранного документа: 0002688223
Дата охранного документа: 21.05.2019
27.06.2019
№219.017.98a2

Токовый пороговый логический элемент "неравнозначность"

Изобретение относится к области радиотехники и аналоговой микроэлектроники и может быть использовано в быстродействующих аналоговых и аналого-цифровых интерфейсах для обработки сигналов датчиков. Технический результат: создание токового порогового логического элемента «Неравнозначность», в...
Тип: Изобретение
Номер охранного документа: 0002692573
Дата охранного документа: 25.06.2019
02.07.2019
№219.017.a2e8

Активный rc-фильтр для обработки сигналов пьезоэлектрических датчиков

Изобретение относится к измерительной технике и может использоваться в составе электромеханических систем балансировки роторов. Технический результат заключается в увеличении гарантированного затухания амплитудно-частотной характеристики активного RC-фильтра для обработки пьезоэлектрических...
Тип: Изобретение
Номер охранного документа: 0002692967
Дата охранного документа: 28.06.2019
05.07.2019
№219.017.a597

Токовый пороговый логический элемент прямого циклического сдвига

Изобретение относится к области радиотехники и аналоговой микроэлектроники. Технический результат заключается в создании токового порогового логического элемента, обеспечивающего циклический сдвиг троичной входной логической переменной (х), в котором внутреннее преобразование информации...
Тип: Изобретение
Номер охранного документа: 0002693639
Дата охранного документа: 03.07.2019
05.07.2019
№219.017.a59f

Токовый пороговый логический элемент обратного циклического сдвига

Изобретение относится к области радиотехники и аналоговой микроэлектроники. Технический результат заключается в повышении быстродействия устройств преобразования информации. Технический результат достигается за счет токового порогового логического элемента обратного циклического сдвига,...
Тип: Изобретение
Номер охранного документа: 0002693590
Дата охранного документа: 03.07.2019
11.07.2019
№219.017.b296

Полосовой arc-фильтр на двух операционных усилителях с повышением частоты полюса и независимой подстройкой основных параметров

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в повышении частоты полюса, которая обеспечивает независимую подстройку трех основных...
Тип: Изобретение
Номер охранного документа: 0002694134
Дата охранного документа: 09.07.2019
11.07.2019
№219.017.b2d4

Arc-фильтр верхних частот с независимой подстройкой основных параметров

Изобретение относится к средствам ограничения спектра источника сигнала, например, при его дальнейшей обработке аналого-цифровыми преобразователями различных модификаций. Технический результат заключается в обеспечении независимой подстройки таких параметров амплитудно-частотной характеристики,...
Тип: Изобретение
Номер охранного документа: 0002694135
Дата охранного документа: 09.07.2019
19.07.2019
№219.017.b646

Широкополосный избирательный rc-фильтр с дифференциальным входом

Изобретение относится к измерительной техники. Технический результат заключается в увеличение гарантированного затухания амплитудно-частотной характеристики активного RC-фильтра для обработки пьезоэлектрических сигналов датчиков за пределами полосы пропускания полезного сигнала, что...
Тип: Изобретение
Номер охранного документа: 0002694740
Дата охранного документа: 16.07.2019
01.08.2019
№219.017.baf2

Активный rc-фильтр нижних частот третьего порядка с дифференциальным входом на базе операционного усилителя с парафазным выходом

Изобретение относится к области радиотехники. Технический результат заключается в упрощении процедуры настройки основных параметров ФНЧ, а также в увеличении гарантированного затухания амплитудно-частотной характеристики за пределами рабочей полосы частот при низких значениях его выходных...
Тип: Изобретение
Номер охранного документа: 0002695981
Дата охранного документа: 29.07.2019
+ добавить свой РИД