×
03.07.2018
218.016.69bc

Результат интеллектуальной деятельности: Способ стрельбы артиллерийскими снарядами на дальние расстояния

Вид РИД

Изобретение

№ охранного документа
0002659449
Дата охранного документа
02.07.2018
Аннотация: Изобретение относится к артиллерийскому вооружению и боеприпасам и, в частности, к стрельбе снарядами из артиллерийских орудий. Технический результат - повышение дальности стрельбы. По способу перед выстрелом уменьшают сопротивление движению снаряда. Для этого с помощью лазера в диапазоне длин волн 5,5-7,5 мкм излучают несколько импульсов энергии с направлением излучения, совпадающим с осью ствола орудия. С помощью этого излучения нагревают воздух в зоне луча - тоннеле в течение нескольких секунд. После этого лазер убирают и производят выстрел из орудия так, чтобы артиллерийский снаряд на начальном участке траектории двигался в упомянутом тоннеле. 3 ил.

Изобретение относится к артиллерийскому вооружению и боеприпасам, в частности к повышению дальности стрельбы снарядами из артиллерийских орудий. Известно, что для повышения дальности стрельбы необходимо уменьшать сопротивление движению снаряда.

Известен способ уменьшения сопротивления движению снаряда, заключающийся в том, что снаряду придают форму удлиненного конуса, а в донной части формируют полость. Это направление работ прослеживается на разработках дальнобойных осколочно-фугасных снарядов, имеющие шифры: «Наместник», «Хребет-М», «Алагез» и др. (Каллистов А.А. Научно-исследовательский машиностроительный институт (НИМИ): Страницы истории, события, люди (1932-2002). - М.: ЦЭИ «Химмаш», 2002. - 236 с.: ил.). Эти технические решения в целом уменьшают сопротивление движению снаряда в воздухе и позволяют повысить дальность стрельбы на 10-20% по сравнению с обычными снарядами такого же класса.

Наиболее близким по технической сущности к предлагаемому изобретению является способ обеспечения скоростного движения подводной ракеты (торпеды) в жидкой среде. При этом высокую скорость торпеды обеспечивают за счет уменьшения плотности среды впереди торпеды, путем турбулизации среды до появления пузырьков воздуха впереди этой торпеды (Каллистов А.А. Научно-исследовательский машиностроительный институт (НИМИ): Страницы истории, события, люди (1932-2002). - М.: ЦЭИ «Химмаш», 2002. - 236 с.: ил.) (Прототип).

В заявленном техническом решении предлагается перед выстрелом на прямолинейном участке движения снаряда в узком цилиндрическом коридоре по траектории движения снаряда нагревать воздух. На этом участке под действием тепла плотность воздуха уменьшится, и снаряд, запущенный в этот коридор с меньшей плотностью, будет испытывать меньшее сопротивление своему движению. При этом его потери скорости на данном участке будут меньше, чем если бы снаряд двигался в непрогретом воздухе. Тем самым будет получена большая дальность стрельбы артиллерийским снарядом.

Известно, что сила сопротивления воздуха движению снаряда направлена против скорости движения, ее величина пропорциональна характерной площади S снаряда, плотности среды ρ и квадрату скорости V. Из этого следует, что уменьшение силы сопротивления воздуха впереди снаряда естественно приведет к увеличению дальности стрельбы и тем самым будет повышена эффективность такой стрельбы. Вопросам оптимизации характерной площади снаряда посвящено множество исследований и достигнуты существенные результаты (варианты рассмотрены выше). Предлагается применить технические решения по снижению плотности среды впереди движущегося снаряда.

Техническое решение поясняется чертежами.

Фиг. 1. Изменение плотности воздуха (ось ординат в кг/м3) в зависимости от температуры (ось абсцисс в °С).

Фиг. 2. Световое излучение пучка лазера.

Фиг. 3. Спектральное пропускание атмосферой излучения, измеренное на горизонтальной трассе протяженностью 1,8 км на уровне моря. В нижней части чертежа указано, молекулами каких газов поглощается излучение.

Один из способов уменьшения плотности воздуха заключается в его нагреве. На фиг. 1 приведены данные по изменению плотности воздуха при его нагреве до 100°С. Как видно, с ростом температуры плотность воздуха существенно уменьшается.

Исследования движения различных снарядов на начальном участке траектории (после выстрела) показывают, что в нижних слоях атмосферы сопротивление движению снаряда максимально. Это обусловлено тем, что плотность атмосферы максимальна у поверхности земли и уменьшается с высотой.

Анализ данных, приведенных на фиг. 1, и известных данных об изменении плотности воздуха на различных высотах от поверхности земли показывает, что, например, нагрев воздуха у поверхности земли до 100°С приведет к изменению его плотности как при подъеме на высоту до 2,8 км.

В связи с этим технические решения, позволяющие нагреть воздух на начальном участке движения снаряда, создадут условия для уменьшения лобового сопротивления при прохождении нижних самых плотных слоев атмосферы и тем самым позволят повысить дальность стрельбы ствольной артиллерии.

Одним из таких решений для нагрева воздуха является использование энергии излучения мощного лазера в направлении стрельбы. Картинка, демонстрирующая такой вариант подвода энергии к узкому тоннелю воздуха в направлении движения снаряда, показана на фиг. 2.

Оценки энергии, необходимой для нагрева такого канала в воздухе, приведены ниже.

Технические возможности по созданию оптических систем лазера позволяют создать луч с диаметром пятна 0,5 м на расстоянии три километра от точки излучения. На расстоянии один километр диаметр пятна в этом случае будет составлять примерно 0,2 м. Усредненный расчет показывает, что для рассмотренных условий объем воздуха в конусе от вершины в точке излучения до расстояния в один км составит 7 м3, а до расстояния в 3 км -176 м3.

Энергию для нагрева одного куба воздуха на один градус Цельсия определим из известного соотношения:

Q=cpρ,

где ср - теплоемкость воздуха, равная 0,243 ккал/кг× град; ρ - плотность воздуха, равная у поверхности земли 1,25 кг/м3. Расчет показывает, что при этом величина Q составит 300 кал или 1260 Дж.

Исходя из этого, оценим энергию, необходимую для нагрева на один градус объема воздуха в рассмотренных выше конусах, а именно: в конусах с высотами один и три километра. Проведя расчеты, получим: соответственно примерно 9 кДж и 222 кДж. Тогда для нагрева на 100°С потребуется соответственно 900 кДж и 22,2МДж. Эти расчеты распространяются на прохождение луча параллельно поверхности земли. При направлении луча под углом к поверхности земли, с ростом высоты подъема над землей, плотность воздуха будет уменьшаться. Тогда, в соответствии с расчетом, можно видеть, что с ростом высоты количество энергии для нагрева воздуха на одну и ту же величину будет уменьшаться, т.е. приведенные выше мощности являются предельными.

Следует подчеркнуть, что температура самого луча лазера не просто низкая, термодинамически она вообще отрицательная. Высокая температура может возникнуть только при соприкосновении луча с веществом, например с молекулами газов в воздухе.

В России сегодня есть предприятия, способные разрабатывать и промышленно выпускать мощные малогабаритные лазеры. Достижения в этой области хорошо показаны в документальном фильме «Повелители луча», снятом в 2009 году.

Для того чтобы заставить лазерный луч максимально отдавать энергию окружающему воздуху, необходимо использовать частотный диапазон излучения, в котором наблюдается максимальное поглощение энергии частицами воздуха. Исследования ряда авторов показывают, что это явление наблюдается, например, для длин волн в пределах 5,5-7,5 мкм. На фиг. 3 приведены известные данные исследований по измерению поглощения лазерного излучения на различных длинах волн.

Как видно из фиг. 3, в указанном диапазоне длин волн (5,5-7,5 мкм) основное поглощение энергии лазера происходит при взаимодействии с молекулами воды. Концентрация водяного пара в атмосфере зависит от географического положения района, времени года, высоты слоя атмосферы, местных метеоусловий и колеблется по объему от 0,001 до 4%. Основное количество водяного пара сосредоточено в нижнем пятикилометровом слое и резко уменьшается с дальнейшим увеличением высоты. Принципиальные возможности создания лазеров в диапазоне длин волн 5,5-7,5 мкм рассмотрены в работе (отчет о научно-исследовательской работе в рамках федеральной целевой программы «научные и научно-педагогические кадры инновационной России» на 2009-2013 годы по теме: «твердотельные лазеры с полупроводниковой накачкой ближнего и среднего ИК диапазонов спектра (2 мкм, 3-8 мкм) на основе кристаллов и керамики, активированных ионами Тm и НО» //мордовский государственный университет им. Н.П. Огарева, Саранск, 2012 г.).

Одним из таких предприятий, способным создать мощные лазеры с заданными свойствами, является ФКП «ГЛП «Радуга» (Владимирская область). На предприятии разработаны и функционируют рад уникальных малогабаритных мощных лазеров. Особых успехов они добились в области создания матриц лазерных диодов, применяемых для накачки лазеров.

Таким образом, анализ данных, приведенных на фиг. 1, показывает, что повышение температуры воздуха впереди снаряда на 100°С позволяет уменьшить его плотность более чем на 30%. А так как сопротивление движению снаряда пропорционально плотности воздуха следует ожидать, что при реализации устройства, позволяющего провести этот нагрев, дальность стрельбы из артиллерийских орудий можно также увеличить более чем на 30%.

Приведенный выше анализ и расчеты позволяют сформулировать требования на создание установок по снижению сопротивления движению снарядов в нижних слоях атмосферы. Техническая реализуемость предложения не вызывает сомнений.

Реализация способа осуществляется следующим образом. С помощью мощного лазера, направление излучения энергии которого совпадает с осью ствола орудия, перед выстрелом из этого орудия излучают несколько импульсов энергии. Луч лазера, отдавая энергию излучения, будет нагревать воздух в зоне луча (примерно в течение 2-4 секунд). Луч представляет собой усеченный конус. Нагретый воздух в узком тоннеле будет иметь плотность ниже, чем в окружающем этот тоннель пространстве. После этого лазер убирается, и производится выстрел из орудия, так чтобы снаряд на начальном участке траектории двигался в этом тоннеле. За счет того, что плотность воздуха на начальном этапе движения снаряда будет меньше, сила сопротивления движению снаряда будет также меньше. А это условие позволяет снаряду дольше двигаться с максимальной скоростью, и тем самым будет обеспечена большая дальность стрельбы.

Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.

Способ стрельбы артиллерийскими снарядами на дальние расстояния, заключающийся в том, что перед выстрелом уменьшают сопротивление движению снаряда, отличающийся тем, что перед выстрелом с помощью лазера в диапазоне длин волн 5,5-7,5 мкм излучают несколько импульсов энергии с направлением излучения, совпадающим с осью ствола орудия, с помощью этого излучения нагревают воздух в зоне луча - тоннеле в течение нескольких секунд, после чего лазер убирают и производят выстрел из орудия так, чтобы артиллерийский снаряд на начальном участке траектории двигался в упомянутом тоннеле.
Способ стрельбы артиллерийскими снарядами на дальние расстояния
Способ стрельбы артиллерийскими снарядами на дальние расстояния
Источник поступления информации: Роспатент

Показаны записи 1-10 из 54.
03.07.2018
№218.016.69f4

Способ коррекции времени срабатывания дистанционного устройства в артиллерийском снаряде

Изобретение относится к области разработки и производства артиллерийских снарядов. Технический результат – повышение эффективности способа за счет возможности осуществления автономной операции по коррекции времени срабатывания дистанционного устройства. Способ заключается в том, что с помощью...
Тип: Изобретение
Номер охранного документа: 0002659447
Дата охранного документа: 02.07.2018
28.07.2018
№218.016.75e5

Способ оценки эффективности мишени противостоять воздействию кинетических снарядов

Изобретение относится к методам оценки эффективности бронебойных боеприпасов и брони при их соударении и может быть использовано при создании новых боеприпасов и новой брони для защиты объектов. Способ оценки эффективности мишени противостоять воздействию кинетических снарядов заключается в...
Тип: Изобретение
Номер охранного документа: 0002662482
Дата охранного документа: 26.07.2018
28.07.2018
№218.016.7614

Способ защиты радиовзрывателя на основе автодина от радиопомех

Изобретение относится к неконтактным взрывателям и может быть использовано для повышения помехозащищенности радиовзрывателей от воздействия различных помех. Предлагаемый способ защиты радиовзрывателя на основе автодина от радиопомех осуществляется следующим образом. В процессе работы...
Тип: Изобретение
Номер охранного документа: 0002662494
Дата охранного документа: 26.07.2018
28.07.2018
№218.016.764c

Способ оценки ресурса стальных корпусов артиллерийских снарядов

Изобретение относится к артиллерийским боеприпасам и может быть использовано при оценке ресурса стальных корпусов снарядов после длительных сроков хранения. Сущность: на всех корпусах снарядов, без их разборки, в непосредственной близости к ведущему пояску на корпусе, производят измерение...
Тип: Изобретение
Номер охранного документа: 0002662479
Дата охранного документа: 26.07.2018
28.07.2018
№218.016.7694

Устройство для измерения максимальных нагрузок на снаряд при выстреле из артиллерийского орудия

Изобретение относится к боеприпасам и может быть использовано для определения максимальных перегрузок, действующих на артиллерийский снаряд при выстреле. Сущность изобретения заключается в том, что крешерный прибор установлен непосредственно в снаряд неподвижно, так, что его дно находится со...
Тип: Изобретение
Номер охранного документа: 0002662465
Дата охранного документа: 26.07.2018
09.09.2018
№218.016.854c

Способ определения высоты подрыва осколочно-фугасного снаряда над грунтом

Изобретение относится к боеприпасам и может быть использовано для оценки функционирования неконтактных взрывателей. Перед испытаниями неконтактных взрывателей в составе снаряда проводят подрыв снаряда с контактным взрывателем. В образовавшейся при взрыве воронке измеряют глубину воронки h....
Тип: Изобретение
Номер охранного документа: 0002666375
Дата охранного документа: 07.09.2018
09.09.2018
№218.016.8551

Способ дистанционного подрыва снаряда

Изобретение относится к боеприпасам ствольной артиллерии и может быть использовано во взрывателях артиллерийских снарядов. Способ дистанционного подрыва снаряда заключается в том, что во взрыватель снаряда устанавливают несколько датчиков и с их помощью определяют параметры полета конкретного...
Тип: Изобретение
Номер охранного документа: 0002666378
Дата охранного документа: 07.09.2018
19.09.2018
№218.016.888f

Способ коррекции траектории дальнобойного артиллерийского снаряда с донным газогенератором и головным электромеханическим взрывателем с тормозным устройством

Изобретение относится к боеприпасам, в частности к способам коррекции области рассеивания осколочно-фугасных дальнобойных снарядов. Технический результат – повышение точности поражения. По способу вычисляют время включения тормозного устройства взрывателя. Вводят это значение времени в...
Тип: Изобретение
Номер охранного документа: 0002667168
Дата охранного документа: 17.09.2018
19.09.2018
№218.016.88a6

Способ коррекции артиллерийских снарядов

Изобретение относится к артиллерийским боеприпасам и может быть использовано для коррекции управляемых артиллерийских снарядов. Технический результат – повышение эффективности применения ствольной артиллерии. По способу перед выстрелом боевым снарядом производят выстрел снарядом-разведчиком,...
Тип: Изобретение
Номер охранного документа: 0002667167
Дата охранного документа: 17.09.2018
03.10.2018
№218.016.8dad

Способ поверхностной закалки стволов орудий

Изобретение относится к технологии изготовления стволов артиллерийских орудий. Способ поверхностной закалки внутренней поверхности ствола артиллерийского орудия заключается в том, что на контрольный участок внутренней поверхности ствола воздействуют импульсами лазерного излучателя для нагрева...
Тип: Изобретение
Номер охранного документа: 0002668531
Дата охранного документа: 01.10.2018
Показаны записи 1-10 из 61.
10.06.2013
№216.012.47ba

Способ усиления звукового сигнала оповещения спецавтомобиля и устройство для его реализации

Изобретение относится к транспортному машиностроению. Способ усиления звукового сигнала оповещения сненавтомобиля заключается в том, что выхлопные газы двигателя внутреннего сгорания выпускают в атмосферу, минуя выхлопную трубу и коллектор. Выхлоп газов производят синхронно с уровнем звука...
Тип: Изобретение
Номер охранного документа: 0002483942
Дата охранного документа: 10.06.2013
25.08.2017
№217.015.b407

Способ альтернативного лечения инсулин-продуцирующей доброкачественной опухоли поджелудочной железы

Изобретение относится к медицине, а именно к эндокринной хирургии, и может быть использовано для альтернативного лечения инсулин-продуцирующей доброкачественной опухоли поджелудочной железы. Для этого проводят исследование уровня иммунореактивного инсулина и С-пептида. При показателях,...
Тип: Изобретение
Номер охранного документа: 0002613717
Дата охранного документа: 21.03.2017
26.08.2017
№217.015.ed64

Способ лечения гормонально-активных опухолей надпочечников

Изобретение относится к медицине, эндокринной хирургии и может быть использовано для лечения гормонально-активных опухолей надпочечников путем радиочастотного воздействия на опухоль с помощью источника электромагнитного излучения. Для этого при выявлении повышения уровня гормонов,...
Тип: Изобретение
Номер охранного документа: 0002628645
Дата охранного документа: 21.08.2017
03.07.2018
№218.016.69f4

Способ коррекции времени срабатывания дистанционного устройства в артиллерийском снаряде

Изобретение относится к области разработки и производства артиллерийских снарядов. Технический результат – повышение эффективности способа за счет возможности осуществления автономной операции по коррекции времени срабатывания дистанционного устройства. Способ заключается в том, что с помощью...
Тип: Изобретение
Номер охранного документа: 0002659447
Дата охранного документа: 02.07.2018
28.07.2018
№218.016.75e5

Способ оценки эффективности мишени противостоять воздействию кинетических снарядов

Изобретение относится к методам оценки эффективности бронебойных боеприпасов и брони при их соударении и может быть использовано при создании новых боеприпасов и новой брони для защиты объектов. Способ оценки эффективности мишени противостоять воздействию кинетических снарядов заключается в...
Тип: Изобретение
Номер охранного документа: 0002662482
Дата охранного документа: 26.07.2018
28.07.2018
№218.016.7614

Способ защиты радиовзрывателя на основе автодина от радиопомех

Изобретение относится к неконтактным взрывателям и может быть использовано для повышения помехозащищенности радиовзрывателей от воздействия различных помех. Предлагаемый способ защиты радиовзрывателя на основе автодина от радиопомех осуществляется следующим образом. В процессе работы...
Тип: Изобретение
Номер охранного документа: 0002662494
Дата охранного документа: 26.07.2018
28.07.2018
№218.016.764c

Способ оценки ресурса стальных корпусов артиллерийских снарядов

Изобретение относится к артиллерийским боеприпасам и может быть использовано при оценке ресурса стальных корпусов снарядов после длительных сроков хранения. Сущность: на всех корпусах снарядов, без их разборки, в непосредственной близости к ведущему пояску на корпусе, производят измерение...
Тип: Изобретение
Номер охранного документа: 0002662479
Дата охранного документа: 26.07.2018
28.07.2018
№218.016.7694

Устройство для измерения максимальных нагрузок на снаряд при выстреле из артиллерийского орудия

Изобретение относится к боеприпасам и может быть использовано для определения максимальных перегрузок, действующих на артиллерийский снаряд при выстреле. Сущность изобретения заключается в том, что крешерный прибор установлен непосредственно в снаряд неподвижно, так, что его дно находится со...
Тип: Изобретение
Номер охранного документа: 0002662465
Дата охранного документа: 26.07.2018
09.09.2018
№218.016.854c

Способ определения высоты подрыва осколочно-фугасного снаряда над грунтом

Изобретение относится к боеприпасам и может быть использовано для оценки функционирования неконтактных взрывателей. Перед испытаниями неконтактных взрывателей в составе снаряда проводят подрыв снаряда с контактным взрывателем. В образовавшейся при взрыве воронке измеряют глубину воронки h....
Тип: Изобретение
Номер охранного документа: 0002666375
Дата охранного документа: 07.09.2018
09.09.2018
№218.016.8551

Способ дистанционного подрыва снаряда

Изобретение относится к боеприпасам ствольной артиллерии и может быть использовано во взрывателях артиллерийских снарядов. Способ дистанционного подрыва снаряда заключается в том, что во взрыватель снаряда устанавливают несколько датчиков и с их помощью определяют параметры полета конкретного...
Тип: Изобретение
Номер охранного документа: 0002666378
Дата охранного документа: 07.09.2018
+ добавить свой РИД