×
25.06.2018
218.016.66d6

СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО КОМПОЗИЦИОННОГО РАДИАЦИОННО-ЗАЩИТНОГО МАТЕРИАЛА

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области изготовления полимерных композиционных материалов для защиты от различного рода излучений, в частности радиационной защиты. Смешению подвергают последовательно в качестве связующего - эпоксидно-диановую смолу - 100 масс. ч., в качестве наполнителя - гранулированный полипропилен - 160-185 масс. ч., фторид лития - 25-50 масс. ч., в качестве технологических добавок пластификатор дибутилфталат - 10-20 масс. ч., отвердитель - полиэтиленполиамин - 10-15 масс. ч., сначала в форму засыпают гранулированный полипропилен, после чего оказывают вибрационное воздействие с частотой не более 18 кГц в течение 5-10 минут, затем берут навеску эпоксидно-диановой смолы с дибутилфталатом, нагревают полученную смесь до 70-80°С, добавляют в нее фторид лития, вакуумируют, охлаждают до 40-45°С, вводят полиэтиленполиамин, затем повторно вакуумируют и заливают в форму с гранулированным полипропиленом, после чего осуществляют отверждение формуемого материала при комнатной температуре в течение не менее 24 часов. Изобретение обеспечивает возможность точного изготовления деталей по заданным размерам и произвольной формы, а также получение готового материала с высокими прочностными и защитными свойствами. 1 табл., 4 пр.
Реферат Свернуть Развернуть

Изобретение относится к области технологий изготовления полимерных композиционных материалов для защиты от различного рода излучений, в частности радиационной защиты.

Известен способ получения нейтронозащитного материала из патента РФ №2069904, МПК G21F 1/10, публ. 27.11.1996 г., БИ №33, в котором получают полимерный композиционный материал, состоящий из связующего синтетический бутадиеновый, изопреновый или бутадиен-нитрильный каучук, наполнитель - фтористый литий, фторопласт и ионол и подобные ему соединения в качестве агентов для снижения вязкости композиции, повышения механической прочности и улучшения защитных свойств готового материала.

К недостаткам аналога относится отсутствие возможности точного изготовления деталей по заданным размерам, а также то, что готовый материал в связи с высокой эластичностью обладает недостаточно высокими прочностными свойствами и недостаточно высокими защитными свойствами, т.к. характеризуется сравнительно невысоким водородным индексом (показывающим величину стехиометрического соотношение элементного водорода и полимерной основы).

Известен в качестве наиболее близкого к заявляемому способ получения материала для биозащиты от нейтронов (патент РФ №2008730, МПК G21F 1/10, публ. 28.02.1994 г.), согласно которому получают полимерный композиционный материал на основе полимерного компонента - полиэтилена, в качестве технологических добавок - бромсодержащие ароматические соединения, поливиниловый спирт, малеиновый ангидрид и аморфный бор, гидроокись алюминия в качестве наполнителей, способствующие повышению огнестойкости и улучшению нейтронозащитных свойств готового материала.

К недостаткам прототипа относится отсутствие возможности точного изготовления деталей по заданным размерам, а также то, что листовой материал получают с использованием специального оборудования (пресс, экструдер) и сложной технологической оснастки. Известный процесс длителен, трудоемок и требует специальных условий. К недостаткам прототипа относится и то, что готовый материал обладает недостаточно высокими прочностными свойствами ввиду наличия значительных количеств наполнителя в рецептуре и недостаточно высокими защитными свойствами, т.к. характеризуется сравнительно невысоким водородным индексом.

Задачей изобретения является разработка простого эффективного способа получения полимерного композиционного радиационно-защитного материала любой формы с улучшенными защитными характеристиками.

Новый технический результат, обеспечиваемый при использовании предлагаемого способа по сравнению с прототипом, заключается в обеспечении возможности точного изготовления деталей по заданным размерам и произвольной формы, а также получении готового материала с высокими прочностными и защитными свойствами.

Указанные задачи и новый технический результат обеспечиваются тем, что в отличие от известного способа изготовления полимерного композиционного радиационно-защитного материала, включающего смешение полимерного компонента, комплексного наполнителя и технологических добавок с последующим формованием готового изделия, согласно изобретению смешению подвергают последовательно в качестве связующего эпоксидно-диановую смолу, в качестве наполнителя - гранулированный полипропилен, фторид лития, в качестве технологических добавок пластификатор - дибутилфталат, отвердитель - полиэтиленполиамин, которые берут в следующем соотношении: на каждые 100 масс. ч. эпоксидно-диановой смолы берут комплексный наполнитель из гранулированного полипропилена 160-185 масс. ч., - фторида лития 25-50 масс. ч., технологических добавок - дибутилфталата 10-20 масс. ч., полиэтиленполиамина 10-15 масс. ч., процесс смешения указанных ингредиентов производят таким образом, что сначала в предварительно покрытую антиадгезионной силиконсодержащей пастой форму засыпают гранулированный полипропилен в качестве первого компонента комплексного наполнителя, после чего на гранулированную массу полипропилена оказывают вибрационное воздействие с частотой не более 18 кГц в течение 5 10 минут, затем берут навеску эпоксидно-диановой смолы, в которую предварительно введена технологическая добавка - дибутилфталат в указанных соотношениях, нагревают полученную смесь до 70-80°С, добавляют в смесь в качестве второго компонента комплексного наполнителя фторид лития, вакуумируют до остаточного давления не менее 40 МПа, охлаждают смесь до 40-45°С, вводят отвердитель полиэтиленполиамин в смесь эпоксидно-диановой смолы, технологические добавки и второй компонент комплексного наполнителя, затем повторно вакуумируют и осуществляют заливку приготовленной заливочной смеси в форму с гранулированным полипропиленом, после чего осуществляют отверждение формуемуемого материала при комнатной температуре в течение не менее 24 часов.

Предлагаемый способ поясняется следующим образом.

Предварительно готовят смесь из заявляемых компонентов в заявляемых пределах их соотношений, а именно: на каждые 100 масс. ч. эпоксидно-диановой смолы берут - комплексный наполнитель из гранулированного полипропилена 160-185 масс. ч., - фторида лития 25-50 масс. ч., технологических добавок - дибутилфталата 10-20 масс. ч., полиэтиленполиамина 10-15 мас. ч. Указанные соотношения были определены экспериментально, при этом было показано, что именно в пределах указанных значений используемых ингредиентов достигается требуемый уровень прочностных свойств, обеспечивающий возможность получения деталей точно по заданным размерам с более высокими, чем в прототипе, защитными свойствами.

Процесс смешения указанных ингредиентов производят таким образом, что сначала в предварительно покрытую антиадгезионной силиконсодержащей пастой форму засыпают гранулы полипропилена в качестве первого компонента комплексного наполнителя. После этого на гранулированную массу полипропилена оказывают вибрационное воздействие с частотой не более 18 кГц в течение 5 10 минут, в результате которого достигается требуемая степень уплотнения полипропилена, вследствие чего нарабатываются высокие водородный индекс (величина концентрации водорода в объеме материала) и требуемые плотность и радиационно-защитные свойства в готовом материале.

Затем берут навеску эпоксидно-диановой смолы, в которую предварительно введена технологическая добавка дибутилфталат в указанных соотношениях, нагревают полученную смесь до 70-80°С, добавляют в смесь в качестве второго компонента комплексного наполнителя фторид лития, вакуумируют до остаточного давления не менее 40 МПа, охлаждают до 40-45°С, вводят отвердитель полиэтиленполиамин, смесь эпоксидно-диановой смолы, технологических добавок и второго компонента комплексного наполнителя,

Используемый режим обеспечивает получение однородной без воздушных включений массы и оптимизирует условия равномерного смешения всех ингредиентов.

Затем повторно вакуумируют полученную смесь и осуществляют заливку ее в форму с гранулированным полипропиленом и окончательно осуществляют отверждение формуемого материала при комнатной температуре в течение не менее 24 часов.

Формы предварительно покрывают антиадгезионной силиконсодержащей пастой, что необходимо для исключения риска

Затем повторно вакуумируют приготовленный заливочный состав и осуществляют его заливку в форму с гранулированным полипропиленом и окончательно осуществляют отверждение формуемого материала при комнатной температуре в течение не менее 24 часов.

Формы предварительно покрывают антиадгезионной силиконсодержащей пастой, что необходимо для исключения риска прилипания образцов к стенкам формы, исключения брака поверхности готовых изделий и обеспечения точности размеров и формы готовых изделий.

Таким образом, при использовании предлагаемого изобретения обеспечивается более высокий технический результат по сравнению с прототипом, заключающийся в обеспечении возможности точного изготовления деталей по заданным размерам и любой формы, а также получении готового материала с высокими прочностными и защитными свойствами.

Возможность промышленной реализации предлагаемого способа подтверждается следующими примерами конкретного исполнения.

Пример 1

В лабораторных условиях предлагаемым способом были изготовлены образцы полимерного композиционного радиационно-защитного материала на основе эпоксидно-диановой смолы, технологических добавок - дибутилфталата и полиэтиленполиамина и комплексного наполнителя: гранулированного полипропилена и фторида лития.

Готовилась заливочная форма, представляющая собой цилиндр с внутренним диаметром 20 мм, высотой 20 мм. Заливочная форма смазывалась антиадгезионной пастой «Силотерм ЭП-КПД» ТУ 6-02-5-009-92 для предотвращения прилипания образца к поверхности заливочной формы.

После подготовки заливочной формы проводилось заполнение объема заливочной формы гранулированным полипропиленом марки PPH030GP/1 (ООО «Томскнефтехим», г. Томск) ТУ 2211-103-70353562-2013 в количестве 3,5 г. Размер гранул полипропилена составлял 5,0 мм.

Заполненная форма устанавливалась на вибрационную платформу и подвергалась вибрационному воздействию с частотой 18 кГц в течение 5 минут.

Готовился заливочный состав, состоящий из эпоксидно-диановой смолы марки ЭД-20 ГОСТ 10587-84, пластификатора дибутилфталата ГОСТ 8728-88, второго компонента комплексного наполнителя фторида лития ТУ 6-09-3529-84 и полиэтиленполиамина ТУ 2413-357-00203447-99 в качестве отвердителя.

Рецептура заливочного состава представлена ниже:

Смола эпоксидно-диановая ЭД-20, масс. ч. 100
Дибутилфталат, масс. ч. 20
Фторид лития, масс. ч. 25
Полиэтиленполиамин, масс. ч. 15

Приготовление заливочного состава проводилось следующим образом. В навеску смолы ЭД-20 добавляли дибутилфталат и подогревали до температуры 70°С при тщательном перемешивании. Нагретую до 70°С смесь из эпоксидно-диановой смолы и дибутилфталата вакуумировали в течение 10 минут при остаточном давлении не более 40 ГПа. Далее в смесь эпоксидно-диановой смолы и дибутилфталата добавляли фторид лития, перемешивали в течение 5 минут, вакуумировали 10 минут при остаточном давлении не более 40 ГПа и охлаждали до 40°С, после чего вводили полиэтиленполиамин. Заливочный состав перемешивали 10 минут до достижения однородного состояния и вакуумировали при остаточном давлении не более 40 ГПа в течение 5 минут.

Заливочный состав в количестве 3,5 г выливался в заливочную форму, заполняя пространство между гранулами полипропилена в заливочной форме.

Отверждение проводилось при комнатной температуре в течение 24 часов. Образец извлекался из формы и определялись следующие характеристики материала: плотность, предел прочности при сжатии и модуль упругости при сжатии.

В получаемом материале обеспечен «водородный индекс» 10,9%, что является критерием повышенной радиационно-защитной функции готовых изделий.

Образцы полученного указанным образом материала подвергают контрольным испытаниям, результаты которых сведены в таблицу 1.

Пример 2

В условиях примера 1, но содержание полипропилена составляет 3,7 г, содержание фторида лития в рецептуре составляет 50 масс. ч.

Образцы полученного указанным образом материала подвергают контрольным испытаниям, результаты которых сведены в таблицу 1.

Пример 3

В лабораторных условиях заливочным составом было опробовано изготовление полимерного композиционного радиационно-защитного материала в эластичной форме, для изготовления которой использовалась «мастер-модель».

В качестве «мастер-модели» для имитации многочисленных изгибов и переходов использовалась пластиковая бутылка.

Пластиковая бутылка жестко фиксировалась у основания и горлышка на лабораторном штативе. Закрепленная в штативе бутылка в подвешенном состоянии была помещена в заливочную форму с примерно равномерными зазорами относительно стенок формы. В зазоры между «мастер-моделью» и стенками заливаемой формы заливался перемешанный с катализатором №68 ТУ 38.303-04-05-90 низкомолекулярный полимер «Опросил», при этом навеска низкомолекулярного полимера «Стиросил» составляла 800 г, навеска катализатора №68 - 40 г.

Заливаемую форму с укрепленной в ней «мастер-моделью» оставляли на 24 часа до завершения процесса отверждения низкомолекулярного полимера «Стиросил». После процесса отверждения пластиковую бутылку извлекали из отвержденной эластичной формы. Далее эластичную форму использовали для изготовления полимерного композиционного радиационно-защитного материала методом заливки.

Далее по примеру 2.

Пример 4

В лабораторных условиях были изготовлены образцы полимерного композиционного радиационно-защитного материала на основе эпоксидно-диановой смолы, технологических добавок - дибутилфталата и полиэтиленполиамина, и наполнителя - гранулированного полипропилена.

Готовилась заливочная форма, представляющая собой цилиндр с внутренним диаметром 20 мм, высотой 20 мм. Заливочная форма смазывалась антиадгезионной пастой «Силотерм ЭП-КПД» ТУ 6-02-5-009-92 для предотвращения прилипания образца к поверхности заливочной формы.

После подготовки заливочных форм проводилось заполнение объема заливочных форм гранулированным полипропиленом марки PPH030GP/1 (ООО «Томскнефтехим», г. Томск) ТУ 2211-103-70353562-2013 в количестве 3,7 масс. ч. Размер гранул полипропилена составлял 5,0 мм.

Заполненная форма устанавливалась на вибрационную платформу и подвергалась вибрационному воздействию с частотой 18 кГц в течение 5 минут.

Готовился заливочный состав, состоящий из эпоксидно-диановой смолы марки ЭД-20 ГОСТ 10587-84, пластификатора дибутилфталата ГОСТ 8728-88 и полиэтиленполиамина ТУ 2413-357-00203447-99 в качестве отвердителя.

Рецептура заливочного состава представлена ниже:

Смола эпоксидно-диановая ЭД-20, масс. ч. 100
Дибутилфталат, масс. ч. 20
Полиэтиленполиамин, масс. ч. 15

Приготовление заливочного состава проводилось следующим образом. В навеску смолы ЭД-20 добавляли дибутилфталат и подогревали до температуры 70°С при тщательном перемешивании. Нагретую до 70°С смесь из эпоксидно-диановой смолы и дибутилфталата вакуумировали в течение 10 минут при остаточном давлении не более 40 ГПа. Далее смесь из эпоксидно-диановой смолы и дибутилфталата охлаждали до 40°С, после чего вводили в нее полиэтиленполиамин, перемешивали 10 минут до достижения однородного состояния и окончательно вакуумировали при остаточном давлении не более 40 ГПа в течение 5 минут.

Заливочный состав в количестве 3,5 г выливался в заливочную форму, заполняя пространство между гранулами полипропилена в заливочной форме.

Отверждение проводилось при комнатной температуре в течение 24 часов. Образец извлекался из формы и определялись следующие характеристики материала: плотность, предел прочности при сжатии и модуль упругости при сжатии.

В получаемом материале обеспечен «водородный индекс» 11,3%, что является критерием повышенной радиационно-защитной функции готовых изделий.

Образцы полученного указанным образом материала подвергались контрольным испытаниям, результаты которых сведены в таблицу 1.

Заявляемый способ опробован для случая отсутствия фторида лития для повышения «водородного индекса», а значит улучшения защитных свойств.

Способ изготовления полимерного композиционного радиационно-защитного материала, включающий смешение полимерного компонента, комплексного наполнителя и технологических добавок с последующим формованием готового изделия, отличающийся тем, что смешению подвергают последовательно в качестве связующего эпоксидно-диановую смолу, в качестве наполнителя - гранулированный полипропилен, фторид лития, в качестве технологических добавок пластификатор - дибутилфталат, отвердитель - полиэтиленполиамин, которые берут в следующем соотношении: на каждые 100 масс. ч. эпоксидно-диановой смолы берут комплексный наполнитель из гранулированного полипропилена 160-185 масс. ч. и фторида лития 25-50 масс. ч., технологические добавки - дибутилфталат 10-20 масс. ч., полиэтиленполиамин - 10-15 масс. ч., процесс смешения указанных ингредиентов производят таким образом, что сначала в предварительно покрытую антиадгезионной силиконсодержащей пастой форму засыпают гранулированный полипропилен в качестве первого компонента комплексного наполнителя, после чего на гранулированную массу полипропилена оказывают вибрационное воздействие с частотой не более 18 кГц в течение 5-10 минут, затем берут навеску эпоксидно-диановой смолы, в которую предварительно введена технологическая добавка дибутилфталат в указанных соотношениях, нагревают полученную смесь до 70-80°С, добавляют в нее в качестве второго компонента комплексного наполнителя фторид лития, вакуумируют до остаточного давления не менее 40 МПа, охлаждают до 40-45°С, вводят отвердитель - полиэтиленполиамин в смесь эпоксидно-диановой смолы, технологические добавки и второй компонент комплексного наполнителя, затем повторно вакуумируют и осуществляют заливку приготовленного заливочного состава в форму с гранулированным полипропиленом, после чего осуществляют отверждение формуемого материала при комнатной температуре в течение не менее 24 часов.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 796.
27.04.2013
№216.012.3b44

Способ определения сплошности покрытия изделия

Изобретение относится к неразрушающим методам контроля, в частности к области газовой дефектоскопии, может применяться при контроле сплошности покрытий с низкой водородопроницаемостью, наносимых на поверхность крупногабаритных металлических изделий сложной конфигурации. Способ определения...
Тип: Изобретение
Номер охранного документа: 0002480733
Дата охранного документа: 27.04.2013
20.05.2013
№216.012.41ed

Интерферометр

Изобретение может быть использовано для контроля качества афокальных систем, в том числе крупногабаритных, а именно: плоских зеркал, светоделителей, плоскопараллельных пластин, клиньев, телескопических систем с увеличением, близким к единичному. Интерферометр содержит формирователь...
Тип: Изобретение
Номер охранного документа: 0002482447
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49ed

Переход волоконно-оптический

Изобретение относится к волоконно-оптической технике и может быть использовано для герметичного ввода оптического волокна через перегородку. Устройство содержит герметично установленный в стенке металлический корпус, выполненный составным из двух скрепленных по резьбе частей с проходным...
Тип: Изобретение
Номер охранного документа: 0002484505
Дата охранного документа: 10.06.2013
27.07.2013
№216.012.5ab8

Система параметрической гидролокации с функцией получения акустического изображения целей

Использование: изобретение относится к области гидролокации и предназначено для обнаружения подводных целей и получения их акустического изображения. Сущность: в предложенной системе параметрической гидролокации излучение низкочастотных зондирующих сигналов формируют путем нелинейного...
Тип: Изобретение
Номер охранного документа: 0002488845
Дата охранного документа: 27.07.2013
10.09.2013
№216.012.686e

Затвор люка камеры

Изобретение относится к машиностроению и может быть использовано при проектировании крупногабаритных камер высокого давления для испытания в них изделий. Затвор люка камеры содержит герметично установленную на люке камеры крышку, имеющую глубокую заходную часть и связанную с размещенным извне...
Тип: Изобретение
Номер охранного документа: 0002492381
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.688d

Складываемая аэродинамическая поверхность

Изобретение относится к области ракетной техники и, в частности к конструкциям складываемых аэродинамических поверхностей, находящихся под воздействием сильных аэродинамических возмущений. Складываемая аэродинамическая поверхность содержит основание и шарнирно соединенную с ним поворотную...
Тип: Изобретение
Номер охранного документа: 0002492412
Дата охранного документа: 10.09.2013
10.10.2013
№216.012.740f

Контактный датчик

Изобретение относится к военной технике, в частности к средствам инициирования. Контактный датчик содержит два кольца, опорное и рабочее, установленных соосно и скрепленных между собой. На основании опорного кольца размещен кольцевой чувствительный элемент, а рабочее кольцо оснащено...
Тип: Изобретение
Номер охранного документа: 0002495368
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.74a5

Двухдиапазонная микрополосковая антенна круговой поляризации

Изобретение относится к антенно-фидерным устройствам, а именно к бортовым антеннам спутниковой навигации. Техническим результатом является создание малогабаритной микрополосковой двухдиапазонной антенны с круговой поляризацией, пригодной для работы с одиовходовым приемником. Двухдиапазонная...
Тип: Изобретение
Номер охранного документа: 0002495518
Дата охранного документа: 10.10.2013
20.11.2013
№216.012.8345

Сцинтилляционный материал на основе zno-керамики, способ его получения и сцинтиллятор

Использование: для регистрации различных видов ионизирующих излучений, в том числе альфа-частиц, в ядерной физике для контроля доз и спектрометрии указанных излучений, в космической технике, медицине, в устройствах, обеспечивающих контроль, в промышленности. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002499281
Дата охранного документа: 20.11.2013
10.12.2013
№216.012.884d

Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата

Изобретение относится к средствам фиксации складывающихся аэродинамических поверхностей летательного аппарата. Устройство фиксации сложенных аэродинамических поверхностей летательного аппарата содержит узел, обеспечивающий прилегание аэродинамических поверхностей к корпусу летательному...
Тип: Изобретение
Номер охранного документа: 0002500575
Дата охранного документа: 10.12.2013
Показаны записи 1-10 из 12.
10.03.2013
№216.012.2dc6

Способ сборки огнестойкой конструкции

Предназначено для использования в технологиях изготовления огнестойких сборочных систем для хранения, транспортировки токсичных, огне- и взрывоопасных материалов, может быть использовано для предотвращения несанкционированного воздействия экологически опасных материалов на окружающую среду....
Тип: Изобретение
Номер охранного документа: 0002477249
Дата охранного документа: 10.03.2013
20.07.2013
№216.012.57dd

Способ определения содержания наполнителя в полимерном композите

Изобретение относится к способам определения массового содержания наполнителя в полимерных композиционных материалах и может быть использовано для контроля технологии получения полимерных композитов, а также для контроля качества и однородности полученного материала. Сущность: нагревают образец...
Тип: Изобретение
Номер охранного документа: 0002488101
Дата охранного документа: 20.07.2013
27.09.2014
№216.012.f772

Способ изготовления и демонтажа демонтируемой сборки

Изобретение относится к способам безопасной транспортировки экологически опасных веществ в места утилизации или переработки. Технический результат: обеспечение простоты последующего демонтажа сборки при сохранении прочности соединения отдельных элементов между собой при ее транспортировке или...
Тип: Изобретение
Номер охранного документа: 0002529183
Дата охранного документа: 27.09.2014
13.01.2017
№217.015.8c02

Способ герметизации аварийных контейнеров

Изобретение относится к разработке эффективного способа герметизации аварийных контейнеров, обеспечивающих условия безопасности процесса и высокую надежность транспортировки и хранения аварийных контейнеров с токсичными и экологически опасными материалами. В способе герметизации аварийных...
Тип: Изобретение
Номер охранного документа: 0002604857
Дата охранного документа: 10.12.2016
26.08.2017
№217.015.e907

Термоаналитический способ определения энергии активации термодеструкции полимерного материала

Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерения и прогнозирования свойств полимерных материалов, включая композиционные материалы на полимерной основе. Заявляется термоаналитический способ определения энергии активации термодеструкции Е...
Тип: Изобретение
Номер охранного документа: 0002627552
Дата охранного документа: 08.08.2017
19.04.2019
№219.017.32dc

Полимерный нанокомпозиционный материал

Изобретение относится к полимерным нанокомпозиционным антифрикционным материалам, которые могут быть использованы в системах, работающих при высоких деформирующих нагрузках и в узлах трения. Материал получен совместной механоактивацией смеси порошкообразного сверхвысокомолекулярного полиэтилена...
Тип: Изобретение
Номер охранного документа: 0002432370
Дата охранного документа: 27.10.2011
18.05.2019
№219.017.595d

Нанокомпозиционный антифрикционный полимерный материал

Изобретение относится к антифрикционным материалам, применяемым в узлах трения, в подшипниках скольжения, а также в составе конструкционных материалов вращающихся валов турбин, нефтяных буровых системах. Нанокомпозиционный антифрикционный полимерный материал - в виде композиции, включающей...
Тип: Изобретение
Номер охранного документа: 0002414487
Дата охранного документа: 20.03.2011
29.05.2019
№219.017.66e1

Способ безопасной транспортировки поврежденных объектов с экологически опасными материалами и композиция отверждающегося материала для фиксации этого объекта

Изобретения относятся к области безопасной транспортировки экологически опасных веществ и к изготовлению фиксирующих материалов из органических пеноматериалов. Способ безопасной транспортировки поврежденного объекта с экологически опасными материалами осуществляют путем его установки и фиксации...
Тип: Изобретение
Номер охранного документа: 0002309860
Дата охранного документа: 10.11.2007
09.06.2019
№219.017.7fb9

Способ изготовления композиционного термостойкого материала

Изобретение относится к области технологии изготовления термостойких материалов. Способ изготовления композиционного термостойкого материала заключается в приготовлении концентрата, в котором в качестве связующего используют эпоксикремнийорганическую смолу, изометилтетрагидрофталиевый ангидрид...
Тип: Изобретение
Номер охранного документа: 0002461587
Дата охранного документа: 20.09.2012
19.06.2019
№219.017.8497

Теплоизоляционный состав

Изобретение относится к технологии производства строительных материалов из минеральных веществ и может быть использовано для изготовления теплоизоляционных материалов для ненесущих конструкционных изделий. Технический результат: повышение технологичности при механической обработке за счет...
Тип: Изобретение
Номер охранного документа: 0002285680
Дата охранного документа: 20.10.2006
+ добавить свой РИД